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Abstract 
 
Providing quality of service (QoS) in wireless networks is a research topic that is 

still maturing. As more people use wireless technology for various applications, 

there is demand to provide some level of QoS for these applications. However, 

there are several challenges to providing QoS in a wireless network that would 

not normally exist in a wireline network. A variety of dynamic and location-

dependent error environments can make it difficult to employ “fair” scheduling on 

a wireless link. Although techniques have been introduced to reduce the amount 

of lost link capacity, some errors still result in variable link capacity.  

 

Effort-Limited Fair (ELF) scheduling was proposed by Eckhardt & Steenkiste [1] 

to extend Weighted Fair Queuing (WFQ) for wireless networks. ELF guarantees 

that all flows experiencing an error rate below a per-flow threshold receive their 

expected service, defined as a specified rate for reserved flows, or a specified 

share of best-effort capacity for best-effort flows.  

 

This thesis builds upon the ELF scheduling model, and shows that it can be 

integrated into a simulated 802.11 implementation. This could be a substantial 

contribution towards providing QoS to the average wireless link user, since most 

commercial networks currently employ the 802.11 protocol. We also seek to take 

advantage of the distributed nature of the 802.11 MAC protocol, and extend ELF 

scheduling to operate in both a distributed and centralized environment. We 

propose a practical algorithm intended to remain faithful to ELF’s original design 

principles, while employing a hybrid scheduling model. Finally, we evaluate this 

proposed algorithm through both trace-driven simulation and computer generated 

error models.  

 



Thesis                             A Hybrid Approach to Effort-Limited Fair Scheduling for 
802.11 

   
 

1

1 Introduction 
 

Wireless networks are inherently different from wireline networks in 

several ways. For example, wireless signals are unprotected from outside signals 

and must travel over a medium significantly less reliable than wireline networks. 

They have dynamic topologies and lack full connectivity (which means that the 

assumption that every host can hear every other host is invalid), and have time-

varying and asymmetric propagation properties. Because of these differences, 

many assumptions that are normally made about wireline networks do not hold. 

Thus, providing quality of service (QoS) over wireless networks is a challenge.  

 

Wireless media can exhibit high, variable error rates that affect network 

users in a number of ways. Most applications and end-to-end transport protocols 

perform poorly when many packets are lost due to link errors. Furthermore, link 

errors reduce the useful throughput of the link. Even though techniques have 

been introduced to reduce the amount of lost link capacity [2] [3], some errors still 

result in variable link capacity. This high variability in link error rates makes it 

extremely difficult to make guarantees for individual flows, and for a scheduler to 

meet its commitments in all circumstances. Unlike a wireline network (which can 

assume almost no link errors, and virtually constant bandwidth), a wireless 

network can have huge fluctuations in bandwidth availability, which forces 

variable transmission rates. In the presence of this variability, one must decide 

which flows should be short-changed. Which flows should get preferential 

treatment when bandwidth becomes scarce? Also, in a wireless network with 

location-dependent errors, we must decide how much extra airtime to assign to 

high-error stations at the expense of others. These problems center on the 

question of how a scheduler should respond to capacity loss.  

 

In this thesis, we first introduce the Effort-Limited Fair (ELF) scheduling 

model presented in [1]. We describe its design principles, and go into some detail 

on the ELF algorithm and implementation. We then discuss the IEEE 802.11 
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MAC protocol [4], specifically focusing on the Distributed Control Function (DCF) 

and Point Control Function (PCF). Next, we show that it is possible to integrate 

an ELF scheduler into a standard 802.11 implementation, and thus ensure 

sensible outcomes for flows in response to unrecoverable capacity loss. After 

showing that ELF scheduling can be an effective policy for an 802.11 PCF, we 

propose a novel notion for improving the efficiency of ELF scheduler within an 

802.11 MAC by using a hybrid approach to regulate stations within both a DCF & 

PCF. Finally, after motivating and defining this hybrid approach, we present a 

practical algorithm which we evaluate both through trace-driven simulation and 

computer generated error models. Considerable time was spent laying the 

groundwork to run these simulations. Specifically, we added much more 

functionality to the 802.11 MAC implementation in ns-2 [5]. This included ironing 

out several bugs along with extending the functionality of the PCF. After this 

groundwork was laid, we integrated both the ELF algorithm and our extension 

into the ns-2 code base.  

 

2 Earlier Work 
There has already been a fair amount of work done on ways to provide 

QoS in Wireless Local Area Networks (WLANs). Currently, the IEEE 802.11 

standard [4] for WLANs is the most widely used WLAN standard. There is a 

mode of operation in IEEE 802.11 that can be used to provide service 

differentiation (PCF – Point Control Function), but it has been shown to perform 

badly and give poor link utilization [6]. Other schemes include Distributed Fair 

Scheduling [7], Blackburst [8] and a scheme proposed by Deng et al. [9]. 

Comparisons of these schemes have been done in various simulations, and it 

has been shown that the PCF mode of the IEEE 802.11 standard performs 

poorly compared to the other schemes evaluated [10]. 

 

One scheduler model that has been proposed is the Effort-Limited Fair 

(ELF) Scheduler for wireless networks. This model is based on the observation 

that while “effort” (air time spent on a flow) and “outcome” (actual useful 



Thesis                             A Hybrid Approach to Effort-Limited Fair Scheduling for 
802.11 

   
 

3

throughput achieved by the flow) are equal in a wireline environment, they can be 

substantially different in a wireless environment. The ELF scheduler strives to 

achieve the outcome that is envisioned by users subject to limits on the effort 

spent on each flow by using a per-flow power factor setting. The power factor is a 

control knob that can be used to administratively implement a variety of fairness 

and efficiency policies. ELF essentially extends the Weighted Fair Queuing 

(WFQ) model to allow for dynamic weight adjustments. The ELF scheduling 

model itself can be compared to other scheduling models [1]. This includes the 

wireless packet scheduler (WPS) [2], the Channel-condition Independent packet 

Fair Queuing (CIF-Q) algorithm [11], the Server-Based Fairness approach [12], 

and the utility-fair bandwidth allocation approach [13]. Each of these gives an 

explicit model of the desired outcome of a scheduling algorithm in the face of 

errors. However, the ELF scheduling approach argues that in certain situations, 

when flows encounter errors, it is important to give special treatment to these 

error prone flows [14]. This can allow best-effort flows to obtain some amount of 

outcome fairness, even if this entails slightly reducing overall link efficiency. 

However, it must also be possible to protect the link against flows with very high 

error rates that can take up all the available bandwidth.  

 

3 The Thesis 
The primary thrust behind this thesis comes from previous work done 

exploring ways to provide an acceptable level of quality of service to individual 

flows, in the face of error-prone wireless links.  

 

The thesis: It is possible to integrate an Effort-Limited Fair scheduler 
(ELF) into a standard 802.11 implementation, and thus ensure sensible 
outcomes for flows in response to unrecoverable capacity loss. Moreover, 
it is possible to improve on the efficiency of a PCF-based ELF scheduler 
within an 802.11 MAC by using a hybrid approach to regulate stations 
within both DCF & PCF.  
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4 IEEE 802.11 Protocol Overview and 
Modifications 
The 802.11 MAC protocol has many layers, and its specifications are 

voluminous. We focused primarily on the MAC sub-layer, including the distributed 

coordination function (DCF), the point coordination function (PCF), and their 

coexistence in an IEEE 802.11 LAN. Special attention was given to the 

integration of the ELF scheduler into the MAC sub-layer.  

 

The fundamental access method of the 802.11 MAC is DCF, which is 

implemented by all the stations within a basic service set. For a station to 

transmit, it senses if another station is transmitting (using carrier sense multiple 

access with collision avoidance (CSMA/CA)). If the medium is not busy, the 

transmission may proceed. For frames above a certain size threshold, it may be 

beneficial to use RTS (Request to Send) and CTS (Clear to Send) frames. This 

method helps to further minimize collisions among stations during a DCF. A 

station that is using RTS/CTS first sends an RTS frame to the destination station. 

It would receive a CTS frame from the destination station, and then be cleared to 

send its Data frame. The sending station would then wait for the destination 

station to send an acknowledgement frame (ACK) back to itself. If the station 

senses that the channel is busy, it will defer until the end of the current 

transmission, and then back off (at some random interval) while it senses that the 

medium is idle. Following this interval, the station may send a packet (providing it 

detects an idle medium). In the event that two frames collide, both stations 

perform a random backoff procedure, and then try to send their frames again.  

 

The 802.11 MAC also has another optional access method called PCF, 

which is only usable on network configurations that utilize an access point (AP). 

This access method uses a point coordinator (PC), which operates at the AP, to 

determine which station has the right to transmit. Basically, the PC performs the 

role of polling master. The access priority provided by a PCF can be utilized to 
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create a contention-free (CF) access method. Thus, the PC controls the frame 

transmissions of the stations so as to eliminate contention for a limited period of 

time. When polled by a PC, a pollable station may transmit only one frame, which 

can be to any destination (not just to the PC), although the frame must be 

forwarded on from the PC. If the data frame is not in turn acknowledged, the 

station will not retransmit the frame unless the PC polls it again, or it decides to 

retransmit during the contention period.  

 

The DCF and the PCF are able to coexist within the same network. The 

two access methods alternate, with a contention-free period (CFP) followed by a 

contention period (CP) (see Figure 1 below).  The protocol specifications state 

that at the beginning of a CFP, a beacon frame must be sent out to all stations, 

informing them that the PC now has control over the medium. (The PC gains 

control of the medium through the use of a shorter inter-frame spacing (PIFS), 

see Section 9.2.3.1 of [4].) At the end of a CFP, the PC will send out another 

beacon frame signifying that a CP is now in progress under the DCF. This 

alternation continues indefinitely. 

 

In general, the minimum amount of time allotted for a CFP is equivalent to 

the amount of time needed to send one data frame to a station, while polling that 

station, and for the polled station to respond with one data frame. Moreover, the 

minimum amount of time allotted for a CP is equivalent to the amount of time 

needed to send at least one data frame during a CP.  

 
Figure 1: CFP/CP Alternation (excerpted from [4]) 
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IEEE’s 802.11 is now a networking standard, and used by academia and 

industry worldwide. Its attractiveness comes from its design to be efficient and 

robust. However, although there has been work done in recent past (i.e., 802.11e 

drafts [17]), there is no current standard built into 802.11 to provide quality of 

service (QoS) to mobile hosts. The closest thing that fits that criterion is the 

(optional) PCF, which most commercial implementations have chosen to omit. 

There are probably at least two main reasons why PCF has not been used.  

 
First, DCF is more efficient to use when stations do not have data queued 

at all times (which is a majority of the time). It will allow a station to contend for 

airtime to send a frame, and provides a method to ensure reliable transmission of 

the packet (i.e., acknowledgements and re-tries), up to a certain threshold of 

retransmissions. Provided that the collision rate is not high, DCF is efficient, and 

can deal with hidden stations by using the RTS/CTS protocol. On the other hand, 

PCF is effective primarily because it does not have to contend for airtime, and 

thus, there should be no collisions during a CFP. Note that the PCF is quite 

efficient if there is extremely high contention on the channel (e.g., stations have 

data queued at all times), since the PC is likely to receive a data packet back 

from the polled station, and bypass the RTS/CTS protocol and collision recovery. 

For example, an average RTS/CTS transaction consumes roughly the same 

amount of air-time that a 100-byte data packet would consume. If there are many 

RTS/CTS transactions required (e.g., for an average packet size of 512 bytes), 

this can consume a significant amount of air-time and result in approximately a 

16% inefficiency figure. However, if contention is low, then the PC is likely to 

receive many NULL frames back from stations that have no data queued. Thus 

air time will be wasted while preventing stations that do have data to send from 

sending. For example, suppose that there are four stations sharing a wireless 

channel, but only one station has data to send. If the PC polls each of those 

stations per CFP, this can unnecessarily limit the throughput for that one station, 

while wasting the significant airtime on the polling the other three stations.  
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Second, the PC is allowed to maintain a polling list and decide which 

station is allowed to transmit next. According to the specifications, “During each 

CFP, the PC shall issue polls to a subset of the stations on the polling list in order 

by ascending (association ID) value. While time remains in the CFP, all CF 

frames have been delivered, and all stations on the polling list have been polled, 

the PC may generate one or more CF-Polls to any stations on the polling list…or 

send data or management frames to any stations.” While this specification does 

allow for some flexibility, it is rigid in determining the order in which polls are 

initially sent out to stations. This rigidity makes it difficult to provide reasonable 

levels of QoS to different flows.  

 

Our goal is to take the existing standard, and modify it so that it can 

provide a reasonable quality of service to mobile hosts, even in the face of high 

error rates. We believe that the Effort-Limited Fair scheduling model designed by 

Eckhardt & Steenkiste provides a plausible scheduling algorithm for providing 

QoS to flows in the presence of capacity loss. Moreover, when ELF is integrated 

as the policy for the PCF, the PCF can be useful for dealing fairly with flows 

experiencing high error rates that still demand some level of throughput.  

  

5 Effort-Limited Fair (ELF) Wireless Link 
Scheduling 
The design philosophy of the ELF scheduler is based on a few principles, 

taken from [1]: 

 

1) In an error-free environment, the outcome achieved by a wireless 

scheduler should be identical to that of an equivalent wireline scheduler.  

2) The amount of capacity loss suffered by a flow should not be proportional 

to its bandwidth or its error rate, but should be configurable through 

administrative controls.  
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3) It must be possible to administratively bound the amount of capacity that is 

lost due to location-dependent errors.  

4) In the absence of information to the contrary, flows experiencing equal 

error rates should experience the same capacity loss.  

5) Capacity unused by one flow should be distributed “fairly” among other 

flows.  

 

In light of these considerations, ELF scheduling wants to provide QoS 

such that it balances effort fairness with outcome fairness. When error rates are 

low, the scheduler should give outcome fairness to best effort flows (the 

throughput that they would expect with a low error rate). With moderate error 

rates, the scheduler will use priority to support reserved flows. When error rates 

are high, the scheduler will fall back to effort fairness, so that the link still 

provides some useful throughput.  

 

ELF introduces the notion of a “power factor”, which basically provides the 

administrative bound that balances effort fairness with outcome fairness.  

 

ELF is an addition to a Weighted Fair Queuing (WFQ) model, as shown by 

the following equation: 

 

),
1

min( ii
i

i
i WP

E
W

A •
−

=  

 

Ai = adjusted weight of flow i, Wi = weight, Ei = error rate, Pi = power factor  

 

This equation states that we adjust the weights of different flows, 

depending on what error rate each flow is experiencing. However, the adjusted 

weight of any given flow cannot exceed that which is defined by its power factor. 

A flow that experiences 100% error rate for example can be prevented from 

starving all other flows in the channel. However, with an appropriate power 



Thesis                             A Hybrid Approach to Effort-Limited Fair Scheduling for 
802.11 

   
 

9

factor, a flow with a moderate error rate can be given enough airtime to achieve 

its outcome. In general, setting a flow’s power factor to 100% will cause it to be 

scheduled in an effort-fair fashion, while raising its power factor will cause it to 

experience outcome fairness over a wider range of error rates.  

 

There is also a virtual clock that ticks each loop through the scheduler. 

Each time a flow’s transmission interval passes (the interval is calculated 

according to the flow’s weight), the scheduler allocates the flow both deserve and 

effort. The flow is then eligible for transmission until it either achieves that 

throughput or exhausts that effort. Note that the amount of effort a flow is 

allocated per tick is a function of the flow’s power factor. Thus, flows with higher 

power factors can use up more effort when they are experiencing error conditions 

in order to meet throughput requirements.  

 

Guaranteed flows are separated from best-effort flows in that the 

scheduler will first try to select an eligible guaranteed flow before moving to best-

effort flows. Thus, guaranteed flows are served until each is either satisfied with 

its outcome or limited by expended effort. The best-effort flows share the leftover 

bandwidth. This is achieved by having the scheduler only tick the best-effort 

flows’ clock when there is no guaranteed flow ready to transmit. This is a 

consequence of the fact that the best-effort flow is almost always over 

committed. If no guaranteed flow is eligible and there are no best-effort flows, the 

scheduler will slightly advance the schedule of the next eligible guaranteed flow.  

 

For example, suppose there are two best-effort flows and one video flow. 

The link capacity is 800 kbit/s, and the video flow requires 200 kbit/s of 

throughput (one-quarter the total air time available). Thus, the two best-effort 

flows split the remaining bandwidth equally (i.e., each flow receives 300 kbit/s). 

Suppose the video flow has a 50% error rate, and a power factor of 200. 

According the equation above, the video flow will still receive 200 kbit/s of 

throughput (since it will now consume half the air time), while the best-effort flows 



Thesis                             A Hybrid Approach to Effort-Limited Fair Scheduling for 
802.11 

   
 

10

will split the remaining bandwidth equally (i.e., each flow receives 200 kbit/s). 

Thus, the video flow will meet its reservation requirements and the best-effort 

flows will avoid starvation even if the error rate rises above 50%.  

 

Eckhardt shows that ELF performs as expected on various simulations 

and traces capturing “real-world” environments. The simulator assumed all flows 

are continuously busy, and records throughput allocation decisions made by the 

scheduler (ignoring how real transport protocols might react to allocation 

variations). Each flow on the simulator is assigned “deserve” and “effort” banks. 

The deserve bank keeps track of how much outcome the flow deserves (i.e., 

throughput). The effort bank keeps track of how much effort (i.e., air-time) the 

flow is allowed to spend.  

 

The link layer used in his simulations was based on earlier work [15]. It 

uses link-level re-transmit, adaptive packet sizing, and adaptive error coding to 

reclaim substantial capacity even in the face of challenging error patterns. In 

addition to the simulator-based evaluation, Eckhardt tested an ELF 

implementation. He inserted the ELF scheduler into his existing prototype 

wireless LAN, built from Intel 80486 and Pentium laptops running NetBSD 1.2 

and using 915 MHz PCMCIA card WaveLAN units. The kernel device driver 

included a simplified poll/response MAC protocol, which was similar in spirit to 

the IEEE 802.11 PCF. However, he suggests that possible extensions would 

include using ELF as the policy for an 802.11 PCF. He writes, “If we assume that 

one station is in a position to discover the outcomes of most packet 

transmissions, the LAN could operate according to the more efficient DCF most 

of the time, and the controlling station could then use the PCF period to allocate 

extra effort to stations according to their power factors.” This thesis is an attempt 

to take up that challenge. 
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6 ELF Implementation within IEEE 802.11 on ns-
2 (Network Simulator) 

 
Network Simulator-2 (ns-2) [5] provides a convenient platform on which to 

conduct experiments. On ns-2, we are able to plug in data from trace files, as 

well as use random error models to simulate traffic across wireless channels. 

This allows us to simulate location-dependent errors, and test boundary cases. 

Ns-2 also provides well-established plumbing for each node: We are able to 

attach a variety of applications (i.e., FTP, Constant bit rate, web flows, etc…) to a 

TCP SACK or UDP implementation that connects down to the physical layer, 

which attempts to model the real world.  

 

We extended the mobile node for an 802.11 implementation, so that ELF 

could be integrated as the scheduler for the AP. Most of the implementation work 

was done at the MAC layer in ns-2, building upon earlier work done by the 

Monarch group on mobile ad-hoc networking [19]. We also extended Anders 

Lindgren’s PCF implementation [10] to make it more conformant to the 802.11 

protocol specifications. Our ELF implementation can be divided into two main 

components: 

 

1) Extending 802.11 PCF functionality.  

2) Implementing ELF as the scheduler for the PCF.  
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Figure 2 below shows a simplified schematic layout of a typical mobile 

node in ns-2. 

 

 

Figure 2: Schematic of a mobile node in ns-2 

 

We made several assumptions upon implementing these components, 

which allowed us to reduce complexity and still produce useful results.  

 

First, we assume that the scheduler views traffic as a set of flows. Flows 

can be individual (e.g., a single TCP connection) or aggregates (e.g., all traffic to 

a specific host). The 802.11 PCF specifications handle polling on a per station 

granularity. Thus, the ability to poll an individual flow on a station is not part of the 

PCF protocol. Thus, for our purposes, we deal with flows as aggregates, knowing 

that this can be extended to deal with individual flows if we modify the protocol. 

Second, the ELF algorithm is meant to run over a traditional WFQ scheduler.  

However, for implementation purposes, we use packet weighted round robin 

(WRR) instead of WFQ, measuring throughput in packet slots. This is for 
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MAC ELF 
Scheduler 

NetIf Propagation 
Model 
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simplicity, and also because wireless networks are often slot-based for 

synchronization and power-management purposes. Third, in order to guarantee 

fixed-rate reservations, we assume that there is an admission control module that 

can set appropriate per-flow power factors. The manner in which this module 

would choose power factors is outside the scope of this paper, but obviously it 

would need to avoid over committing the link, given an expected error rate. 

Eckhardt does provide some guidance [1, 14] on how to select appropriate power 

factors. Fourth, our implementation is concerned with throughput for flows. It may 

be possible to implement into ELF a scheduler which offers more complex 

service characterizations (i.e., deadline-based, delay or jitter guarantees, etc…), 

but that requires tracking individual packet outcomes and is beyond the scope of 

this work. Fifth, both the CBR and TCP flows always have data to send. This 

means that a drop in throughput among any of the flows is not due to idle time, 

but rather either congestion control or high error rates. Finally, we do not handle 

data fragments as specified by 802.11, and in fact all CBR flows send fixed sized 

packets. Each packet transmission fully succeeds or is dropped.  

 

6.1  Extending 802.11 PCF Functionality 
 

The ns-2 implementation that we began with included support for DCF & 

partial PCF. The DCF included CSMA/CA along with support for using RTS/CTS. 

The PCF allowed the PC to poll stations for data, and forward that data on (e.g., 

to a wired node). If a station did not have any data to send upon receiving a poll, 

the station would not send anything and there would be a timeout. After the 

timeout, the PC would continue polling until it reaches the end of its polling list or 

the CFP ended.  

 

We added to that implementation by adding bi-directional data flow during 

a CFP. This means the PC had to be able to poll stations for data, as well as 

maintain a set of queues for each flow, to pass data to a station that is next to be 

polled. This was necessary to allow us to incorporate TCP flows (into the 
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experiments which are bi-directional, requiring both Data and Ack packets). 

Significant amount of time was spent reworking the functionality of the timers to 

allow for bi-directional data flow, and to account for decisions made by the ELF 

scheduler. For simplicity (and in conformance with the protocol specifications), 

the decision on whether or not to send a station data or a poll was decided by 

whether or not there was data in the queue to send to that station. If there 

remained data to be sent, it would be sent to that station in place of a poll. 

Otherwise, that station would be polled for data.  

 

Our implementation is does not fully implement the PCF, in that we do not 

allow for all possible frame types to be sent. For example, we do not currently 

allow for Acks to be piggybacked onto Data frames. We also do not do 

fragmenting as specified by the 802.11 protocol. Finally, station association and 

authentication are not considered in our implementation.  

 

6.2 Implementing ELF as the scheduler for PCF 
 

The core of the ELF algorithm remains the same as Eckhardt’s model 

described above.  

 

If the PC polls a station, and does not receive any data (or the data is 

corrupted due to errors), it charges the station the amount of effort equivalent to 

one data packet. However, it does not reduce the amount of throughput the 

station deserves. If the station did receive the poll, but has no data to return, it 

can send a NULL frame. The PC will then reduce both the effort and deserve 

“accounts” (variables) for the station. Since acknowledgements (ACK) are built 

into the protocol, we take advantage of this when updating the “effort” and 

“deserve” variables for each flow. Specifically, when the PC sends data to a 

station, if the station returns a MAC level ACK, the PC will reduce both deserve 

and effort for that station. However, if the ACK is lost (or the data packet was 
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never received by the station), the PC will reduce effort, but leave the deserve 

quantity unchanged.  

 

When we add a CFP, our implementation deviates from the 802.11 

standard in one aspect. Instead of polling stations in the order of their station ID 

value, we use the ELF algorithm to decide which station should be polled next.  

 

We note that although ELF controls the polling of stations during a CFP, it 

has no control over how stations operate during a CP. The CP remains 

completely distributed, with stations able to contend for as much bandwidth as 

they desire. Obviously, the longer the CFP as a percentage of the superframe, 

the more ELF will be able to meet its guarantees, and provide QoS to flows.  

 

7 ELF-DCF: Improving upon ELF for DCF/PCF 
operation  

 

We stated above that the DCF is more efficient than the PCF in general. 

Thus, our motivation was to design an extension to ELF that was as consistent 

as possible with the original design of ELF, and allowed more flexibility with 

respect to the distribution of time allotted for a CP and a CFP. Specifically, we 

wanted to have more time with the DCF operating, so that we would improve 

overall link efficiency, but still remain able to meet the same throughput goals per 

flow that ELF provides.  

 

We first discuss two design principles that we used to develop the 

algorithm for ELF-DCF1. Then we explain our implementation, and how it is 

                                                 
1 From this point forward, we use “ELF-PCF” to refer to the original ELF algorithm designed by Eckhardt, 
operating under a CFP. “ELF-DCF” refers to our new algorithm, which operates under a CP. They can 
operate independently of each other (i.e., one can be enabled, while the other is disabled), but are designed 
to work together to achieve ELF’s design goals.  
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consistent with our design principles. Finally, we discuss a few low-level details 

that we needed to consider in deciding how to charge flows.  

 

7.1 Design Principles 
 

1) DCF must continue to remain completely distributed. Stations must 
continue to contend for air-time in exactly the same fashion. We want 

to minimize any sacrifice in efficiency during a DCF, and thus minimize 

any interference the PC has with the mobile stations. This includes any 

type of polling, or other centralized control that would limit stations from 

sending data. 
 

2) The integration of ELF (PCF) & ELF-DCF should stick as closely as 
possible to the standard. Since PCF and DCF alternate, we need to 

make sure that ELF continues running smoothly during each transition. 

This helps to keep the implementation simple, and also minimize the risk 

of unnecessary spikes or dips in throughput.  
 

7.2 Design 
 

The basic idea is to allow the ELF scheduler to work as before (during the 

CFP), but to give it an additional role.  

• The scheduler will use the data in the effort and deserve banks for each 

flow to decide how much effort and deserve each flow should be allowed 

during the next CP.  

• At the end of a CFP, the AP will send out a beacon that alerts each of the 

stations that a CP has begun. Inside the beacon will be information 

inserted by the AP’s ELF scheduler that is pertinent to individual flows.  

• When receiving the beacon, each flow will know exactly how much effort 

and outcome it is allowed during that specific CP, and will regulate itself so 
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that it does not exceed its limits. Obviously, since the scheduler can 

assign different effort and deserve values per flow during a CP, it can help 

flows that might be experiencing high error rates to meet their throughput 

expectations during a CP. This would be consistent with the original 

design of ELF.  

• At the end of a CP, the scheduler would be in a position to discover how 

each station has performed during the CP, and make the appropriate 

scheduling adjustments during the CFP. For example, a flow that achieved 

low throughput during the CP might be given extra airtime during the CFP 

to help meet throughput expectations. (see Figure 3 below) 

 

 

Figure 3: ELF Design (High Level) 

 
There must be a sensible way of deciding how to regulate stations during 

a CP. Our objective is to allow stations to achieve their desired throughput during 

a DCF, while aiding error-prone stations in a way that is consistent with the goals 

of ELF. ELF uses a few variables to regulate flows: interval (which establishes 

the weight of the flow), power (power factor), effort, and deserve. We described 

above how each of these variables are used during normal ELF operation.  

 

Normally, in a DCF, stations have no constraints to work with except 

CSMA/CA. Therefore, they will continue to contend for airtime as long as they 

have data to send. However, it is possible to have stations regulate themselves 

beyond CSMA/CA (i.e., a station defers from sending a packet due to some 
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constraint on effort spent or throughput limits), by taking advantage of the use of 

beacons. We used these beacons in our implementation to send out specific 

information unique to each station that told them “how to behave” during a DCF. 

Our goal was to leave the DCF being “distributed” and de-centralized, but still 

regulate the nature of its distribution.  

 

7.2.1 Allocating Effort & Deserve 
 

The algorithm for deciding what regulatory values to send each station is 

critical. It makes sense to send each station a “deserve” and “effort” value (with 

equivalent meaning to those used by the ELF scheduler operating on the PC). 

The deserve value would tell a station how much throughput it is allocated during 

this CP. The effort value would tell a station how much airtime it is allowed to use 

during a CP. Sending these values also helps us to maintain a seamless 

continuation from CP to CFP. In particular, we would like to use the values for 

“effort” and “deserve” coming out of a CFP, and partially use them to compute 

the new CP values (without altering either account unfairly).  

 

It is critical to send each station both of these values. If we only told a 

station how much throughput it deserves, then actually we would be encouraging 

error-prone stations to do the very thing ELF seeks to prevent. Specifically, an 

error prone station would continue contending for airtime indefinitely, until it met 

its “deserve” quota. This could have the effect of starving out other stations and 

monopolizing the bandwidth.  

 

In the case of “deserve,” it makes sense to allocate a station all of the 

remaining amount of deserve (coming out of a CFP), plus whatever throughput 

the station would expect during a CP. Even if the amount of deserve is much 

higher than can actually be expended during a CP, this would be constrained by 

a more rigid “effort” value.  
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Allocating effort in the same way as deserve (see above) would be 

undesirable for a few reasons. Ideally, each station should use up all the effort 

we allocate for it. However, experiments showed that often when a station 

experienced a high error rate, the amount of effort it expended would drop 

significantly. This may be due to large intervals of time in back-off, or waiting for 

a timeout so it can retransmit. Therefore, assigning the error prone station a large 

allocation of effort would do little good during the CP, since it wouldn’t use it up. 

On the other hand, one station may have a substantial amount of “left over” effort 

from the CFP. Therefore, combining that with the effort that would normally be 

expended (assuming no errors) during a CP could over allocate effort, so as to 

allow an “effort inclined” station to monopolize the bandwidth during a CP. In 

general, we would like to have a good statistic (estimation) of a station’s 

willingness to expend effort. This helps us to determine how much effort to allot a 

station during a CP. 

 

We would also like to assist error-prone stations in a similar way as ELF 

does during a CFP. Specifically, we’d like to make use of the power factor, giving 

a needy station enough effort (up to a bound) to receive its desired throughput. 
However, we cannot allocate effort in the same way during a CP. During a CFP, 

the PC credits a station with enough effort for one packet, multiplied by its power 

factor. However, the PC decides when each station gets to send data by polling 

them. Under a DCF, there is no such regulation. Thus, suppose there is a station 

with a higher power factor, but is not experiencing any errors. If we allocate that 

station more effort during a CP (proportional to its power factor), then it may start 

to use more bandwidth than is desirable from the scheduler’s standpoint. This is 

because the station may have a large amount of deserve accumulated, and 

would now have unrestricted use of the air time as long as it has effort to spend. 

We needed a way to allocate additional effort as needed during a CP.  
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7.2.2 The ELF-DCF Algorithm 
 

Based on these factors, we designed the algorithm shown below (see 

calc_allow in Figure 4). We believe it meets the design criteria, and takes into 

account each of the implementation concerns mentioned above. First, we 

discuss how the algorithm works, and deals effectively with error conditions. We 

discuss exactly how we take into account the fact that stations have different 

willingness to expend effort, and also how we manage the “effort” and “deserve” 

banks for each flow. Then we give a brief description of our pseudo-code below, 

and discuss the main variables involved in the implementation. 

 

For each flow, we keep a history of past effort utilization (as a percentage 

of effort allocated) during a CP. This history spans five previous CP’s, though this 

number can be experimented with further. We also keep track of the immediately 

preceding CP’s effort utilization. The logic is that recent history is a more 

accurate predictor than older history. We weigh the average of the history table’s 

utilization with the value for the last CP’s effort utilization, and compute a moving 

average. We use this to predict a station’s willingness to expend effort in the next 

CP.  

 

Then we allocate a station’s “deserve” by combining its current “deserve” 

value with what is expected during this CP. The “effort” is allocated based on the 

moving average value. If it is less than 50%, then we allocate that station’s CP 

effort as a percentage (i.e., the moving average percentage) of what it would 

normally expect in a CP. The remaining effort that is unused is factored back into 

the “effort” value that will be used during a CFP. This way, the station is not 

penalized unfairly for unexpended effort during a CP. If the moving average value 

is greater than 50%, then we take that to mean the station has a higher 

willingness to spend effort. In this case, effort allocation is a sum of two 

components: 1) we give a station as much effort as would be needed to meet its 
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throughput requests during an error-free CP. 2) we recognize that this station 

may have use for more effort (to make up for unmet throughput requests due to 

high error rates).  Therefore, we allocate extra effort according to its power factor, 

as a percentage of one minus the moving average value. The purpose is to give 

a willing station the opportunity to expend extra effort during times of high error 

rates, with the amount of extra effort being inversely proportional to how much 

effort was utilized in previous periods with low utilization. Note that in both cases, 

we assign a value for “effort” that is independent of the remaining “effort” in the 

CFP (to avoid “bloating” the effort allocation in the CP). However, we do 

conserve that remaining effort for future use, so we do not penalize that station 

unfairly. One might argue that extra effort should be assigned as a function of 

percentage “deserve” underutilization in previous CP’s.  However, since the 

“deserve” values can become increasingly large, the moving average of 

“deserve” underutilization could grow too small, and thus not assign extra effort 

fairly. We choose not to use two different “deserve” values for a CP and CFP 

(like we did for “effort”) to stay as close as possible to the goal for seamless 

integration as described above. In Table 1 below, we give a short description of 

the key variables used. 

 
Variable (per flow state) Brief Description 

Flow->deserve Amount of outcome a flow deserves 
Flow->effort Amount of effort a flow is entitled to 
Flow->rts_reserve Internal administrative information; 

informs the PC how much effort was 
allowed for RTS frames during a CP 

Flow->reserve Amount of outcome a flow deserves 
per CP (constant value) 

Mix_avg_effort[i] Weighted average value used to 
determine if a flow is effort 
averse/prone 

Cfend_frame->deserve[i] Deserve value incorporated into 
beacon to let station know how much 
outcome it deserves for that CP. 

Cfend_frame->effort[i] Effort value incorporated into beacon to 
let station know how much effort it is 
entitled to for that CP. 

Table 1: List of state variables 
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/* Setup beacon frame to regulate stations’ throughput distribution during a CP. */ 
 
void Mac802_11::calc_allow(Beacon CF-end frame){ 
 int rts_reserve[MAX_STA] = 0; 
 int unused_deserved_effort[MAX_STA] = 0; 
  
foreach flow (Protected & Unprotected){ 
 

/* Calculate weighted average of effort spent during a CP. 
50% of weight comes from last CP’s effort statistic; 50% comes 
from the previous 5 history’s of effort averaged together; */ 
 
mix_avg_effort[flow->macId] = ((50% * recent_avg_effort[flow-
>macId]) + (50% * hist_avg_effort[flow->macId])); 
 
cfend_frame->deserve[j] = flow->deserve + flow->reserve; 

  
if(mix_avg_effort[j] <= 50%){  

 
/* The station hasn't demonstrated that it has much 
inclination to spend effort, so give it less allocation. */ 

 
cfend_frame->effort[j] = (mix_avg_effort[j] *  

flow->reserve * 150%); 
flow->rts_reserve = (mix_avg_effort[j] * flow->reserve * 

50%); 
unused_deserved_effort[j] = (1 - mix_avg_effort[j]) *  

flow->reserve * flow->power; 
 }  

else{ 
 

/* Give it extra effort (with the power factor) to try and 
meet its requirements */ 

 
cfend_frame->effort[j] = (flow->reserve * 150%) + (1 -

mix_avg_effort[j]) * (flow->reserve * 150% * flow-
>power)); 

flow->rts_reserve = (1 * flow->reserve * 50%) + ((1 - 
mix_avg_effort[j]) * flow->reserve * 50% * flow-
>power); 

} 
 
 /* Update figures to be used after CP is finished */ 

flow->deserve_allowed = cfend_frame->deserve[flow->macId]; 
 flow->effort_allowed = cfend_frame->effort[flow->macId]; 
 flow->deserve = 0; 
 flow->effort += unused_deserved_effort[flow->macId]; 

 
flow = flow->next;  
} 

return; 
} 
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/* Before beginning polling stations, plug statistics from the CP into ELF. */ 
 
void Mac802_11::start_cfp(){ 
int effort_gap = 0, deserve_gap = 0; 
foreach flow (Protected & Unprotected){ 

 
/* History for effort outcome during CP */ 

 flow->hist_effort[(flow->mod)%5] = flow->recent_effort; 
 flow->allow_hist_effort[(flow->mod++)%5] =  

flow->recent_effort_allowed ; 
   
 /* Most recent history (deserve & effort) for CP */  
 flow->recent_deserve = flow->cp_deserve_outcome; 
 flow->recent_deserve_allowed = flow->deserve_allowed; 
 flow->recent_effort = flow->cp_effort_outcome; 
 flow->recent_effort_allowed = flow->effort_allowed; 
 
 effort_gap = flow->recent_effort_allowed –  

flow->recent_effort; 
 deserve_gap = flow->recent_deserve_allowed –  
  flow->recent_deserve; 
   

/* reduce gap by accounting for RTS inflation */ 
 if(effort_gap > flow->rts_reserve) 
  effort_gap -= flow->rts_reserve; 
 else 
  effort_gap = 0; 
 
 /* Reset temporary storage variables */  
 
 /* Update main ELF statistics */ 
 flow->deserve += deserve_gap; 
 flow->effort += effort_gap; 
 effort_gap = 0; 
 flow = flow->next; 

} 
sendPoll(); 
} 

Figure 4: Pseudo-code for the ELF-DCF algorithm 

 
7.2.3 Handling statistical data received during a CP 
 

We also need to plug statistics received during a CP into ELF’s operation 

during a CFP (see start_cfp function above in Figure 4). Since we set up the 

algorithm for assigning effort/deserve as we did above, this part of the 

implementation is more straightforward. After a CP completes, we update the 

history table, and recent effort and outcome statistics. Then we compute the “lag” 

(gap) between the amount of “deserve” allocated, and how much outcome 

(throughput) was actually achieved. We also compute the gap for “effort.”  
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Finally, we update the “effort” and “deserve” values for the CFP simply by 

adding the respective lag values from the previous CP period. This conserves 

both values, and allows for more seamless integration between CP and CFP ELF 

values. Most importantly, the ELF scheduler is in a good position to “fix” any 

imbalances that might have occurred during the CP now, under the PCF.  

 

We note that although ELF is seamlessly integrated into both CP and CFP 

with respect to effort & deserve values, there is a departure from the original 

classification of flows under ELF-PCF. Specifically, under ELF-PCF, we make a 

distinction between protected (guaranteed) and best-effort flows. However, we 

make no such distinction in ELF-DCF. This is mainly to reduce the complexity of 

implementation and processing on the mobile station. Therefore, throughput for 

best-effort flows will be higher on average during a CP than a CFP.  

 

Obviously, there are several areas that can be explored further. For 

example, the values for different weights (calculating the moving average), or the 

determination of how much extra effort to assign, are open to change. However, 

based on empirical results and analysis of the boundary cases, we believe that 

this algorithm takes into consideration each of the design criteria given above.  

 

7.3 Policy decisions for charging flows  
 

The PC needs to be able to monitor how stations perform during a CP. As 

we stated above, stations are able to send data directly, or use an RTS/CTS first 

(depending on whether the size of the data crosses a certain threshold which can 

be decided administratively). Thus, it is important for us to account for the fact 

that RTS/CTS transactions involve considerable overhead.  On a 2 Mbps 

channel, an RTS/CTS transaction costs about 350 microseconds, while a 

DATA/ACK transaction (where the size of the data is 100 bytes) costs about 400 

microseconds. (A data packet of size 512 bytes costs about 2000 microseconds). 

It is clear that the overhead involved can still be substantial when viewed in 
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aggregate, especially if one highly error prone station continues to send an RTS 

unsuccessfully. This leads us to believe that it is reasonable to charge stations 

for initiating an RTS/CTS transaction during a CP. Our goal is for stations to be 

charged a “reasonable” amount of effort so as to prevent one station from 

monopolizing the bandwidth with bogus RTS packets. On the other hand, we 

recognize that the overhead taken by the RTS/CTS transaction is much smaller 

than the time for data transmission, and thus should not be charged as much for 

a regular data packet. We settled on charging 50% of a data packet’s effort as a 

plausible billing system.  

 

Since we charge stations during a CP for using RTS/CTS, we designed 

ELF-DCF to give each station enough “effort allowance” so that it can 

theoretically use up all the “deserve” that it is allotted. For example, if we allocate 

enough deserve for five packets, then we also allocate (150% * five packets) 

worth of effort (to account for the possibility of sending an RTS/CTS). Thus, for 

every data frame that is allocated deserve, we allocate an additional 50% of one 

data frame’s worth of effort to allow for the RTS/CTS. It is possible for a station to 

not send RTS/CTS packets if the packet sizes do not cross the threshold. Also, a 

station may not expend much effort during the CP. In this case, there would be a 

substantial amount of effort left over at the end of the CP.  We take into account 

that we made an adjustment how much effort was allocated to stations, because 

of the RTS/CTS overhead required for one data frame transaction. Therefore, 

since the CFP does not have that overhead, we reduce the gap in effort by 

whatever incremental effort was allocated to account for RTS/CTS overhead (see 

start_cfp function above in Figure 4). The effort spent for data frames and RTS 

both draw from the same effort bank. The logic here is that we want to make sure 

we deduct all the effort that was allocated for RTS/CTS for that CP. If we were to 

have two effort banks (i.e., one for RTS/CTS and one for data frames), then at 

the end of the CP we’d only be able to deduct from the RTS/CTS bank (which 

may be close to empty). This way, we ensure that the station is fully deducted for 

all of the RTS/CTS effort that was allocated, or that the station used up all its 
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effort during the CP.  The key point is that a station with a high error rate will be 

prevented from continuously sending faulty RTS, since they will use up effort with 

each RTS sent.  

 

Table 2 below briefly illustrates the operation of the ELF scheduler 

between a DCF & PCF. In this example, we assign both guaranteed flows a 

power factor of 200, and they are assigned weights such that they each should 

deserve 4 frames worth of throughput per CP. For simplicity, we assume that the 

first CFP in the example ends with all values being 0. We also assume that there 

have been enough superframes to allow the effort history table to accumulate 

data values. At this snapshot in time, flow 1 has an average effort history of 75% 

(i.e., effort prone (see above algorithm)), while flow 2 has an average effort 

history of 50% (i.e., effort averse (see above algorithm)). In this example, we 

credit 4 frames worth of deserve to flow 1. We credit 150% of 4 frames worth of 

effort, along with 25% (1 - .75) of the effort normally assigned to flow 1 during a 

CP (taking the power factor into consideration) for a total of 900. In this example, 

flow 1 expends 6 RTS worth of effort, along with 3 data frames worth of effort (all 

data frames are successful). Thus, 3 frames worth of deserve are deducted from 

flow 1’s account, along with 6 frames worth of effort (accounting for the RTS 

expenditures).  

 

Flow 2 is effort averse according to its effort history table. Therefore, 

although we credit the same amount of deserve for the CP, the amount of effort 

allotted is only 50% of what would normally be allotted. The unused effort that 

was not allotted for the CP is “stored away” to be credited back into the flow for 

the CFP. In this case, we assume that the flow expends 2 RTS worth of effort, 

and 2 data frames worth of effort (all data frames are successful). Thus, at the 

start of the next CFP, flow 2 has 2 frames worth of deserve deducted. However, 

it also has the remaining effort that was unused from the CP credited back into its 

effort account (taking the power factor into consideration).  
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 End of CFP CP summary Start of next CFP 
Flow 1  75% -effort prone  
Deserve 0 400 100 
Effort 0 900 300 
RTS Effort spent 0 300 0 
Outcome 0 300 0 
    
Flow 2  50% -effort averse  
Deserve  0 400 200 
Effort 0 300 400 
RTS Effort spent 0 100 0 
Outcome 0 200 0 

Table 2: Blow-by-blow trace of ELF-DCF & ELF-PCF Scheduling 

 
According to the specifications (for a non ad-hoc network), all stations 

should send data through the access point, which often acts as the PC. We take 

advantage of this by having the PC keep track of packets during a CP. In our 

simulation, we are able to determine the type of an incoming packet (i.e., RTS, 

CTS, DATA, ACK, etc…), and therefore we know how much to charge a station. 

Even if the packet is corrupted, we still charge the station for effort spent. 

However, like the CFP, we only bill a station for “deserve” (throughput) if the data 

packet’s delivery is confirmed. Note that effort and deserve are billed to a given 

station both for traffic coming from the station, and going to the station from the 

PC. This remains consistent for both CP’s and CFP’s. This is especially 

important for TCP flows, since both TCP level data and ACK packets are billed 

on the same flow’s account. It seems logical to consider a TCP flow as being one 

flow from ELF’s perspective (rather than to break it up into two separate flows) 

since ELF is concerned about the link-layer’s throughput for a particular flow, and 

doesn’t make higher level classifications. 
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8 Experimental results 
8.1 Simulation Setup 

We evaluated various possible error configurations, using both computer-

generated and real world trace files. We use the computer-generated models to 

show that the algorithms work as expected for simple scenarios. We also cover 

the extreme cases, to see where the algorithm (ELF-PCF & ELF-DCF) works, 

and where it can be improved.  

 
Our experimental setup has four simulated wireless stations, and a base 

station that serves as the access point (AP). All stations are equipped to run 

802.11 DCF/PCF, and we can administratively enable ELF-PCF and/or ELF-

DCF. Each station sends one flow to a wired node through the access point. Two 

stations each manage a CBR flow, while another two stations each manage an 

FTP flow.  The CBR flows are classified as guaranteed flows which are more 

sensitive to throughput fluctuations, while the FTP flows are classified as best-

effort (i.e., non-guaranteed) flows. There are many possible topologies over 

which the experiments can be run, but we chose this because it is typical of how 

many flows realistically operate (i.e., wireless node to wired node). We also ran 

our experiments with data flows going from a wired to a wireless node and found 

that the results were equivalent, as expected (assuming all other variables are 

held the constant, e.g., each flow has its own queue on the AP, to prevent one 

flow’s data frames from monopolizing a global queue). 

 

We used four main types of error patterns: 1) Uniform error rate, 2) 

Multiple state Markov model, 3) “Walls” (a real-world trace file), with a low to 

moderate error rate, and 4) “Adjacent” (a real-world trace file), with a high error 

rate. The real-world trace files are derived from Eckhardt’s previous experiments 

[1]. For the computer-generated error rates (i.e., non-trace error rates), there are 

three possible error states shown in the graphs below: 0%, 50%, 100%. Flows 
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with a Markov state model error rate fluctuated between these three states. Each 

station (flow) can have its own error rate.  

 

In each experiment, we modify six main variables. First, we decide what 

the duration of each superframe should be. Next, we decide what percentage 
of each superframe should be devoted to a CFP (the remaining time would be 

used for a CP). This is important because we want to be able to track the 

effectiveness of both ELF-PCF (CFP) and ELF-DCF (CP). We would expect that 

the larger percentage CFP, the closer we will be to meeting ELF’s goals. Third, 

we are able to enable/disable ELF-DCF, so we can see how much of a 

difference it makes from just using ELF-PCF. Specifically, we want to know how 

much additional throughput an error-prone flow might receive, and how much of 

a throughput drop the other flows might suffer. It is also important to know how 

much overall channel throughput changes as a result of ELF-DCF. Fourth, we 

effectively control whether RTS/CTS frames are sent by each flow, by controlling 

the frame sizes sent by each flow, and the corresponding RTS/CTS threshold. 

In the results below, we mainly discuss flows that did not use RTS/CTS, since 

most real-world traffic frames tend to be small and not require RTS/CTS (i.e., 

average 402 bytes [16]). However, we did run experiments using RTS/CTS, and 

found that ELF-DCF/PCF performs similarly to those experiments that did not 

use RTS/CTS. The main difference is that the throughput fluctuations tend to be 

smaller across all the flows, with a small drop in overall throughput due to the 

additional overhead. This drop in throughput jitter is probably because we reduce 

the probability of collisions involving large frames. Finally, we set both the power 
factor and error rate for each flow. A flow with a power factor of 100% should be 

scheduled in an effort-fair fashion, and raising its power factor will cause it to 

experience outcome fairness over a wider range of error rates.  



Thesis                             A Hybrid Approach to Effort-Limited Fair Scheduling for 
802.11 

   
 

30

 

8.2 Uniform error rate 
 

We ran a series of experiments having one flow with a uniform error rate, 

and the rest of the flows having a 0% error rate (besides collisions, etc…). We 

want to show first that ELF-PCF (the original ELF algorithm) works well under 

802.11 by running 100% CFP with ELF-DCF disabled. Then we show a 

simulation at 50% CFP with ELF-DCF disabled to show that ELF-PCF gives 

some assistance, but not enough to meet throughput expectations. Finally, we 

show that ELF-PCF (50% CFP) used together with ELF-DCF can effectively 

boost throughput to acceptable levels for the error prone flow.  

 

Each of the CBR flows sends constant sized packets of 512 bytes each, 

with the transmission rate set to 125 packets/second (a theoretical throughput of 

512 Kbit/s). All flows have a weight of 25%. The link has a maximum practical 

throughput level of approximately 1.5 Mbit/s. When we run all flows with 0% error 

rate, with each superframe being 100% CFP, we find that each of the CBR flows 

receive about 500 Kbit/s, while the best-effort flows receive about 250 Kbit/s (see 

Table 3 below). This is expected, since we are purposely trying to fill the link with 

traffic to capacity, so we can see how flows are treated with a loss in total 

capacity. Also, note that as mentioned in section 7.3, the ELF scheduler bills 

ACKs from a TCP flow on the same account (and for the same amount) as the 

Data packets. Thus, it makes sense that the best-effort flows receive half as 

much throughput as the CBR flows (which run over UDP).  

 

Alternatively, when we retained the 0% error rate but changed from 100% 

CFP to 100% CP, we find that each of the CBR flows receives about 450 Kbit/s, 

while the best-effort flows receive about 200 Kbit/s a piece (see Table 3 below). 

Thus, the total throughput possible on the link is about 1.3 Mbit/s. This decrease 

in overall throughput (200 Kbit/s decrease) is because there are virtually no 

collisions when running only PCF. Thus, if PCF receives data each time it polls a 
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station, it will give higher throughput than DCF. The fact is that this scenario is 

extremely unlikely, and there are indeed significant idle times where stations do 

not return data upon receiving a poll. Thus, from the standpoint of increasing 

overall throughput, it is normally more desirable to run a DCF.  

 
% CFP CBR flow 

throughput 
(Kbit/s) 

TCP flow 
throughput 
(Kbit/s) 

Total 
throughput 
(Mbit/s) 

0 500 250 1.5 
100 450 200 1.3 

Table 3: Throughput comparison with boundary superframe cases (0% error rate) 

 
When we increase the error rate for one of the CBR flows (CBR(1)) to 

50%, we can start to observe ELF in action (see Figures 5-8). First, observe that 

if we run only DCF (i.e., 100% CP), the error prone flow receives only 113 Kbit/s 

(see Table 4 below), while the best-effort flows have substantially more 

throughput (see Figure 5 below). However, if we use ELF-PCF (without ELF-

DCF), we see that it does a remarkable job of regaining throughput for the error-

prone flow. In fact, there is a gain of almost 300 Kbit/s (see Figure 6 below). The 

jitter for each of the flows significantly decreases as well. Note that the other 

three flows do suffer a capacity loss, but the best-effort flows receive the greatest 

drop (which is expected). Overall, running strictly ELF-PCF under 802.11 works 

well, and achieves its objectives.  

 

If we reduce ELF-PCF to 50% CFP, we can see that throughput for the 

error-prone flow falls to only about 275 Kbit/s (see Figure 7 below). However, if 

we turn ELF-DCF on, the throughput rises to about 355 Kbit/s. The other CBR 

flow’s throughput falls only marginally, while the best-effort flows suffer a drop to 

about 143 Kbit/s (see Figure 8 below). Clearly, while the error-prone CBR flow 

suffers a drop in throughput, ELF-DCF manages to adjust both CBR flows to 

have comparable throughput (which would be expected with a 200% power 

factor and a 50% error rate). Also, the total loss in best-effort throughput is about 

120 Kbit/s. However, this is consistent with ELF’s goals since the error-prone 
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flow gains about 80 Kbit/s. Note that the overall channel throughput does 

decrease when we enable ELF-DCF, but we found that as we increase the 

percentage CFP and/or enable ELF-DCF, the throughput jitter decreases. 

Comparing Figures 5 & 8, we can see that by doubling the amount of air time 

spent on CBR(1), we gained almost 250 Kbit/s of throughput, while the other 

flows suffer a cumulative loss of about 370 Kbit/s in throughput. This successfully 

demonstrates that ELF-DCF can achieve ELF’s design goals.  

 

50% Error rate, 0% CFP, ELF-DCF Disabled
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Figure 5: 50% Error rate, 0% CFP, ELF-DCF Disabled 

50% Error Rate, 100% CFP, ELF-DCF Disabled
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Figure 6: 50% Error rate, 100% CFP, ELF-DCF Disabled 



Thesis                             A Hybrid Approach to Effort-Limited Fair Scheduling for 
802.11 

   
 

33

 
Flow ID ELF-DCF 

(on/off) 
Percentage 
CFP (%) 

Power 
factor (%) 

Uniform 
Error 
Rate (%) 

Average 
Throughput 
(Mbit/s) 

CBR(1) Off 0 200 50 .113 
CBR(2) Off 0 100 0 .477 
TCP(1) Off 0 100 0 .284 
TCP(2) Off 0 100 0 .285 
      
CBR(1) Off 100 200 50 .408 
CBR(2) Off 100 100 0 .441 
TCP(1) Off 100 100 0 .127 
TCP(2) Off 100 100 0 .128 
      
CBR(1) Off 50 200 50 .275 
CBR(2) Off 50 100 0 .391 
TCP(1) Off 50 100 0 .208 
TCP(2) Off 50 100 0 .208 
      
CBR(1) On 50 200 50 .355 
CBR(2) On 50 100 0 .388 
TCP(1) On 50 100 0 .143 
TCP(2) On 50 100 0 .143 

Table 4: Flow statistics for 50% uniform error rate 
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Figure 7: 50% Error rate, 50% CFP, ELF-DCF Disabled 
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50% Error rate, 50% CFP, ELF-DCF Enabled
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Figure 8: 50% Error rate, 50% CFP, ELF-DCF Enabled 

 

When we increase the error rate to 100%, CBR(1) will obviously not get 

any throughput. If we run all four flows completely with DCF (i.e., 0% CFP), and 

no ELF-DCF, total throughput is about 1.2 Mbit/s. Running 50% CFP with ELF-

DCF gives a total throughput of about 700 Kbit/s, which is a marked decrease 

from 1.2 Mbit/s (see Figure 9 below). However, this is consistent with ELF. 

Normally the error-prone flow would take 1/4 the total air time, whereas now it 

has taken roughly 40% the total air time (since we have a power factor of 200). 

However, we have succeeded in avoiding link starvation in the worst-case 

scenario. Thus, we show that ELF performs acceptably even in a pathological 

case that would be problematic for a priority scheduler. 
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100% Error rate, 50% CFP, ELF-DCF Enabled
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Figure 9: 100% Error rate, 50% CFP, ELF-DCF Enabled 

8.3 Three-state Markov model 
 

The Markov error model allows us to test how ELF-PCF/DCF performs 

under fluctuating error conditions. We set up three error states (0%, 50%, 100%), 

with a 50% probability of transitioning to any other state (see Figure 10). The 

error rates in each state are uniform in distribution. Table 5 below shows the time 

duration the error prone flow remains in a particular error state.  

 

 
 

Figure 10: State machine for Markov error model 

We observe that ELF-PCF/DCF performs as expected, though it leads to 

questions about how much of a gain in throughput (and for what time period) 
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should result after a time of substantial errors. Specifically, as we increase the 

percentage CFP, the average throughput for the error prone flow gradually 

increases, which is consistent with ELF’s design. However, the throughput jitter 

also increases. The reason for this increase in jitter is because of a substantial 

amount of “deserve” accumulation. During periods where the error rate is 100%, 

the flow can accumulate a large amount of deserve, which causes throughput to 

be bursty during periods where the error rate is 0%. If the error durations are 

short, then the throughput jitter tends to be smaller because the amount of 

deserve accumulation is smaller (see Figure 11 below). However, if the error 

period is lengthy, it can cause the deserve accumulation to build up to large 

levels. Thus, after the error duration has passed, the flow’s throughput will make 

a huge jump (whereas, with smaller deserve levels, the throughput would return 

to slightly above its normal level). For example, when the Markov state duration 

is increased to two seconds (last row of Table 5), the throughput jitter goes up to 

about 245 Kbit/s because of both the throughput outage and the ensuing 

throughput spike (see Figure 12 below). It might be worthwhile to find a plausible 

heuristic to cap or retire deserve (especially deserve unused coming out of a CP, 

or after a period of sustained errors). This could allow ELF to remain faithful in 

providing an average throughput to a flow, while not excessively penalizing other 

flows immediately following a time of high error rate. (We chose to use the .25s 

time duration because it allows for reasonably small error bursts. The 2s time 

duration allows us to demonstrate a relatively lengthy error burst that illustrates 

the need for a capping heuristic.) 

 
State 
duration 

Percentage 
CFP (%) 

Power 
factor 
(%) 

Average 
Throughput 
(Mbit/s) 

Throughput 
jitter 
(Mbit/s) 

.25s 0 200 .223 .062 

.25s 50 200 .336 .081 

.25s 100 200 .394 .085 
2s 50 200 .335 .245 

Table 5: Flow statistics for CBR(1) under Markov Model (ELF-DCF/PCF Enabled) 
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Markov - 50% CFP, .25s, ELF-DCF enabled
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Figure 11: Markov error model, 50% CFP, .25s, ELF-DCF enabled 

Markov Model - 50% CFP, 2s , ELF-DCF Enabled
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Figure 12: Markov error model, 50% CFP, 2s, ELF-DCF Enabled 

 
8.4 Trace errors: Walls 
 

We will now use the Walls trace from [3] to investigate whether ELF works 

well in a real-world setting with moderate error rates. 

 

“Two units were separated by placing them in two rooms across a hallway. 

The direct path was approximately 17 feet long and passed through two 
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thick concrete block walls, a metal display case, and some classroom 

furniture. As compared to the interference environments, attenuation has 

an almost insignificant truncation rate, but has significant packet 

corruption.”2  

 

We will examine this by presenting two test cases. In the first, we will 

disable both ELF-PCF & ELF-DCF, and show to what degree CBR(1) performs 

poorly. Then we will test at 50% CFP with ELF-DCF enabled, and show that ELF 

can work remarkably well under these kinds of error conditions.  

 

In Figure 13 below, CBR(1) is seen to experience a substantial increase in 

errors, and then that tapers off. The error rate increases substantially again 

towards the end of the trace.  
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Figure 13: Walls trace, 0% CFP, ELF-DCF Disabled 

 

                                                 
2 This error trace description and the rest of them are excerpted from Eckhardt, et al.  [7]. Eckhardt’s goal 
was to “characterize error environments by monitoring data transfers between two identical DECpc 425SL 
laptops (25 MHz 80486) running NetBSD 1.1. For different tests, we placed the PCs in different 
environments or added competing radiation sources. Our laptops used PCMCIA WaveLAN interfaces 
operating in the 902-928 MHz frequency band….To explore the range of error severity due to interference, 
we investigated 30-second traces in four different situations.” For our experiments, we always discard 
packets with truncations and bit corruptions for simplicity purposes. 
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When running at 0% CFP (ELF-DCF disabled), although CBR(1) suffers a 

huge drop in throughput (to about 0 Kbit/s), the overall throughput barely falls (by 

about 100 Kbit/s). The other three flows increase in throughput while CBR(1) 

suffers. (Note that CBR(2) and the TCP flows gain an equally proportional 

amount throughput as a consequence of the fact that the link is slightly 

overcommitted even with each flow having a 0% error rate. The gain in TCP 

throughput is not as evident because we bill a station for both TCP DATA and 

ACK packets equally.) In contrast, when ELF-DCF is enabled at 50% PCF, we 

note three things (see Figure 14 below). First, the amount of throughput lost by 

CBR(1) is lessened during the error period. Second, because CBR(1) has a lot of 

unused “deserve,” it tends to have a higher throughput than the other flows for a 

short duration after its last throughput loss (this further highlights the need for a 

capping mechanism). Third, with ELF-DCF disabled, the total throughput suffers 

only a small amount. With ELF-DCF enabled, we are now allocating more effort 

to CBR(1) (and much of that effort is wasted during error periods). Thus, the total 

throughput loss is substantial during an error period. Overall, this demonstrates 

that ELF-DCF can work successfully in a real-world error environment.  

Walls - 50% CFP, ELF-DCF Enabled

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 3 6 9 12 15 18 21 24 27 30

Time (s)

Th
ro

ug
hp

ut
 (M

bi
t/s

)

CBR(1) 
CBR(2)
TCP(3)
TCP(4)
Total

 
Figure 14: Walls trace, 50% CFP, ELF-DCF Enabled 
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Flow ID ELF-DCF 

(on/off) 
Percentage 
CFP (%) 

Power 
factor 
(%) 

Average 
Throughput 
(Mbit/s) 

CBR(1) Off 0 200 .319 
CBR(2) Off 0 100 .446 
TCP(3) Off 0 100 .250 
TCP(4) Off 0 100 .251 
     
CBR(1) On 50 200 .421 
CBR(2) On 50 100 .421 
TCP(3) On 50 100 .209 
TCP(4) On 50 100 .209 

Table 6: Flow statistics for Walls trace 

 
You can see clearly in Table 6 above that ELF does a remarkable job in 

assisting CBR(1) to meet its desired throughput. The best-effort flows suffer a 40 

Kbit/s loss in throughput, while CBR(1) gains about 100 Kbit/s of throughput. In 

fact, CBR(1) and CBR(2) are almost equal in throughput. Also, the jitter in 

CBR(1) is substantially reduced now, as well as all the other flows. Thus, we 

show that ELF-DCF can do a good job of meeting ELF’s original design 

principles in the real world.  

 

8.5 Trace errors: Adjacent 
 

We will now use the Adjacent trace from [3] to investigate whether ELF 

works well in a real-world setting with high error rates.  

 

“In the adjacent scenario, the communicating machines were separated by 

roughly 3 feet. A cordless telephone base station was adjacent to the 

receiver's modem unit, and the telephone handset moved repeatedly at 

walking speed back and forth from roughly a foot away from the base 

station to a point approximately 30 feet away (where the handset 

complained about signal loss).” 
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First, we show that the error-prone flow performs much worse than in the 

Walls trace without any intervention from ELF. Then we show how a larger power 

factor is needed if we want to give the error-prone flow outcome fairness over a 

wider range of error rates. Finally, we show that ELF-DCF can still be effective in 

boosting throughput for the error-prone flow, while decreasing the percentage 

CFP.  

 

The packet loss for CBR(1) in this trace is much higher (see Figure 15 
below), and thus the throughput for the other flows substantially increases (e.g., 

CBR(2) average throughput is 560 Kbit/s, best-effort flows average 300 Kbit/s).  
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Figure 15: Adjacent trace, 0% CFP, ELF-DCF Disabled 

Because of the high packet loss rate for CBR(1), we found that a high 

power factor was needed in order to boost CBR(1)’s throughput (see Figures 16, 

17, & 18). With power factors of 100 or 200, CBR(1) gained more throughput. 

However, only at 300 was it able to meet its throughput expectations. At 100% 

CFP we note that the best-effort flows suffer the brunt of the throughput loss, as 

expected. Also, note that with increasing power factors assigned to CBR(1), the 

best-effort flows suffer more throughput loss. Moreover, ELF-DCF smoothes out 

the jitter in throughput, except during and following a period of high packet loss. 

In that case, CBR(1) is administratively bounded from receiving any additional 
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effort. However, it continues to accumulate deserve. Thus, when the loss rate 

decreases, CBR(1) gets more throughput because of the unused deserve (see 

Figure 18 below). 
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Figure 16: Adjacent trace, 100% CFP, ELF-DCF Enabled, Power factor 100% 
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Figure 17: Adjacent trace, 100% CFP, ELF-DCF Enabled, Power factor 200% 
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Adjacent - 100% CFP, ELF-DCF Enabled, Power 
Factor 300%
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Figure 18: Adjacent trace, 100% CFP, ELF-DCF Enabled, Power factor 300% 

 
We clearly saw in each simulation that higher percentage CFP combined 

with ELF-DCF, does improve CBR(1) throughput performance, but at an 

expected loss of total channel throughput. At 50% CFP with ELF-DCF enabled, 

CBR(1) throughput rises to about 300 Kbit/s (see Figure 19 below). However, 

CBR(2) throughput falls to 340 Kbit/s, and both best effort flows average about 

110 Kbit/s. Thus, total channel throughput has fallen from about 1.2 Kbit/s to 

about 860 Kbit/s. However, this is in line with ELF’s expectations.  

 

Adjacent - 50% CFP, ELF-DCF Enabled

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 3 6 9 12 15 18 21 24 27 30

Time (s)

Th
ro

ug
hp

ut
 (M

bi
t/s

)

CBR(1) 
CBR(2)
TCP(3)
TCP(4)
Total

 
Figure 19: Adjacent trace, 50% CFP, ELF-DCF Enabled 
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8.6 Multiple flows with errors 
 

We have done several simulations on both guaranteed and best-effort 

flows, where more than one flow experiences a significant packet loss rate. 

There are two main factors unique to ELF that administratively govern how two 

error-prone flows will perform relative to each other. First, flows with a higher 

power factor will be given more air-time than those with a lower power factor 

during times of high packet loss. Second, a guaranteed flow is serviced before a 

best-effort flow. Thus, even if a best effort flow is experiencing a high error rate 

and has a large power factor, it will be preempted by the guaranteed flow until 

there are no eligible guaranteed flows for servicing. However, relative to other 

best-effort flows, the best-effort flow with the higher power factor can receive 

more air-time to achieve is desired throughput outcome relative to the air-time of 

the other best-effort flows. Our simulations have verified that these principles 

hold true for ELF-PCF. The slight variation with ELF-DCF lies in the fact that the 

PC makes no distinction between a guaranteed or best-effort flow when sending 

out a beacon. Thus, a mobile station with a guaranteed flow is just as likely to 

send a frame as is a mobile station with a best-effort flow during a CP. Thus, in 

general, best-effort flows will receive higher throughput during a DCF (with ELF-

DCF enabled) than during a PCF. As we stated in section 7, we desired to keep 

the overhead in the beacon minimal – hence the lack of distinction. 

 

Figures 20 & 21 are used to show that ELF does work even when you 

have multiple flows with errors. In Figure 20, we have both ELF-PCF & DCF 

disabled. CBR(1) & CBR(2) both have error rates of 50%, and it is clear that they 

get very little throughput. In Figure 21, we assign both error-prone flows a power 

factor of 200, and run ELF-PCF continuously. Obviously, they are both able to 

regain much of their expected throughput at the expense of CBR(3) & CBR(4). 

This makes sense because by assigning both flows a power factor of 200 (each 

has a weight of 1/4), we allow them to consume virtually the whole link with an 
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error rate of 50% per flow. Note that although this is in conformance with ELF’s 

design principles, it is probably undesirable in practice to starve the best-effort 

flows as shown below. We would probably want to assign a lower power factor to 

the guaranteed flows, so that starvation is avoided even in the worst case 

scenario.  

Two error prone flows - 0% CFP, ELF-DCF 
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Figure 20: Two error prone flows, 0% CFP, ELF-DCF Disabled 

Two error prone flows - 100% CFP, ELF-DCF 
Enabled
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Figure 21: Two error prone flows, 100% CFP, ELF-DCF Enabled 
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8.7 Best-effort traffic 
 

The most common flows on the network are best-effort flows. Thus, it is 

useful to show that ELF still works well even if there are no guaranteed flows on 

the network. In Figures 22 & 23 below, we show four best-effort FTP/TCP flows 

(equally weighted). Both TCP(1) & TCP(2) suffer with a uniform error rate of 30% 

, and we can see a slight loss in throughput in Figure 22. In Figure 23, we give all 

the flows a power factor of 150, while only running a 50% ELF-PCF and enabling 

ELF-DCF. Our main observation is that TCP(1) & TCP(2) both regain their lost 

throughput relative to the other flows, and that throughput jitter substantially 

decreases for each flow. ELF is seen to be able to succeed even among best-

effort flows with smaller loss rates, and with a nominal PCF intervention. 

All Best-Effort Flows - 0% CFP, ELF-DCF Disabled
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Figure 22: Best-effort flows, 0% CFP, ELF-DCF Disabled 
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All Best-Effort Flows - 50% CFP, ELF-DCF 
Enabled
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Figure 23: Best-effort flows, 50% CFP, ELF-DCF Enabled 

 

8.8 Varying superframe duration 
 

All of the preceding simulations were done with superframes of about 100 

milliseconds in length. However, it certainly is possible that one might want to 

use smaller superframe duration so that they can alternate between CP & CFP at 

a quicker pace. This would depend on the size of the packets being sent, the 

desired round-trip times (e.g., audio applications), how much jitter is tolerable, 

and other factors. The shorter the superframe duration, the less efficient the 

system will be overall (because more time will be spent in overhead alternating 

between CP & CFP).  

 

In Figures 24 & 25 below, we show that ELF is still successful even with 

shorter superframe duration (30 ms). Again we have two guaranteed flows and 

two best-effort flows, and CBR(1) has an error rate of 50%. We can see that in 

Figure 24, CBR(1) suffers a significant throughput loss, while the other flows 

operate under a normal DCF and receive similar throughput. However, in Figure 

25 we see that if we give CBR(1) a power factor of 200 (at 60% PCF with ELF-

DCF enabled), CBR(1) is able to recover much of its throughput. Also, 



Thesis                             A Hybrid Approach to Effort-Limited Fair Scheduling for 
802.11 

   
 

48

throughput jitter for each flow has been significantly reduced, while total 

throughput falls by a minimal amount. Note that with smaller superframe 

duration, the overhead of alternating between CP & CFP becomes increasingly 

large as a percentage of the superframe (i.e., around 5 ms). Thus, it becomes 

impossible to truly have a 100% CFP. However, we can see that even with a 30 

ms superframe length, ELF still performs well.  

Varying Superframe Duration - 50% Error rate, 0% 
CFP, ELF-DCF Disabled
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Figure 24: Varying Superframe Duration, 50% Error rate, 0% CFP 

Varying Superframe Duration - 50% Error rate, 
60% CFP, ELF-DCF Enabled
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Figure 25:  Varying superframe duration, 50% Error rate, 60% CFP 
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9 Future Work 
 

We have pointed out several areas of possible further exploration in this 

paper. We stated at the beginning that we treated flows as being aggregates, so 

that one station’s flows can be considered to be one flow. This was partially for 

simplicity, and also because the current protocol specifications call for polling on 

a station-by-station basis (instead of individual flows). It may be worthwhile to 

alter the protocol and allow for individual flows to be polled and beaconed. This 

might provide for better QoS delivered to individual flows, since the PC can 

monitor each flow at a better granularity. Of course, admission control would still 

be critical, so as to not over commit the link, nor increase the complexity on the 

server beyond a reasonable threshold.  

 

Another question (which was also posed by Eckhardt) which becomes 

more important in light of ELF-DCF, is whether a flow that experiences errors for 

a period and loses throughput as a result, is entitled to regain that lost throughput 

later. Currently, we have no cap on our “deserve” value, and so we have shown 

(i.e., multiple state Markov model simulation) that ELF will allow this flow to 

reclaim the lost throughput at the expense of other flows. Since unused deserve 

and effort from ELF-DCF is currently plugged right back into the CFP, one can 

see how this problem can be exacerbated (especially when a station has low 

effort utilization and/or high error rate). Another area of concern is with respect to 

“deserve” accumulation during an idle time period. In our simulations, the flows 

constantly had data to send. However, it is entirely possible for flows to 

experience significant idle time. This raises the question of how to bill flows when 

they return a NULL frame in response to a poll, because they are idle. Currently, 

our implementation charges a flow for effort and deserve even if the station 

returns a NULL frame because the flow is idle. However, it may be fairer to not 

charge a flow if it is idle. In that case, once again the question is raised about 

how to deal with flows that are idle for extended periods that accumulate large 
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“deserve” values. One possibility is that deserve might cease to increase, so that 

they would accumulate up to some threshold. Another possibility is to age these 

values.  

 

Although, the ELF-DCF extension does assist error-prone flows 

significantly, one might question if we can achieve the same goal, but not suffer 

as great a loss in overall throughput. Is it possible for stations to be “encouraged” 

to spend effort during a DCF, and yet done so in a way that accurately predicts 

the nature of a flow on an individual station? Currently, the PC only serves to limit 

effort and deserve during a CP. But if a station could be allowed to spend more 

effort when it needs to, that might result in being more faithful to ELF’s design. 

One possibility of getting stations to spend more effort might be to allow them to 

acquire control of the medium in a similar way that the PC does. We could then 

specify how long they are allowed to hold on to the medium (i.e., up to some 

administrative bound), before giving it back to the rest of the stations under a CP.  

One might look into the possibility of having each individual mobile node run its 

own ELF scheduler, and link to a global ELF scheduler every beacon period. This 

could reduce processing on the PC, while giving each station more flexibility in 

how to handle individual flows on the machine.  

 

Another interesting area of exploration involves the variable length PCF & 

DCF periods. For example, we note that under PCF, the ELF scheduler can 

guarantee that flows receive their desired outcome up to some administrative 

bound. Under DCF, flows will receive a “boost” in achieving their desired 

outcome. However, in times of severe errors, it would be more useful to allow the 

PC to take control of the medium and guarantee that the error-prone station is 

allowed to spend the appropriate amount of effort. If we could vary the 

percentage of time that is devoted to PCF versus DCF per superframe, we could 

devote more time to PCF during times where flows are experiencing high errors. 

When flows are doing relatively well, and do not need as much direct intervention 

from the ELF scheduler, we could devote most of the superframe to running 
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DCF. Currently, the low-level MAC protocol design technically allows the PC to 

seize the medium at any time, even though the specifications specify that it 

should be done only on a “per superframe” basis.  

 

Finally, most of our research was done to investigate how the ELF 

algorithm and our modifications affect the overall throughput of the channel, 

along with individual flows’ throughput. However, we did not look in depth at how 

ELF scheduling within 802.11 affects TCP congestion control. One could imagine 

asking if ELF should interact explicitly with TCP, so as to increase or decrease 

an individual flow’s throughput and reduce jitter.  

 

10 ns-2 Extensions  
 

 We have posted our source code and documentation of the changes we 

have made on the following web site: http://www.cs.cmu.edu/~davidm. Please 

feel free to modify or extend our contribution to the ns-2 code base.  

 

11 Recommendations for IEEE Committee 
 

There is already being work done to enhance 802.11 to provide QoS in 

wireless networks (e.g., 802.11e [17]). However, to the best of our knowledge, 

there has been no work within 802.11 that addresses the issues that ELF 

focuses on. Also, while there has been some work on “hybrid” networks, this has 

been more related to enabling an ad-hoc network to interoperate with an 

infrastructured network (or an 802.11 WLAN to interoperate with a high-speed 

error-free backbone [18]). We are not aware of any work to date that hybridizes 

DCF & PCF in a way that is consistent with ELF’s design principles.  Therefore, 

we recommend that the IEEE Committee consider making a few modifications to 

the 802.11 specifications.   
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One modification would be to allow the PC to incorporate some sort of 

feedback mechanism into beacon frames (similar in spirit to what we have shown 

in ELF-DCF). This way, individual hosts can have some way of “policing” 

themselves during DCF periods. This would make it easier to implement the 

principles upon which ELF was designed (i.e., administrating the bounds on 

outcome and effort that each flow is allowed to achieve, thus making it easier to 

provide quality of service to flows experience high error rates).  

 

Another modification would be to change the specifications of how the 

PCF should be implemented. Specifically, instead of just choosing stations to poll 

based on their station number, we should be able to insert any algorithm we 

choose (e.g., an ELF scheduling algorithm).  

 

12 Conclusion 
 

We have sought to build upon previous work done, both by David 

Eckhardt and by the IEEE’s 802.11. Eckhardt’s work provided us with a plausible 

way to address severe wireless errors, by proposing an “effort –limited fair” (ELF) 

scheduling approach. This approach extends a normal WFQ scheduler with an 

explicit mechanism for controlling behavior in the presence of capacity loss 

(which may be location dependent).  

 

Our contribution shows that the ELF scheduler can be integrated into 

802.11’s PCF, while remaining as faithful as possible to both the goals of ELF, 

and the efficiency benchmarks for 802.11. We also implemented an ELF WRR 

scheduler (similar to Eckhardt’s), showing that ELF does work in 802.11 as the 

policy for a PCF. We contribute further by extending ELF’s influence to a DCF’s 

operation, effectively regulating flows during a CFP, but still keeping the function 

distributed. Finally, we used simulations to illustrate the operation of ELF-

PCF/ELF-DCF under various environments. These experiments were conducted 

using the ns-2 simulator, after both extending the 802.11 implementation and 
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integrating ELF into that code base. We then presented experimental results that 

show ELF-DCF does achieve its goals of assisting ELF-PCF and providing 

quality of service to flows with high error rates, up to an administrative bound.  
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