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Abstract

We believe that it is essential to be able to understand the reasoning of autonomous
robots as it relates to their behavior, and to be able to convey this reasoning to others.
Videos of robots are often naturally used to aid in understanding robot performance; plain
videos contain no information about the processing or behavior of the robots, but such videos
can be combined with extra information to improve their usefulness. Overall, my goal is to
combine real systems of mobile robots with tools for understanding algorithms, so that the
behavior of complex autonomous agents can be made more understandable. Concretely, my
thesis will investigate the addition of visualizations onto initially plain, uninformative videos.

The work I have done so far relating to the issues of analyzing and understanding robot
behavior has primarily progressed in two directions. The first is the development of an
automatic referee (autoref) for the RoboCup SSL, a robot soccer league. This work involves
creating a formal model of the rules and progression of the game as a hybrid automaton,
along with a modular implementation designed to resemble the structure of the model and
of the rules themselves. The individual components cooperate to produce the overall flow of
the game. The autoref is an autonomous agent that observes the behavior of other agents,
makes inferences based on that behavior according to a given set of rules, and communicates
with the other agents to alter their behavior in turn. Understanding the decisions of the
autoref is of great interest.

I have also developed mixed reality visualizations for autonomous mobile robots. For both
the robot soccer team and a quadrotor navigation problem, I have produced animations that
combine a video taken of the real robot, executing some plan or sequence of plans, with
visualizations revealing the details of the plan appropriately geometrically registered to the
video. The aim of such visualizations is to present the progress of the robots’ planning
algorithms so as to improve human understanding of their behavior.

The use of augmented and mixed reality has been explored in robotics before. Others
have created augmented reality displays intended to aid the operator of a robot in the face
of latency or poorly positioned camera views, as well as visualizations similar to my own
for displaying data collected by robots as appropriately-registered overlays on a video of
the robot. The focus of this work was on showing the low-level sensor data and using the
visualizations to aid humans in performing tasks using the robots; I intend to move on to
elucidating higher-level aspects of the planning done by autonomous robots.

For my thesis, I propose to further generalize the visualizations I have created; I would
like to allow dynamically changing what objects are visualized for a given plan, creating the
ability to zoom into specific regions of the space, show multiple levels of detail of the plan,
or filter the visualizations corresponding to different portions of the plan, according to a
user’s choices. Doing so will extend the idea of layered disclosure for text, which our team
already uses heavily, to these visualizations. Meanwhile, the autoref currently lacks any
visualization capabilities, or indeed any user interface at all. However, its modular design
will aid in adding future visualization, and applying ideas of visualization from the other
domains to its processing of game rules will be important for its development; if such an
autoref is to be practical to use, it must be easy to understand by spectators and players,
as requested. I will evaluate the effectiveness of different visualization choices I will develop
within the robot soccer and autoref domains.
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Chapter 1

Introduction

1.1 Motivation

Imagine watching a game of robot soccer in the RoboCup Small Size League (SSL), as
depicted in Figure 1.1. The game that the robots play is fast, and the ball is small, so it is
hard to tell what is happening if one does not already know the game very well. It can be
hard even to tell which robots are on each team, as shown by the blue and yellow dots on
top. Even if we do know the robots well, there is still a lot that we cannot deduce by just
looking at the robots moving. That is true while watching robots in person, but it gets worse
when watching a video of the robots that has been captured by some camera somewhere.
Then the ball can really get lost in the video and the teams may be even harder to follow.
Videos are still very informative, because they are the only way to capture a recording of
what actually happened in the world. But would it not be even better if the videos had some
extra information about the underlying algorithms that determine the robots’ behaviors to
help us follow what happened?

That is where this thesis comes in. We propose to develop the ability to draw extra
information on the videos, as shown in Figure 1.2, to capture and reveal what the algorithms
of autonomous robots are doing. Much of the internal state of the robots involves physical
locations on the ground, e.g., where the ball is, where to pass to, and where the opponents
are. By making the video look as if all of that information had actually been displayed on
the ground around the robots, we can make it easier to tell what happened and why the
robots did what they did. In this thesis, we will break down the interesting information
from a robot system into three categories, consisting of the information related to (a) the
current state of the world, (b) the future plans of the robots, and (c) the reasons that the
robots chose to make a particular decision in the past. Because the robots are controlled
by a computer program, it is possible to record exactly what their algorithms are doing at
every moment. The methods of this thesis will then combine that information with a video
by drawing informative objects on it, such as circles to mark locations on the ground or lines
to describe a region or path; we keep the original view of the robots from the video, and
then add drawings.

Robot soccer teams nowadays are controlled by complicated programs, and must consider
a lot of information in order to make sure to be playing competitively. For instance, one
common architecture that many teams use is Skills, Tactics, and Plays (STP) [17]. Skills
decide the exact low-level commands for one robot to do in order to do one small, specific
thing; tactics put together multiple skills and connecting logic to make a robot fill in a



Figure 1.1: A typical frame from a video of an SSL game.

Figure 1.2: The same frame shown in Figure 1.1, with additional informative annotations drawn on top of
it.



higher-level role for the team; finally, plays describe how to assign tactics to each robot
on the team. Every skill, tactic, and play that is active at a given moment has to make
decisions constantly in order to figure out the right action to take. Altogether, there is
a lot of information that the system generates that might need to be conveyed later on;
however, not all of it will necessarily need to be displayed all the time. In this thesis, we will
produce frameworks that enable the creation of flexible visualizations that make it possible
to filter the set of displayed visualizations in a sensible, principled way, and have more or
less information visible according to what one might need at any given moment. In order
to produce these flexible visualizations, we need to store information during robot execution
and be able to interpret it later. In general, this thesis will take the execution of a complex
robotic system and encode the decision and history information in log files that are later
combined with videos.

To be clear, the intended focus of this thesis will not be on performing user studies to
determine the choices that lead to the best understanding in any particular situation; rather,
we intend to provide the ability to make such decisions easily in general situations.

Now we do need to address the reason that something new like what we have described
could be used for robotic applications. After all, although there are robots involved, there is
ultimately a computer executing a program to control them. We, and other robot developers,
do in fact use print statements and other text-based displays to an extent, but one immediate
problem is that there can be a lot of information to display, so you would need a lot of print
statements. Besides, the robots really do change what we need; we can’t simply ignore the
fact that these programs have physical components in the real world. Any method that
draws on a screen in isolation, even if it includes graphical elements, as in Figure 1.3, is
separated from the robots themselves, and that gap makes gets in the way of its ability to
convey information. Each part of the program execution is tied to a particular state of the
robot in the world, and enabling the display of the direct physical connection with that state

In summary, this thesis will address the following question:

Given a video of autonomous robots, how can information about the decisions
and actions of the robots be extracted from a representation of their reasoning
and flexibly projected onto the video?

1.2 Approach

In this thesis, we will explore several aspects of the problem of generating informative vi-
sualizations from records of robot execution. We will aim to create videos that not only
show directly what the robots are doing, but also depict inferences about the actions and
the reasoning behind them.

It will be necessary to devise ways of representing and presenting the stored data in a
way that allows for flexibility in display and usage.

Augmented reality visualizations The visualizations we propose to automatically cre-
ate are properly registered with the locations of objects in the world and are subject to
occlusion by objects in the scene. In order to create such visualizations, we must therefore



Figure 1.3: The two-dimensional view generated by our existing viewer software for the same moment
depicted in Figure 1.1.



have three main pieces of information: the mapping from spatial coordinates in the world to
image coordinates in the video, enough understanding of the structure of the scene to handle
the occlusion, and additionally the mapping between the times recorded in the execution logs
and time in the video, so that all events are synchronized. For the cases we have examined
already, we have been able to generate this information manually or with straightforward
means; we will continue to study computing them in general for the proposed applications.

For the case of planar drawings (where the plane is usually the floor), the coordinate
mapping is given by a homography [25]. In general, a homography is determined by four or
more point or line correspondences between two coordinate systems; so far, we have mostly
considered cases of a static camera, where the homography remains constant throughout the
video; for such videos, we supply the correspondences manually. In general, if the camera
moves during the video, we will need to track how the coordinate mapping changes over
time, and if we use visualizations that are three-dimensional, we will need to know more
about the camera parameters than a homography captures. There exist methods to address
the problem for various circumstances; we propose to devise a method that incorporates the
particular knowledge available in this domain, i.e., the positions of the moving objects in the
scene, in order to automatically produce the coordinate mapping as a function of time.

The occlusion information is also straightforward to determine in some cases, but not
so in general. For the situations we have implemented so far, we have only needed to
detect the pixels of a distinctively-colored floor; we have used color thresholding followed
by morphological operations to do so. For other cases, such as if we use three-dimensional
visualizations, we will need more detailed information. Since producing this kind of full
understanding of a scene in general is itself a major topic of computer vision, we do not
expect to make advancements in the state of the art for addressing the entire problem;
however, we propose to incorporate and adapt relevant algorithms for our videos. For our
specific problem of realistic visualization, we will also need to make decisions about how to
handle the case of a real object blocking the view of an added drawing.

Finally, we need the mapping from the times recorded in the logs of execution (usually
given in some absolute scale, such as seconds since the Unix epoch) and time in the video
(which starts at 0); this mapping is almost always an additive offset. Currently, we determine
the offset manually for each visualization, but the automatic trajectory matching that we
propose will compute the time offset as well.

We propose to categorize the displayable information for any given robotic system into
three groups, based on their relation to the current time. One category contains information
directly related to the present: tracking or sensor information that makes up the current
estimate of the state of the world. Then there is the information related to the future: the
plans of the robots that have yet to be executed. Finally, there is the information from the
past, showing events from previous windows of time that have some effect on the decisions
in the present.

Multiple levels of detail Given the large amount of information that we might want to
display for a run of a robot system, we must be careful not to overload someone looking at
the system by displaying too much information.

The concept of layered disclosure [47] addresses this kind of problem in text-based logging



systems. It describes tagging each individual piece of information within a log with a “layer”,
which is a numeric value that indicates the abstraction level to which that information
belongs (e.g., overall, abstract goals and immediate sensory perceptions at immediate ends
of the spectrum, with intermediate, short-term goals in the middle), with selective display
and the elements placed into a meaningful hierarchy. We propose to apply a generalization
of layered disclosure to the graphical elements in our visualizations, allowing for the selection
of not only linearly-ordered levels of importance, but also grouping by other criteria, such
as location within the program or relevance to a high-level goal of the robotic system.

Implementation and evaluation on real robot systems In order to demonstrate the
feasibility of the algorithms and systems we develop, we will create and test implementations
relating to the RoboCup SSL, on both the team itself and an automatic referee system we
have worked on. The SSL robots in particular already store and use a rich set of graphical
visualization primitives, but their display is simplistic and lacking in the extra capabilities
detailed above.

We propose to not only create our own implementations, but also to enable others to
create similar videos for any other robot system. To this end, we will develop concrete algo-
rithms that can be used in existing projects to allow the development and use of visualizations
with a minimum of additional effort.

1.3 Expected contributions

I expect to make the following contributions with my thesis:

1. A unified representation and interface for robot decision and position information.

2. Algorithms to process videos and use the proposed data representations to overlay
graphical depictions of robot planning.

3. User interfaces that expose the ability to easily navigate the data representations and
show multiple levels of detail.

4. Demonstrations of augmented reality visualizations using the RoboCup SSL robots,
autonomous referee, and other autonomous systems.

5. Software that enables the creation and use of the proposed visualizations with other
robotic systems.



Chapter 2

Related work

This chapter presents an overview of related work. In Section 2.1, we discuss the basics of
the RoboCup SSL, as well as work related to our development of an automatic referee for
SSL games. In Section 2.2 and Section 2.3, we discuss the fields of visualization and mixed
reality.

2.1 RoboCup SSL

The RoboCup SSL promotes research in multi-agent coordination in real-world adversarial
domains. In this league, teams of six robots play a scaled-down version of FIFA soccer
with a golf ball in a field of size 9m x 6m. Each robot is controlled via radio commands
sent by its team’s offboard computer. Four overhead cameras observe the field and detect
the positions of the robots and ball with high frequency and fidelity; as compared to other
RoboCup leagues, the global vision and centralized planning mean that teams focus on
hardware development, coordination behaviors, and high-level teamwork strategy, as opposed
to perception, locomotion, or methods of distributed planning. Games in the SSL are fast-
paced, with the robots traveling up to 3m/s and kicking the ball at speeds of up to 8 m/s.

The overarching target of the RoboCup Federation, which includes several other soccer
leagues, based on widely varying robot types, as well as some non-soccer competitions, is [51]

By the middle of the 21st century, a team of fully autonomous humanoid robot
soccer players shall win a soccer game, complying with the official rules of FIFA,
against the winner of the most recent World Cup.

The various leagues are intended to collectively spur development in the different areas
of development that will ultimately be necessary to produce such a team. The humanoid
soccer leagues, for example, focus on bipedal walking and ball manipulation; the SSL focuses
on centralized planning and fast reactions in a dynamic environment; the MSL, which uses
roughly human-sized wheeled robots and a normal soccer ball, focuses on decentralized plan-
ning and sensing without dealing with the difficulties of legged robots; finally, the simulation
soccer leagues (2D and 3D) use simplified models of the world to allow teams to focus more
on strategy and artificial intelligence without having to maintain hardware.

2.1.1 Physical components

Although there are few restrictions on the physical design of SSL player robots, the primary
one being that each robot must fit within a cylinder of diameter 180 mm and height 150 mm,
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Figure 2.1: The robots of CMDragons, showing (left) a full robot with a ball on its dribbler, (middle) a
robot without its top cover, and (right) without its main electronics board.

most teams have converged toward very similar designs; Figure 2.1 demonstrates a typical
design'. The robot has an omnidirectional drive system based on four omniwheels. For ball
manipulation, it has a dribbler, a horizontal rubber-coated bar which rotates to put backspin
on the ball, allowing the robot to hold the ball for some time while driving around. Finally,
the robot has both a flat kicker, which kicks the ball straight forward at high speed, and
a chip kicker, which kicks the ball at an angle of about 45° above horizontal. Use of the
chip kicker enables robots to pass or clear the ball even when there are opponents in front
of them.

The ball is a typical golf ball, except that it is colored bright orange for ease of detection
by the vision system. According to the rules, it should be approximately 43 mm in diameter
and have a mass of approximately 46 g.

The overhead cameras are mounted on scaffolding constructed around and above the field.
The league has standardized on FireWire 800 cameras. All of the cameras are connected to
a neutral computer running the SSL Vision System (SSL-Vision) [71], which processes the
images from the cameras to extract the positions of the robots and ball on the field. Each
camera transmits sixty frames per second to SSL-Vision; each time a frame is received from
any camera, SSL-Vision broadcasts the detected positions from that camera to the team
computers.

The referee’s decisions are transmitted to the teams via another computer running a
specialized program, the referee box (or refbox). To ensure low latency and avoid bandwidth
constraints between the team computers, referee computer, and vision computer, all of them
are connected via a wired Ethernet network specific to the playing field.

2.1.2 RoboCup game analysis and refereeing

In addition to the development of the competitive RoboCup teams, there has also been some
work on automatic analysis of games played in different RoboCup leagues, both online and
offline. Examples of the goals of such work include classifying the roles of the robots in the
game, following the ball, providing commentary on the progress of the game, and making
decisions related to refereeing the game.

'We thank Mike Licitra for the mechanical design of the robots and for the design and fabrication of the
robot electronics.



Vail et al. [63] investigated using conditional random fields for activity recognition of
different robots based on a stream of their positions over time, much like the data available
in the SSL. For automatic refereeing, it is also necessary to perform recognition of a sort:
a referee’s fundamental task is to interpret the situations described in the rules and deter-
mine when they are happening. However, most of the relevant situations for refereeing are
amenable to simple handmade detectors. More advanced techniques for classification may
be useful for more difficult situations, such as those that are based on attributing intent or
negligence to the teams.

Many other authors have addressed the problem of online processing of RoboCup games,
in pursuit of various aims. A simple example of such an aim is the automated cameraman for
the RoboCup Middle Size League (MSL) described by RFC Stuttgart [33]. The cameraman
shares information with a team to keep a camera pointed toward an object of interest at all
times during the game. The object of interest is usually the ball, but may instead be a goal
or goalie when a robot makes a shot on goal.

A more involved task is producing engaging, human-like commentary of games in real
time. Rocco [67] and Mike [60], commentators for simulation games, use hierarchical declar-
ative event systems to produce discrete events which may be the topic of utterances. CM-
Cast [64] is a commentary system for soccer games played by Sony AIBO robots; it is
embodied in two humanoid robots which can autonomously move around the field, localize
themselves, track the ball, detect game events, and give commentary appropriately. All of
these commentators revolve around a concept of discrete “events” derived from the contin-
uous state of the game, similar to the event detectors we describe later. Commentating
requires more understanding of the specific game under observation than does acting as a
cameraman, but less than full refereeing; it shares the problems of event detection with ref-
ereeing, but the focus of such systems is typically more on utterance selection and audience
interaction.

There have also been other efforts to provide automated refereeing for RoboCup games.
For many years, the simulation leagues have had official autorefs integrated with their simu-
lation servers, which have grown to be encompass many rules at this point, although games
still require human referees for the more subjective events. In both the 2D [21] and 3D [57]
simulation leagues, the autorefs can handle

e managing the length of game halves,

e resetting robots to legal locations when the game is stopped,

detecting when a free kick is taken,

awarding the proper kicks when the ball leaves the field or enters a goal, and

detecting offsides situations.

Additionally, the 2D referee can detect backpasses, but relies on a human referee to detect
players surrounding the ball or a team blocking its own goal with too many players. The
3D referee can detect when the players have formed a cluster around the ball that should be
broken up and when a team’s goal is being blocked by too many of that team’s robots; in
either case, it teleports the offending robots outside the field.



The autoref we describe, when running with a simulation of real robots, is similar to
these referees in scope. However, referees that are designed purely for simulation and execute
within the simulator itself have the advantage of being able to rely upon having full, direct
access to the state of the world, in terms of both reading (i.e., determining the current
positions of world objects) and writing (i.e., instantaneously resetting the robots or ball to
desired positions). As a result, detection of many events is much less error-prone for such
referees.

For real robots, Arenas et al. [6] developed a refereeing robot that watched games of the
RoboCup 2-Legged Standard Platform League and the Humanoid League. By necessity, that
work mainly focused on the lower-level aspects of event detection from vision, since those
leagues do not have the standard centralized vision system of the SSL, but the ultimate aim
is equivalent to ours for those leagues. For the MSL, Tech United Eindhoven [54] briefly
described an autoref that can detect when the ball leaves the field, automatically signal the
robots to stop play, and wait for a human to position the ball in the correct location. Their
algorithm is like a simplified version of the one described here. The RoboCup Logistics
League (RCLL) has also recently gained an autoref [43], which was initially developed at the
same time as the work described here. The kinds of events that need to be detected for that
league are rather different, but the ultimate goals described there are much the same: taking
a difficult job off human referees, ensuring objectivity in judging, and benchmarking the
systems used in the game. The RCLL autoref communicates with team robots and neutral
machines over the network, awarding points when robots complete particular tasks using
the game pieces, which abstractly represent materials in a factory. The communication the
autoref receives consists of discrete messages, primarily about completed tasks, so that it
does not need to perform its own processing of real-world data to extract relevant events,
as ours does. However, the rule-based system at the core of the RCLL autoref achieves
a similar purpose to the structures described here, and could be used as the basis of as
alternate implementation.

Finally, at least two existing projects have worked toward automatic refereeing for the
SSL specifically. At RoboCup 2014, the SSL released the technical challenge of detecting
certain relevant events from the game, such as robots colliding with excessive force or kick-
ing the ball too fast [50]. ER-Force, the SSL team of University of Erlangen-Nuremberg,
has published the code it developed for the challenge [52]. Also, the open-source project
ssl-autonomous-refbox [58] uses Prolog to declaratively define the rules as predicates over
game states. The ER-Force code can only handle detecting those isolated events, while
ssl-autonomous-refbox is limited to observing a game and lacks the ability to handle the
transitions related to restarting the game after a stop; our autoref provides a more com-
plete solution than either of them by being able to handle a full game from start to stop,
transmitting the appropriate commands to teams.

2.2 Visualization
Visualization, in the most general sense, refers to any means of using graphics or images to

convey information. Visualizations have been made on an ad hoc basis for a long time, but
organized study of the principles behind it has become much more common in recent times.
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A seminal modern figure in visualization is Edward Tufte; his book The Visual Display of
Quantitative Information [62] provides a history of visualization, as well as extensive guide-
lines on designing useful and comprehensible illustrations of all kinds of data. Tufte codified
and demonstrated general principles that are widely applicable to both print- and computer-
based visualizations, such as removing extraneous material on the page and ensuring that
the variation in a visual display has only as many dimensions as the data do.

There are several categories of science-related visualization; the most relevant to our work
are scientific visualization and information visualization. Information visualization involves
displaying abstract data that do not have an inherent spatial representation that can be
mapped directly onto a display [26]. Scientific visualization involves displaying data that do
have some inherent spatial relations [26]; the data are often measurements of some physical
process.

Much work has also focused on visualization as applied to computer programs. This work
is generally referred to as software visualization, of which algorithm animation is a part.
Software visualization refers to any method of visualizing aspects of computer programs,
such as the relationships between components, the text of the code itself, or a program’s
behavior over time [10, 46].

Animation has long been an invaluable tool for understanding algorithms. In algorithm
animation, the changes over time in the state of a program are transformed into a sequence
of explanatory graphics. Done well, such a presentation can explain the behavior of an
algorithm much more quickly than words. BALSA [16] is an influential early framework
for algorithm animation. It introduced the idea of interesting events, which arise from the
observation that not every single low-level operation in an algorithm should necessarily be
visualized. With BALSA, an algorithm designer inserts calls to special subroutines inside
the algorithm; when execution of the algorithm reaches the calls, an interesting event is
logged, along with the parameters to the call. The designer then writes a separate renderer
that processes the log of interesting events into an actual animation to display.

More recently, there have been several websites that collect examples of algorithm an-
imation and provide tools for creating new animations [2, 3, 66]. They follow BALSA’s
paradigm of interesting events and provide easy-to-use environments for implementing and
displaying algorithms.

We are performing a form of algorithm animation here, but with a slightly different focus:
most animations are designed with education in mind and delve into the details of an abstract
algorithm, rather than executing on a physical robot. Additionally, the typical lifecycle of
an algorithm on a mobile autonomous robot is different from the standalone algorithms that
are usually animated. In most animations, a single run of the algorithm from start to finish
results in an extended animation, and each interesting event corresponds to some interval of
time within it. For an autonomous robot, algorithms are instead often run multiple times per
second, with each run contributing a tiny amount to the behavior of the robot, and it makes
sense for each frame of an animation to depict all the events from one full run. An example
of this kind of animation comes from the visual and text logging systems employed by teams
in the RoboCup Small Size League, a robot soccer league [35]. The algorithms behind the
teams in the league consist of many cooperating components, each with its own attendant
state and computations running 60 times per second. As a result, understanding the reasons
behind any action that the team takes can be challenging, necessitating the development of
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powerful debugging tools in order for a team to be effective.

For text-based log data, Riley et al. [47] developed the idea of “layered disclosure,”
which involves structuring output from an autonomous control algorithm into conceptual
layers, which correspond to high- and low-level details of the agent’s state. Teams have also
developed graphical logging in tandem with the text output: the algorithms can output lists
of objects to draw, and we can view both this drawing output and text output either in real
time or in a replay fashion. The existence of these tools speaks to the need for informative
debugging and visualization when dealing with autonomous agents.

2.3 Mixed reality

Mized reality is a general term originally defined by Milgram and Kishino [41] to encompass
any system that “involves the merging of real and virtual worlds”. The term was introduced
to extend and generalize the idea of augmented reality, which was rapidly coming into use
to describe new systems at the time. Milgram defined a reality-virtuality continuum; fully
virtual and fully real environments exist at opposite ends of the spectrum, with combinations
in the middle. Augmented reality systems are those near the reality end; they are typically
displays, often but not necessarily head-mounted [40], that show the real world itself (either
directly or through a video) along with additional information on top.

2.3.1 Augmented reality

Augmented reality has seen a wide variety of uses, both in relation to robotics and otherwise;
it allows a user’s view of reality to be enhanced without being entirely replaced. Azuma [7]
listed a variety of uses of augmented reality, including those for medicine, manufacturing,
robotics, entertainment, and aircraft control. One common use of augmented reality within
robotics is to provide enhanced interfaces for teleoperated robots, such as interfaces for
controlling a robotic arm that overlay 3-D graphics onto a video view of the arm [34, 42].
Such interfaces can a view of the predicted trajectory of the arm after a sequence of not-yet-
executed commands, allowing for much easier control, e.g., in the presence of signal delay
between the operator and the arm.

Our past work shares the 3-D registration and drawing that are common to augmented
reality systems, although most definitions of augmented reality require an interactive or at
least live view, which we do not currently provide. Amstutz and Fagg [5] developed a protocol
for communicating robot state in real time, along with a wearable augmented reality system
that made use of it. They demonstrated an example application that overlaid information
about nearby objects onto the user’s view, one that showed the progress of a mobile robot
navigating a maze, and one that showed the state of a robotic torso. Though they focused
mainly on the protocol aspect, their work has similar motivations and uses to ours.

An instance of a popular commercial product related to augmented reality appears in
television broadcasts of American football games [1, 29, 53]. Many such broadcasts add a
virtual down line or other information for the benefit of viewers; the displays are designed
to be located and occluded as if they were present on the playing field. Such displays are
mature and capable of high precision in positioning and occlusion, but they require pan and
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tilt sensors to be attached to all cameras and assistance from a crew of several humans in
order to keep track of changes in lighting conditions.

Other recent work has also involved using physical projections to aid in the understanding
of the behavior of autonomous robots. For instance, Chadalavada et al. [20] demonstrated a
robot that signaled its intentions by projecting its planned future path on the ground in front
of it. They found that humans in the robot’s vicinity were able to plan smoother trajectories
with the extra information, and gave the robot much higher ratings in attributes such as
predictability and reliability, verifying that describing an agent’s internal state is valuable
for interacting with humans.

One prior publication deserves particular note here: the doctoral thesis of Collett [22]
described an augmented reality visualization system which shares many characteristics with
we focus on combining the drawing with the ability to display and animate details such as
the future plan of the robot, rather than only the low-level sensor and state information from
the robot.

2.3.2 Augmented virtuality

Toward the other end of the reality-virtuality continuum is augmented virtuality, a term also
introduced by Milgram and Kishino [41], in which the primary environment is virtual; we
also discuss here systems in which the real and virtual components are on roughly equal
footing, which are often simply referred to as “mixed reality” in the literature.

Robert and Breazeal [48] and Robert et al. [49] demonstrated two systems based on mixed
reality: an educational robot that appears to children to disappear and reappear inside a
screen, and a game where players control a physical robot that bounces a projected ball to
a wall, where it appears within a projected world.

The concept of hardware-in-the-loop testing (HIL) shares clear similarities with aug-
mented virtuality, though its origins are different. Hardware-in-the-loop testing involves
emulating a complex mechanical system by constructing part of it and simulating the rest,
with appropriate actuators and sensors to interface between the two portions [23]. With an
appropriate design, HIL greatly reduces the expense of evaluating a new device by reducing
the amount of hardware that must be built, shortening the time needed for development
cycles, and enabling the reproducible generation of extreme situations that would be dif-
ficult to produce for an entire system. HIL is widely used in many disciplines, including
automotive engineering and space robotics [23, 31, 59].

2.4 Camera pose tracking

The general problem of determining the viewpoint of a video stream as a function of time
is of great interest in computer vision, and particularly so for augmented reality applica-
tions. Techniques to extract this information generally fall under the umbrella of wvisual
odometry [44], which is widely used for localization by autonomous mobile robots; match
moving [11] refers to a similar topic, though the name is usually used in the context of
cinema special effects, and includes more manual, labor-intensive techniques.
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Augmented reality applications often use fiducial tracking, which places designated ob-
jects in the environment to provide tracking of the pose of the camera with respect to the
objects. Such objects may be active, such as patterns of LEDs [8, 9], or passive, such as the
high-contrast printed patterns [28].

The alternative to fiducial tracking is natural feature tracking, which instead tracks the
motion of arbitrary objects in the environment. Algorithms such as optical flow [30], point
trackers [56, 61] and interest point matching [37] are basic building block algorithms that
enable one to estimate correspondences between two images; applied to the successive frames
of a video, these algorithms and variants of them form the basis of many tracking systems.

Others have also investigated tracking the motion of a camera specifically for sports
videos, similar to the videos of the SSL field with which we have worked so far. Unlike the
football broadcasts mentioned previously, these methods take as input only a video stream,
with no additional sensor information about the movement of the camera; Hayet et al. [27]
and Okuma et al. [45] developed algorithms to process videos of soccer and hockey games,
respectively, and compute the homography between the playing surface and the video for each
frame of the video. Both work by computing incremental homographies between successive
frames of the input video by computing local matches between frames, followed by global
matches to models of the markings on the playing surface.
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Chapter 3

Previous work

Our previous work has largely focused on working with CMDragons, our RoboCup SSL team,
in two main capacities. Section 3.1 describes our work on creating and maintaining the team’s
current defensive strategy, which has been used at several RoboCup tournaments. We have
also developed an automated referee (autoref), discussed in Section 3.2, for the SSL, which is
capable of interpreting gameplay according to the rules of the game, and enforcing the rules
accordingly; the autoref represents a detailed and novel analysis of the robotic teams in a
game. More directly in the direction of this thesis, we have also begun developing augmented
reality visualizations of the type we discussed in Section 1.2. In order to reduce the scale
of the problem to be studied from the complexity of the SSL, we began by examining a
system that demonstrates the bare minimum of autonomy: the problem of a single quadrotor
navigating around obstacles in a two-dimensional domain; Section 3.3 discusses this work.
Our prior experience with real autonomous systems motivates our interest in creating means
of analyzing and describing their behavior.

3.1 RoboCup SSL team

Our SSL team, CMDragons, builds upon extensive research from previous years in areas
including computer vision, path and dribbling planning, execution monitoring, and team
architecture [13, 17-19, 39, 70]. This legacy enabled our 2015 team to focus on the problem
of coordinated decision-making for a team in a highly dynamic adversarial domain. Further-
more, while previous years have seen a focus on stopped-ball plays [12], recently our team
has focused its research efforts on regular gameplay team planning. As a result, our offensive
strategy relied heavily on teamwork, with 245 pass attempts and 194 completions over the
tournament.
To achieve such coordination, the team algorithms are divided into various layers:

1. The top team layer, consisting of a play system [14] that, based on functions of the
state of the game, partitions the robots into a defense subteam and an offense subteam,
and provides the robots in each team with further specialized roles.

2. Each of these two subteams creates coordinated plans to maximize the team’s proba-
bility of scoring and not being scored upon, respectively.

3. Each robot individually selects actions that are consistent with the coordinated plan
and maximize the probability of success.
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4. The robots execute these actions through new reusable skills [12].

3.1.1 Threat-based defense

Our personal focus has been on the defensive capabilities of the team; we have been in charge
of developing algorithms for the defense subteam for several years. The defense relies on a
threat-based evaluator [38], which computes the first-level threat T} and several second-level
threats T4 on our goal: Ty is the location from which the opponent can most immediately
shoot on our goal — i.e., the location of the ball, if it is stationary, or the location of the
robot that will receive the ball, if the ball is moving. Threats Ti are locations of opponent
robots that might receive a pass from the 77 robot, and then shoot on our goal.

The available defenders are positioned based on the locations of the threats. Primary
defenders (PDs), of which there are usually one or two, move near the defense area, acting as
the line of defense before the goalie; secondary defenders (SDs) move further out, intercepting
passes and shots by the opponent earlier on. The PDs typically defend against the T,
blocking open goal angles between the ball and the goal; if there are two PDs, but only one
is needed to block a potential shot, the other moves elsewhere on the defense area to guard
a Ty. (This condition can occur when the ball is close to one of the near corners of the field.)
The SDs guard against the various Tss; each one positions itself on a line either from a 75
to the goal (to block a shot) or from the 77 to a Ty (to block a pass). There are never more
than two PDs, and there are never any SDs unless there are two PDs. Figure 3.1 shows the
Ty and T4, and the corresponding PD and SD assignments for a particular state of the world.

Figure 3.1: Example defense (yellow) evaluation and role assignment, as a function of the ball (small
orange circle) and opponent (blue) locations. Parenthesized text indicates the type of task assigned to each
defender.

The aim of the goalie and the defenders guarding the T} is to entirely block the open
angle from the threat to the goal; if this is not possible, they position approximately so that
they block as much of it as possible.

Here, we have described the static positioning behavior of the defense, which would
determine the behavior of the robots when the opponents and ball are static. In practice, we
need additional behaviors in order to respond well and anticipate future conditions when the
field is not static. Especially important is handling any moment when the ball is heading

16



directly toward our goal or about to be received by an opponent. We have developed a
complex and empirically tested set of behaviors to intelligently handle defense coordination.

3.1.2 Defense positioning illustration: 5 defense robots

We illustrate the defense’s coordination behavior when the play system has chosen the most
defensive play, which has 5 robots assigned to defense. In this case, one defense robot is the
goalie, 2 robots are PDs, and 2 are SDs; we illustrate the case in which both PDs are needed
to guard T7. Thus, only the behavior of the SDs varies as a function of the opponent’s
offense.

Two opponents: Figure 3.2a shows the positioning of a 5-robot defense against 2 offense
opponents. Since there is only one 75, the two SDs block the shot from and the pass to that
threat.

(a) 5 defenders vs. 2 opponents (b) 5 defenders vs. 3 opponents

Figure 3.2: Positioning of the defense in response to attacking opponents. Red lines indicate the geometrical
relationships that define the target locations of the SDs.

Three or more opponents: Figure 3.2b shows the positioning of a 5-robot defense against
3 offense opponents. Our defense always ranks shot-blocking tasks as more valuable than
pass-blocking tasks; thus, both SDs position to block shots from T} and T7. If there are
more than three opponents and hence more than two T4, our algorithm ranks the T3 based
on the size ¢ of their shooting angle on the goal, ignoring robots, and our SDs mark the
highest-ranked threats. If multiple robots have an angle ¢ larger than a pre-defined threshold
@™, they are ranked based on an estimate of the time ¢4, it would take to complete a
shot on our goal, where lower times are ranked higher. Time t4., is calculated as tgoa =
tpass + tdeﬂect + tkick) where

= 07 0 S emin
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tpass €stimates the time to pass to the threat using the distance d(xy, Zr) between the
ball location x; and the threat location Zr, and the estimated opponent passing speed vpags.
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estimates the time to deflect the ball to our goal based on the angle 6 formed by @}, 7, and
the goal center point Z,;: if a one-touch deflection is possible (i.e., 8 < Oy, ), then tgefect = 0;
otherwise, tqefiect increases with 6, as defined by constants t. and 6,.«. tikia estimates the
shot time similarly to s, using the opponent’s shooting speed vyie.

3.2 Automated referee

In the leagues of RoboCup, the majority of the research effort to date has been on the
competitive performance of the autonomous teams in aspects of motion planning and team
strategy. However, another critical component of a soccer game is the referee. In current SSL
games, refereeing is done by humans, who use a “referee box” that passes their calls to the
robots. We have created an automated referee (autoref) [69] for SSL games, towards enabling
games to proceed with little or no human supervision. The goal is to move closer to the
eventual full automation of complete games with real robots. The technical challenges include
the clear definition of the rules of the game in terms of features to be extracted from the visual
perception, temporal sequencing, and corresponding calls and game management. We have
developed a description of a game of the SSL as it is relevant to an autoref, by categorizing
the rules of the game and presenting the structure of a game as a hybrid automaton. We
then described the complete autoref as an agent using a modular event-based architecture,
following up on the automaton as a guideline, to keep track of the state of a game and issue
referee commands accordingly [68].

3.2.1 Game and autoref formalization

To concretize the structure of the game, we used the formalism of hybrid automata. We omit
here a full description of hybrid automata in general; see Alur et al. [4] for the mathematical
formalism we followed. For our purposes, we may think of a hybrid automaton as a finite
state machine augmented with variables in addition to the overall state (although states are
usually referred to as “locations” for hybrid automata). The additional variables may be
discrete or continuous; each transition between states occurs when an associated predicate
on the variables is satisfied. Within one location, the continuous variables change over
time by following one of a set of trajectories associated with a state; the trajectories are
typically described as the set of solutions to differential equations. When transitions occur,
the variables may make discontinuous jumps to new values.

For the automaton describing an SSL game specifically, the locations, which are described
in Table 3.1, capture the idea that, at any given moment in time, the game is either running
or stopped, and each of those entails a distinct set of conditions that are relevant to refer-
eeing. We depict the set of locations and transitions between them in Figure 3.3. When a
transition occurs, a new command may be transmitted to the teams. When the game is in
the GAME_ON location, the ball is in play and the robots are actively trying to score goals;
during GAME_OFF, the ball is being placed for the next restart of play; during SETUP, the
ball has been placed and the robots may set up for a kick. Each auxiliary variable describes
some distinct part of the game state or history that may be relevant to future refereeing
decisions. The variables include quantities such as the last robot to touch the ball, the com-
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Figure 3.3: A simplified representation of the automaton representing a game of the SSL.

mand with which to resume the game after a stoppage, and the amount of time remaining
in the current half.

We have described this automaton as describing the operation of an autoref, but there
is a direct correspondence to the rulebook and to what human referees must do while they
observe the game. They are also essentially modeling the same automaton: they must use
their observations to estimate when the true state of the game ought to change, so that they
can issue the appropriate commands.

3.2.2 Usage and evaluation

We implemented a program based on the formalism described above to actually act as a ref-
eree for games of the SSL; it approximately tracks the evolution of the automaton described
above in terms of a set of separate event detectors, each of which receives the sequence of
world states and outputs an object describing how the state of the automaton should be
updated. The algorithm implements a discrete approximation of the true automaton, since
it can only receive discrete updates of the world state.

In this kind of architecture, an event is any of the conditions associated with an edge in
the automaton. The events we have currently implemented are enough to handle all phases
of a normal game, including free kicks and half time, though only a subset of possible fouls
are detected.

In order to test the abilities of the autoref, we performed two types of evaluation. First,
to test the overall stability and rule adherence of a game as judged by the autoref, we set
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the autoref up to run repeated simulated games, with two copies of the CMDragons team
playing, and collected statistics about the results of those games. Second, to test the ability
of the individual event detectors to operate on real data, we ran some of the detectors on
data from games of RoboCup 2014 and compared the results to the calls made by the human
referees at those games.

Although not all of the rules of the SSL are currently implemented, the ones that are
make up the great majority of rules that come into effect during games in practice. With
the currently implemented events, it is possible to run an essentially full game in simulation,
with kickoffs, appropriately awarded free kicks for ball exits and some fouls, and checks to
ensure that the progress of the game is not delayed by a slow team or stuck ball. As a result,
the autoref makes it feasible to run and gather information from a far greater number of
rules-compliant games than would be feasible to monitor by hand.

As a simple demonstration of this capability, we ran many simulated games comparing
two slightly different versions of our own CMDragons soccer team. In some tests, we enabled
or disabled some new feature of the team, so that we could check whether having that feature
gave the team an advantage. In others, one version of the team was handicapped, either
by having fewer robots or by having the speed and acceleration of its robots restricted to a
fraction of their normal values. Overall, we have run thousands of games, and can run well
over one thousand games continuously without supervision. We found that, when one team
is handicapped, the other has an noticeable advantage; while this is no surprise, the ability
to verify this through experiment is made possible only by the presence of an autoref. The
average scores as functions of the degree of handicap are shown in Figure 3.4; the error bars
indicate the standard error of the mean after 100 games.

We also ran some tests to determine the effect of software features on performance. One
of the features we tested was a zone-based attack strategy we developed and used in the
RoboCup tournament last year; the other was a method for a robot to quickly turn while
dribbling the ball, which we used for only part of RoboCup because it was unreliable on real
robots [65]. The results are shown in Table 3.2; both features provided an advantage, as we
hoped. However, this is one case where the limitations of the simulation environment must
be kept in mind: the fast turning behavior worked very well in simulation, but we disabled
it in reality because it did not work as well. The zone-based attack seems less likely to be
dependent on the specifics of the simulation.

3.3 Augmented reality visualizations

We have already created some augmented reality visualizations, which we will be aiming to
extend and generalize for this thesis. We have worked with two domains so far: a quadro-
tor navigation problem using real and virtual obstacles and the more complex setting of
a RoboCup SSL team. In our work so far, the contents of the visualizations are a set of
geometric drawing primitives, with positions given in the coordinates used by the control
programs.

Examples of our visualizations can be found at https://youtu.be/P4WgT8y0TGY and
https://youtu.be/R3XqbiDzFoo.
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Location Description

GAME_ON  The game is actively being played. This location typically ends when a
robot commits a foul or the ball leaves the field.

GAME_OFF The game has been stopped for one of the preceding reasons, and the robots
must not come near the ball while the referee is positioning it. This location
ends once the robots are ready to kick, which is usually taken to be when
they stop moving or after some time has passed.

SETUP The command to take a kick has been given, but the kick has not been
taken yet. This location ends once the kick is taken, or too much time has
passed without a kick.

BREAK One team has called a timeout or the game is in a break between periods.
This location only ends if the team ends the timeout or time in the break
period runs out.

Table 3.1: The high-level automaton locations of an SSL game.
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Figure 3.4: Comparisons of two versions of our team, one handicapped by having either fewer robots or
reduced speed and acceleration. Each data point depicts the mean score and standard error of the mean of
the two teams across 100 full games.

Zone-based attack Turn & dribble
Win % Goals Win % Goals

feature on  38.00 0.58 +£0.05 42.00 0.7040.05
feature of 12.67 0.18+£0.02 10.67 0.22+0.03

Table 3.2: Comparisons of two versions of our team, differing by the presence or absence of a new feature.
“Win %” indicates the percentage of games won by that team, and “Goals” indicates the mean number of
goals per game, as well as the standard error of the mean. Each comparison is based on 300 games.
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3.3.1 Quadrotor navigation domain

As an initial testbed for this visualization scheme, we implemented a control system for a
quadrotor using the rapidly-exploring random tree (RRT) [36] algorithm; we then visualized
information about the running of the algorithm.

The RRT algorithm finds a path from a start state to a goal state within some state
space, parts of which are marked as obstacles and are impassable. The most basic form of
the algorithm consists of iterating the following steps, where the set of known states initially
contains only the given start state:

generate a random state r
find the closest known state ¢ to r

extend c toward r, creating e

-~ W =

if e is directly reachable from ¢, add e to the set of known states, recording that c is
its parent

The iteration terminates when a state is found sufficiently close to the goal state. The entire
path is then constructed by following the chain of parents to the start state.

The simplest state space for an RRT consists of the configuration space of the robot,
with dynamics ignored; states are connected simply by drawing lines in the space. Although
this is a great simplification, it is straightforward in concept and implementation, and often
leads to sufficiently good results.

Since the quadrotor can accelerate in any direction without yawing to face it, we chose
to ignore orientation and take states to be the locations within a rectangular region on the
ground. As is typical for a kinematic RRT, the random state generation simply chooses a
location uniformly at random within the set of configurations and the metric is Euclidean
distance between locations.

A common optimization is to simplify the returned path by skipping directly from the
start state to the last state in the path which is directly reachable from it [18]. This causes
the robot to navigate directly toward the first turn on the path; without it, the randomness
of the RRT means that the first step in the path may take the robot in widely varying
directions between timesteps. After each run of the RRT, the quadrotor attempts to fly
toward the point resulting from this optimization.

For a robot running the RRT algorithm, each of the steps naturally relates to positions
within the working area, which makes such a navigation problem a good fit for our augmented
reality visualizations.

3.3.2 RoboCup SSL team domain

Since its inception, our RoboCup SSL team has developed a rich logging system that uses
a combination of text-based [47] and graphical logging elements to help diagnose problems
and understand the robots’ behavior. The team uses the graphical elements to illustrate a
variety of information about planning, such as desired positions of the robots, planned pass
directions, and regions to guard. We took the existing graphical elements wholesale and
displayed them all as the basis for a first version of a visualization. The drawing elements
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consist of lines, circles, and rectangles; each instance of one of these types has the necessary
geometric parameters and a color associated with it.

3.3.3 Masking

In both domains, the ground surface was an SSL playing field, and we wanted to draw only
on the field surface, not on top of the quadrotor or any obstacles on the field. In order to do
so, we need to detect which pixels in the video are actually part of the field in each frame.
Since the majority of the field is solid green, a simple chroma keying (masking based on the
color of each pixel) mostly suffices. We convert the frame to the HSV color space [32], which
separates hue information into a single channel, making it more robust to lighting intensity
changes and well-suited for color masking of this sort. We simply took all the pixels with
hue values within a certain fixed range to be green field pixels, providing an initial estimate
of the mask.

To account for the field markings, which are not green, we applied morphological image
transforms [55] to the mask of green pixels. The idea is that the markings form long,
thin holes in the green mask, and there are generally no other such holes in our setup;
therefore, a dilation followed by an erosion with the same structuring element (also known
as a closing) fills in the field markings without covering any other pixels. We also applied
a small erosion beforehand to remove false positives from the green chroma keying. The
structuring elements for all the operations were chosen to be iterations of the cross-shaped
3 x 3 structuring element, with the number of iterations chosen by hand.

3.3.4 Coordinate transformation

Since we are only concerned with a plane in world space, we need a homography to give the
desired coordinate transformation, if we assume an idealized pinhole camera [25]. A pinhole
camera projects the point (z,y, z) in the camera’s coordinate system to the image coordinates
(f, %), so the coordinates (u,v) are the image of any point with coordinates proportional to
(u,v,1). Suppose that the ground coordinates (0,0) correspond to the coordinates ¢ in the
camera’s coordinate system, and that (1,0) and (0, 1) correspond to p, and p, respectively.

Then, for any z and y, the ground coordinates (z,y) correspond to the camera coordinates

xﬁx_’_yﬁy_FJZ (ﬁm ﬁy (T)

—_ K

Thus, multiplying world coordinates by the matrix (ﬁx Dy cf) and dividing by the third
coordinate of the result takes ground coordinates to the corresponding image coordinates;
the resulting transformation is a homography. Homographies are typically computed from
a set of points or lines with known coordinates in both the image and the world; there are
well-known algorithms to perform this computation. We used the function for this purpose,
findHomography, from the OpenCV library [15]; the function minimizes the backprojection
error [25].

We primarily used a stationary camera; for such videos, we manually annotated several
points based on one frame of the video and used the resulting homography throughout the
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video. We used intersections of the preexisting SSL field markings as easy-to-find points
with known ground coordinates. We also implemented a line-tracking algorithm similar to
the one by Hayet et al. [27], which allows some tracking of the field with a moving camera.
Our algorithm takes the pixels which were detected to be field marking pixels and uses
RANSAC [24] to fit a new position for each line.

3.3.5 Drawing

Finally, with the above information at hand, drawing the desired shapes is straightforward.
To draw a polygon, we transform each vertex individually according to the homography,
which gives the vertices of the polygon as it would appear to the camera. Since a homography
maps straight lines to straight lines, the polygon with those vertices is in fact the image of
the original polygon. Then we fill in the resulting distorted polygon on the video, only
changing pixels that are part of the field mask. For the quadrotor domain, we used crosses
and circles (represented as many-sided polygons) as primitives; the SSL domain already has
line segments, circles, rectangles, and stadia as primitives. Figure 3.5 shows an example of
an frame from an output video for the quadrotor, along with the image created by drawing

the same primitives directly in a 2-D image coordinate system; Figure 1.2 shows the same
for the SSL.

*+

Figure 3.5: Left: A 2-D visualization generated from the interesting events of one run of the RRT, using a
domain based on physical obstacles. Right: The result of drawing that visualization onto the corresponding
frame from the video of the real robot.
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Chapter 4

Proposed work

The goal of this thesis is to develop abstractions and algorithms to enable the creation
of augmented visualizations that expose internal details of the planning and execution of
autonomous agents and mobile robots.

We have been deeply involved in a complex robotic system, the SSL team, and begun to
study the problem of visualization in more depth on a simpler domain that still demonstrates
interesting autonomy, the quadrotor navigation problem; in this thesis, we will return to more
complex systems and develop generalized methods that can handle such systems.

4.1 Visualization-focused execution logging for autono-
mous agents

The work of this thesis will depend on having a uniform representation of the information
logged from the execution of an autonomous agent. For the visualizations we have produced
so far, we used storage methods tailored to the individual applications; in the case of the
SSL visualizations, we used the extensive but low-level logging format already available.

In general, every robotic system will have its own collection of kinds of relevant informa-
tion that should be recorded. For instance, the quadrotor navigation problem has the current
and target positions, the positions explored during planning, and the sequence of positions
in the final path found. The SSL team has a large set of information of different kinds from
all levels of the STP hierarchy. Although there are differences between different systems,
there are similarities too; we propose to examine the commonalities between the debugging
and visualization needs of the different robotic systems available for us to work with. This
examination will then guide us in designing general representations that capture the needs
of general robotic systems. We anticipate that the results will store metadata, such as the
algorithmic component that generated a particular piece of information, or information re-
lating to the location in the hierarchy of the control algorithm. The metadata will then be
used to determine conditions under which each piece of information will be displayed.

Practically, once we have such a uniform representation and abstract data structures that
incorporate the quantitative execution data along with any necessary metadata, we will also
need concrete algorithms that manipulate such representations; we also propose to make our
approach available for integrating with existing robotic projects.

When showing a particular visualization, we must address the issue of displaying only the
needed information. The purpose of the extra metadata that we propose to store along with
the basic execution information is to allow selecting of a subset of the execution information
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to display; we plan to create means of performing this selection that works well with the
structure of generic robot autonomy.

4.2 Video processing for camera information extrac-
tion

A key element of creating the visualizations we have described is the processing of a video
to extract time, transformation, and masking information so that we can add annotations
to it. Currently, for the sake of generality, we plan to assume that there is no additional
pose sensor information associated with the input video; we might get such information if
the video were recorded from a camera attached to a virtual reality headset. We will assume
that only the video itself is available, so our approach will need to extract the necessary
information directly from the video.

As discussed in Section 2.4, many methods exist to extract motion information from
videos; we intend to additionally make use of the information available from the execution
logs. We propose to devise a method to estimate the time offset and homography automat-
ically in the case that reasonably precise positioning information is available for the robots
in the system, based on correlating the observed motion in the video with the recorded
positions.

4.3 Demonstrations with real robotic systems

In order to demonstrate the practicality of the algorithms and representations discussed in
this thesis, we will use them to create a variety of visualizations using the robotic systems
available to us. These systems include at least the SSL team and quadrotors; we have already
done some work with these two robotic systems, and intend to apply the proposed work to
them as well. We will also integrate this work with our autoref software and possibly the
CoBot robots, as available. We propose to show that the introduction of the abstractions
and libraries of this thesis enable the creation of accurate visualizations from autonomous
robots generally across robotic domains.

4.4 Display and interfaces for multiple levels of detail

As part of the overall system for using the visualizations we propose, we need to be able to
display the set of available pieces of information for any particular use with a robotic system.

We propose to, as part of the implementation part of this thesis, create user interfaces for
manipulating and displaying the stored visualizations for a system. Such an interface would
need to expose the possible data filters alongside a display of the video and the overlaid
representations. In general, we propose to make it possible for others to create flexible
robotic systems, without dictating what particular choices are best for any particular person
or situation. Accordingly, we consider detailed user studies to be out of scope for this thesis.
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4.5 Summary and timeline

In summary, we propose to build upon our extensive experience with autonomy in com-
plex robotic systems and contribute automated visualization to capture their reasoning by
annotating videos of the robots’ execution. My proposed timeline for this work is:

Fall 2016

— Formalize the commonalities in logging needs across different robotics domains

— Design the abstract specifications of storage formats to accommodate these com-
monalities

Spring 2017

— Produce concrete algorithms and implementations that enable the creation of our
augmented reality visualizations

Summer 2017

— Demonstrate a variety of visualizations with different robotic systems

— Create interfaces for displaying and interacting with the created visualizations

Fall 2017

— Write and defend thesis
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