
An Integer Linear Programming Approach to Database Design

Stratos Papadomanolakis Anastassia Ailamaki
Computer Science Department

Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213

{stratos,natassa}@cs.cmu.edu

Abstract

Existing index selection tools rely on heuristics to effi-
ciently search within the large space of alternative solutions
and to minimize the overhead of using the query optimizer
for cost estimation. Index selection heuristics, despite be-
ing practical, are hard to analyze and formally compute
how close they get to the optimal solution. In this paper
we propose a model for index selection based on Integer
Linear Programming (ILP). The ILP formulation enables
a wealth of combinatorial optimization techniques for pro-
viding quality guarantees, approximate solutions and even
for computing optimal solutions. We present a system ar-
chitecture for ILP-based index selection, in the context of
commercial database systems. Our ILP-based approach of-
fers higher solution quality, efficiency and scalability with-
out sacrificing any of the precision offered by existing index
selection tools.

1. Introduction

Automating database physical design is a major chal-
lenge in building self-tuning database systems. Previously
proposed tools for index selection rely on heuristic algo-
rithms, such as greedy search [7, 2, 9], augmented with
techniques to reduce the number of candidate indexes they
consider and the number of calls to the query optimizer.

A problem with existing techniques is that there is no
way to estimate how close they get to the optimal solution.
More recent approaches [5] compute a lower bound for a
workload’s cost by considering the optimal indexes for each
query individually and disregarding any storage constraints.
Although this approach is helpful, the derived bounds are
not realistic for storage-constrained scenarios.

In this paper we present a new framework based on an
Integer Linear Program (ILP) formulation for the index se-
lection problem. The ILP formulation allows the applica-
tion of standard linear optimization techniques to index se-

lection, that remove the shortcomings of existing heuristic
techniques. Specifically, through the application of Linear
Programming (LP) relaxation, we are able to obtain a tight
bound on the quality of the optimal solution for a given
problem instance, which we can use to characterize the
quality of any solution. The LP relaxation provides useful
information about the problem, allowing us for example to
find approximate solutions that have optimal performance
but exceed the amount of available storage.

To further improve the quality of an approximate solu-
tion, we apply a branch-and-bound technique.Branch-and-
bound is advantageous in terms of quality: If run to com-
pletion, branch-and-bound will return the optimal solution,
while if interrupted before completion, it will return a sub-
optimal solution, along with a bound for its distance from
the optimal. Finally, the ILP formulation can be tuned
so that the solution algorithm has comparable performance
to existing index selection tools while examining a much
larger number of alternative solutions.

The contributions of this paper are the following. First,
we present an ILP formulation for the index selection prob-
lem. Second, we describe a system architecture for ef-
ficiently solving large ILP problem instances. Third, we
report preliminary results that demonstrate that our ap-
proach has good performance and outperforms existing ap-
proaches.

The rest of the paper is organized as follows. Section 2
describes our theoretical formulation, while Section 3 de-
scribes new techniques applicable to our ILP model and
their benefits. In Sections 4, 5 we present our system archi-
tecture for solving ILP instances and discuss performance
optimizations. Section 6 presents a preliminary experimen-
tal evaluation, Section 7 reviews related work and Section 8
concludes the paper.

2. An ILP Framework For Index Selection

This section details our ILP formulation for index selec-
tion and its extension for handling update statements.

2.1. Formulation

Consider a workload consisting ofm queries and a set of
n indexesI1-In, with sizess1-sn. We want our model to ac-
count for the fact that a query has different costs depending
on thecombinationof indexes it uses. Aconfigurationis a
subsetCk = {Ik1, Ik2, ...} of indexes with the property that
all of the indexes inCk are used by some query. This defi-
nition is equivalent to theatomicconfiguration definition in
[7].

Let P be the set of all the configurations that can be con-
structed using the indexes inI and that can potentially be
useful for a query. For example, if a query accesses tables
T1, T2 andT3 thenP contains all the elements in the set
(indexes inI onT1) × (indexes inI onT2) × (indexes inI
onT3).

The cost of a queryi when accessing a configurationCk

is c(i, Ck) andc(i, {}) denotes the cost of the query on an
unindexed database. We define thebenefitof a configuration
Ck for queryi by bik = max(0, c(i, {}) − c(i, Ck)).

Let yj be a binary decision variable that is 1 if the index
is actually implemented and 0 otherwise. In addition, let
xik be a binary decision variable that is equal to 1 if query
i uses configurationCk and 0 otherwise.

Usingxik andbik, the benefit for the workloadZ is

Z =

m∑

i=1

p∑

k=1

bik × xik (1)

wherep = |P |. The values ofxik depend on the values for
yj: We cannot have a query usingCk if a member ofCk is
not implemented. Also, we require that a query uses at most
one configuration at a time. For instance, a query cannot
be simultaneously using bothC1 = {I1, I2, I3} andC2 =
{I1, I2}. Finally, we require that the set of selected indexes
consumes no more thanS units of storage. Thus the formal
specification of the index selection problem is as follows.

maximize Z =

m∑

i=1

p∑

k=1

bik × xik (2)

subject to

p∑

k=1

xik ≤ 1 ∀i (3)

xik ≤ yj ∀i, ∀j, k : Ij ∈ Ck. (4)

n∑

j=1

sj × yj ≤ S (5)

Constraints (3) guarantee that a query uses at most one
configuration. Constraints (4) ensure that we cannot use

Figure 1. Index selection example.

a configurationk unless all the indexes in it are built and
constraint (5) expresses the available storage. We can also
use constraints to restrict the usage of clustered indexes,but
we omit the details due to lack of space.

Figure 1 shows an example with 2 queries and 4 indexes,
listing all the relevant configurations for each query. As-
sume only indexesI1 andI2 are relevant toQ1, whose cost
varies depending on whether uses a single-index configura-
tion (c1 or c2) or a pair (c3). The same holds forQ2 and
indexesI3 andI4. Assume we want to optimize workload
benefit given total storage capacity ofS=200 units.

The equivalent ILP instance is as follows:

minimize Z = b11 × x11 + b12 × x12 + b13 × x13 +

+b24 × x24 + b25 × x25 + b26 × x26 (6)

subject to

3∑

k=1

x1k ≤ 1,

6∑

k=4

x2k ≤ 1,

x11 ≤ y1, x12 ≤ y2, x13 ≤ y1, x13 ≤ y2,

x23 ≤ y3, x24 ≤ y4, x35 ≤ y3, x36 ≤ y4,
4∑

j=1

sj × yj ≤ 200

By inspection we determine the optimal solution

y1 = 1, y2 = 1, y3 = 0, y4 = 0,

x11 = 0, x12 = 0, x13 = 1, x24 = 0,

x25 = 0, x26 = 0

The set of indexesI1 andI2 is preferable because their
combination has a large benefit forQ1 and outperforms any
other alternative. Notice that the commonly used greedy
search would fail to identify the optimal solution. In the
first iteration it would pick indexI3 and in the secondI4.

The exact solution provided by the ILP formulation is
optimalfor the given initial selection of indexes. If we were

to include all the possible indexes that are relevant to the
given workload, it would give us the globally optimal so-
lution. Considering the set of all the possible indexes is
prohibitively expensive and thus a candidate selection mod-
ule is necessary. The ILP approach is flexible in that we can
use it with an arbitrary candidate index set.

2.2. Handling Updates

The ILP formulation of Section 2.1 can be extended to
handle updates in the workload (SQLINSERT, UPDATE
or DELETE statements). We model an update statement
as a sequence of two sub-statements, “select” and ’“mod-
ify”. The “select” part is just another query selecting the
set of rows to be modified or deleted and thus is handled
by the formulation of Section 2.1 (INSERTstatements do
not have a selection part and thus get a zero benefit value
for all configurations). The “update” part is a statement that
simply updates the set of rows returned by the “select” part.
It has a different behavior, because an index configuration
Ck can have anegative benefitfor the update part, due to
the additional cost for updating the relevant indexes inCk.
Specifically, the benefitbU

lk of configurationCk for the up-
date sub-statementUl is

bU
lk = costu(l, {}) − (costu(l, {}) + costu(l, Ck)) (7)

Thecostu(l, {}) value represents the cost of the update
statementUl on a table with no indexes. When one or more
indexes exist (configurationCk) the cost of updating the in-
dexes inCk is added tocostu(l, {}). Equivalently, the ben-
efit of configurationCk is negative:

bU
lk = −

∑

Ij∈Ck

costu(l, Ij) (8)

Generally, for every indexIj we can associate a (nega-
tive) benefit value−fj which corresponds to the total over-
head introduced byIj and is computed by summing all the
−costu(l, Ij) values over all the update statementsUl. To
model updates, we only need to modify the objective func-
tion of Section 2.1 (Equation (2)) to take into account the
negative benefit valuesfj .

maximize Z =

m+m1∑

i=1

p∑

k=1

bik × xik −
n∑

j=1

fj × yj (9)

Equation (9) describes the workload benefit in the pres-
ence ofm queries andm1 update statements. The second
term simply states that if indexIj is constructed as part of
the solution, it will costfj units of benefit to maintain it in
the presence of them1 update statements.

3. Using the ILP Formulation

The ILP model enables the application of new solution
techniques to the index selection problem. First, it allowsus
to compute a tight upper boundZ∗ on the maximum bene-
fit (Equation 2) achievable for a specific problem instance.
The upper bound indicates how far any solution is from the
optimal without actually having the optimal solution, thus
allowing us to providequality guarantees. The upper bound
derived from an ILP formulation is more accurate compared
to previous techniques that completely eliminate the storage
constraint, thus significantly overestimating the maximum
benefit achievable.

Second, the ILP formulation allows for the efficient com-
putation of an initial approximate solution. Although this
solution is not necessarily optimal, the tool characterizes its
benefit by comparing it to theZ∗ bound and present the
system administrator with the choice of keeping it (if the
benefit is acceptable) or investing more time in improving
it. A system can also utilize the ILP formulation to com-
pute an initial solution that is optimal in terms of benefit,
but violates storage constraints. The system administrator is
then presented with the option of deploying the additional
storage and getting the performance, or looking for a bet-
ter solution. This option is particularly attractive in cases
where focus is more on exploring the design space rather
than reaching strictly optimal solutions.

Finally, it is possible to improve the benefit offered by
the initial solution through a branch-and-bound search al-
gorithm, that can terminate when a solution of acceptable
benefit is reached, or execute until the optimal solution is
found.

3.1. Linear Program Relaxation

The Linear Program (LP) relaxation of an ILP has the
same objective function and constraints as the original ILP,
but its solution is no longer required to be integer. For the
ILP formulation of the previous section, the LP relaxation
accepts fractional values for theyj , xik variables, as long as
0 ≤ yj , xik ≤ 1.

Without the requirement for integer solutions, linear op-
timization problems can be solved efficiently by polynomial
algorithms. In the context of index selection, the LP relax-
ation quickly provides useful information about the optimal
solution of the ILP and its storage requirements.

LetZ∗ be the optimal benefit value (Equation (2)) for the
LP relaxation andZopt be the optimal benefit value for the
original ILP problem. It can be shown that

Zopt ≤ Z∗ (10)

Thus the optimal value of Equation (2) is an upper bound
for the benefit of the optimal ILP solution. In the general

case, it is difficult to determine how close the solution of
the LP relaxation (Z∗) is to the solution of the original ILP
(Zopt).

Certain classes of ILP problems, however, are “well-
behaved” in that their LP relaxation provides a very good
indicator for the objective function value for the optimal
ILP solution. We are currently actively working on theo-
retically and experimentally characterizing the relationship
between the ILP and LP relaxation solutions for index selec-
tion. Our preliminary results, presented in Section 6, sug-
gest that the best benefit value computed through the LP re-
laxation is actually very close to that of the optimal ILP so-
lution (within 15%). In any case, the LP relaxation provides
a much tighter bound for the optimal solution compared to
previous approaches, that compute bounds by eliminating
the storage constraint (as Section 6 verifies).

The LP relaxation can also be used to derive an “initial”
solution that has a benefit of at leastZ∗, but violates the
storage constraint, requiringS′ ≥ S storage. Consider the
solutionx∗

ik,y∗

j of the LP relaxation. We derive an integer
solution by first rounding the valuesy∗

j so that every non-
zero variabley∗

j is set to 1. Given the newy∗

j values, new
x∗

ik can be selected so that each query has a maximum ben-
efit under the (3)-(4) constraints of Section 2.1.

If the rounded solution requires only a small increase in
storage, it might still be of use to the system administrator.
Rounding works best if most of the fractionaly∗

j variables
are either 0 or close to 1, in which case the increase in stor-
age by setting them to 1 is small. Our experiments suggest
that this is the case in practice: An intuitive explanation is
that y∗

j variables that are non-zero but close to zero don’t
offer much in terms of benefit (due to the constraints (4)) of
Section 2.1 and therefore will not often occur in solutions.

3.2. Branch and Bound

Branch-and-bound algorithms are commonly used in the
solution of ILPs. Although they make use of the LP relax-
ation method, they are guaranteed to derive the optimal in-
teger solution, if run to completion. In addition, the branch
and bound algorithm can be interrupted before completion,
in which case a sub-optimal solution is returned along with
a bound from the optimal.

The general branch-and-bound approach for ILP is to
choose a decision variable and fix it to be either 0 or 1, thus
generating two subproblems with one fewer decision vari-
able (branching). The LP relaxation technique is applied
to the subproblems, computing bounds for their benefit val-
ues. The branching is repeated for the subproblems and can
be performed in a depth-first or breadth-first order. Once a
first integer solution is reached (where all the variables have
been fixed) or if an initial valid solution already exists (for
example through manipulating a rounded LP relaxation re-

sult) its valueZ can be used to prune those subproblems
that have an upper boundZ∗ ≤ Z, as no integer assignment
resulting from the subproblem will be better than the exist-
ing integer solution. The algorithm terminates when it runs
out of time or all the variables have been assigned and there
are no new subproblems.

Combining the ILP model with a branch-and-bound al-
gorithm has several advantages over the existing heuristic
search framework. Quality-wise, branch-and-bound avoids
the problem of missing “interactions” between indexes, as
long as the interactions are captured in the ILP model. Fur-
thermore, branch and bound does not have the problem of
being “trapped” in locally optimal solutions. If ran to com-
pletion, it is guaranteed to find the optimal solution.

Performance-wise, running to completion and determin-
ing the optimal solution might not be feasible for large prob-
lems. We propose using the branch-and-bound framework
only for a few iterations and stop the search once a so-
lution with an acceptable distance from the optimal has
been reached.The bounds computed during the branch-
and-bound process can directly be used to determine when
a solution of acceptable quality has been reached and termi-
nate the algorithm as early as possible.

Finally, it is possible to “customize” branch-and-bound
search by incorporating all the search heuristics developed
in the literature. For instance, a greedy search algorithm can
be used to derive an initial integer solution that can be used
to prune subproblems and improve algorithm performance.
In a sense, the branch-and-bound approach can provide at
least the quality and performance of existing algorithms,
while having additional quality benefits and the added ad-
vantage of a bound from the optimal solution.

4. A System for Index Selection Using ILPs

Figure 2 shows the architecture of our ILP-based ap-
proach. TheILP Model module takes as input the query
workload and a storage constraint and produces an ILP
specification. The candidate indexes used in the ILP for-
mulation are provided by theCandidate Selectionmodule.
Our ILP approach is flexible in that it can accept any set of
indexes as its input, thus allowing the use of existing candi-
date selection techniques. The input index set is processed
by theILP Modelmodule to produce a set of configurations
for each query (represented by thexik variables).

The benefitbik for each configuration is computed by the
Index Usage Model (INUM), that efficiently provides query
cost estimates with the same precision as the query opti-
mizer. The INUM itself is initialized by performing a small
number of key optimizer calls, the results of which are used
in query cost estimation. Once the ILP model is complete,
the LP and branch-and-bound solver modules are used to
derive solutions. The solver result is either the optimal so-

Figure 2. Architecture for an ILP-based index
selection algorithm.

lution or an approximate one, along with a tight bound for
its distance from the optimal.

The Index Usage Model [11] is a framework for efficient
cost estimation. Given a query and an index configuration,
it computes a value for the query cost that is equal (or in
the worst case very close) to the value returned by the opti-
mizer, without actually performing an optimizer invocation.
Since the optimizer is not involved, the INUM can achieve 3
orders of magnitude faster cost estimation while maintain-
ing optimizer precision. The INUM is independent of the
index selection algorithm used, however it is a direct match
for our ILP-based approach that requires evaluating a large
number of configurations.

The intuition behind the INUM is that although de-
sign tools must examine a large number of alternative de-
signs, the number of different optimal query execution plans
and thus the range of different optimizer outputs is much
smaller. Therefore it makes sense toreusethe optimizer
output, instead of repeatedly computing the same plan. The
INUM works by first performing a small number of key
optimizer calls per query in aprecomputationphase and
caching the optimizer output (query plans along with statis-
tics and costs for the individual operators). During normal
operation, query costs arederivedexclusively from the pre-
computed information without any further optimizer invo-
cation. The derivation involves a simple calculation (sim-
ilarly to computing the value of an analytical model) and
thus is significantly faster compared to the complex query
optimization code.

Besides it accuracy and performance benefits, an aspect
of the INUM that is relevant to our ILP-based approach is
the time consumed by itsprecomputationphase. The INUM
can efficiently provide cost estimates for tens of thousands
of configurations, but it must first be initialized by perform-
ing a small number of key optimizer calls. The duration of

the initialization phase is therefore part of the ILP solving
time and must be taken into account when comparing with
existing index selection tools. We therefore include INUM
setup timing results in our experimental section.

5. Performance Considerations

Since our solution algorithms (described in Sections 3.1,
3.2) rely on solving the LP relaxation of the original ILP for-
mulation once or multiple times, the performance of solving
LP problems is critical for the overall feasibility of our ap-
proach. The efficiency of solving an LP problem depends
on the number of decision variables and the number of con-
straints. In the context of index selection, efficiency is de-
termined by the number of candidate indexes (yj) and the
number of thexik variables.

Our approach allows us to view the number of candi-
dates and configurations as separate “tuning knobs” and use
them to control performance. Our work departs from ex-
isting solutions that provide no guarantees over the quality
of their heuristics. The mathematical structure of the ILP
formulation allows us to modify the number of candidates
or the number of configurations to improve performance,
while quantifying the impact on the optimality of the so-
lution. In the next sections we describecandidate selection
andconfiguration selectionin the context of our ILP formu-
lation and presentsensitivity analysisas a way to estimate
solution quality loss.

5.1. Candidate Selection

Candidate selection (shown also in Figure 2 as a distinct
module) determines the set of indexes that will be used in
the ILP formulation and therefore the number ofyj vari-
ables. Candidate selection is necessary because in practice,
incorporating all the relevant indexes in an ILP formula-
tion results in huge models that are not practical to solve.
Naturally, omitting indexes from consideration can resultin
suboptimal solutions. It is the job of the candidate selection
module to identify a “good” set of indexes that minimizes
quality loss. Our formulation does not make any assump-
tions on the algorithm used and can therefore incorporate
previously proposed approaches [5, 7, 9].

Compared to previous approaches, the ILP formulation
allows for a much larger number of candidates. Our experi-
ments indicate that a fairly standard high performance linear
solver (in MATLAB’s Optimization Toolbox) can solve LP
relaxations of 10000 variables in under a minute on a high-
end server. The available LP solver performance, combined
with the use of the INUM (Section 4) for fast cost estima-
tion, allows us to grow the number of candidates (yj vari-
ables) in the thousands, a much larger number compared to
previous techniques.

The flexibility in selecting a large number of candi-
dates reduces the chances that some important index will
be missed by the candidate selection. In addition, we pro-
pose the use of sensitivity analysis techniques (describedin
Section 5.3 to estimate the loss in solution quality from a
particular set of candidates and to guide the design of effec-
tive index selection algorithms.

5.2. Configuration Selection

Configuration selection is the process of determining
which configurations will be used in the model. In other
words, configuration selection determines thexik variables
and the correspondingbik benefits that need to be consid-
ered. Reducing the number of configurations is critical for
performance, as it is exponential to the number of candi-
dates. Intuitively, configuration selection corresponds to
setting the benefit values for the omitted configurations to
zero. Omitting a configuration does not imply omitting its
constituent indexes. It only means that the “importance” of
certain index combination is underestimated by the model.
Again, we propose the use of sensitivity analysis techniques
to quantify the impact of configuration selection to perfor-
mance.

Again, the ILP formulation allows for a much larger
number of configurations to be evaluated. Given the per-
formance statistics of the previous section (10000 variables
in 1 minute), for a workload of 50 queries, the model can
easily accommodate 200 different configurations per query.
Existing index selection tools for a similarly-sized work-
load examine a much smaller number of candidates, as each
atomic configuration/query combination requires an opti-
mizer call, and performing more than a few hundreds of
calls is prohibitively expensive.

5.3. Sensitivity Analysis

Sensitivity analysis in linear optimization is the process
of estimating the stability of the solution to a given LP with
respect to changes in the LP’s parameters [4]. For instance,
there exist sensitivity analysis techniques for computingin-
tervals for LP parameters, such that parameter variations
within those intervals do not affect the optimal solution. For
cases where optimality is not preserved, there are ways to
efficiently compute the new optimal solution in an incre-
mental fashion.

We plan to investigate the use of sensitivity analysis to
model candidate and configuration selection. For example,
we can use a modern LP solver to obtain intervals for all
the benefit (bik) and index storage (sj) parameters of an LP.
The intervals are actually computed at no extra cost, as they
are a product of the LP solution.

We can then use the obtained intervals to reason about
indexes that are not included in the candidate set: If we can
prove that there exist no indexes that can cause LP parame-
ters to exceed the computed intervals (for example, indexes
with high benefit values or low storage), we can conclude
that the existing candidate set is “good enough”. If not,
we can estimate the potential benefit loss and decide if ad-
ditional indexes need to be added in the candidate set. For-
malizing the application of sensitivity analysis techniques to
index and candidate selection is part of our ongoing work.

6. Comparing with Existing Approaches

In this section we present preliminary results from our
ILP-based implementation, using TPC-H queries on a com-
mercial DBMS. We compare the performance and quality
of our approach to that of the commercial index selection
tool.

6.1. Experimental Setup

Our implementation interfaces to a commercial DBMS
that has its own index selection tool. Our implemen-
tation uses Java for the INUM, database interfaces and
model construction and MATLAB’s optimization toolbox
for the solvers. We obtain a set of candidate indexes for
our input workload through the commercial index selec-
tion tool, by observing the virtual indexes it builds us-
ing a profiler. Our workload consists of 5 TPCH queries,
on a 1GB TPCH database. The storage constraint was
set to 60000 pages or 480MB. With this specification,
the commercial index selection tool examined 64 candi-
date indexes. We enumerated all the configurations that
could be constructed from the candidate set and gener-
ated 1589 configuration decision variables. All experi-
ments were run on an Intel Xeon 3GHz server. Perfor-
mance improvements are on the form%improvement =
1− performanceoptimized/performanceorig. The bene-
fit numbers returned by our algorithm were verified by actu-
ally implementing the indexes and obtaining real optimizer
cost estimates.

6.2. Experimental Results

The solution of the LP relaxation of the ILP had 5 non-
zero index (yj) decision variables. Three of them were inte-
ger (equal to 1) and the others had a value of 0.76. Figure 3
compares the maximum benefit value for the LP relaxation
(LP optimal) to the benefit bound computed by removing
the storage constraint (unlimited). We obtain the latter sim-
ply by invoking the commercial tool without any storage
constraint.LP optimal) provides a much tighter bound to
the optimal value compared tounlimited.

Figure 3. Benefit values for various solutions.

By truncating the LP relaxation result we obtain an in-
teger solution with identical benefit that that requires only
10% more space. (For this example, the truncated solution
becomes the optimal if we increase the storage by 10%).
Assuming that the original storage constraint is hard, the
truncated integer solution is not feasible. We derive a fea-
sible solution,LP approx, by removing one index (setting
its yj value to 0) so that the remaining fit into the available
storage. According to Figure 3,LP approx is within 32%
of the optimal ILP solution.

We ran the branch-and-bound algorithm in MATLAB’s
Optimization Toolbox in order to improve the approximate
solution, using its benefit value for pruning. The branch-
and-bound algorithm returned the optimal solution for the
original problem, which is within 15% of the optimal LP
relaxation solution, confirming that for this example the op-
timal value of the LP relaxation is a good approximation
for the ILP optimal value. Thecommercialbar in Figure 3
shows the benefit achievable by the solution provided by the
commercial index selection tool. The quality of the com-
mercial tool solution is 56% lower than that of the approxi-
mate LP solution (LP approx).

MATLAB took 1.3s to solve the LP relaxation, while the
commercial tool reported 1 minute of running time. The
time for INUM construction (Section 4) was 7s. Overall,
the time for constructing the INUM and the ILP model and
for obtaining initial solutions through the LP relaxation was
much less compared to the commercial tool.

MATLABs branch-and-bound procedure took several
hours to complete. The reason is that generic solvers can
not distinguish between the index decision variables (yj)
and the configuration variables (xik) and do not exploit the
fact that the latter depend on the former. Developing a a
specialized branch-and-bound procedure to replace MAT-
LAB’s generic solver is part of our ongoing work.

7. Related Work

Microsoft’s Index Tuning Wizard and Database Tuning
Advisor [7, 1] use a “candidate selection” phase to iden-
tify promising indexes, a “merging” step for augmenting the
candidate set [8] and a greedy search for selecting a locally-
optimal solution. The DB2 Advisor [9] uses the optimizer
to select an initial set of indexes and formulates a knapsack
problem that is solved by a greedy search.

Our ILP formulation is based on [6]. Their formulation
accounts for queries using more than one indexes and also
models index update costs. They also provide a specialized
branch-and-bound procedure for its solution. Our work is
concerned with applying the formalism in [6] to real-world
problems, that involve commercial database systems and
workloads.

In terms of modeling, we integrate the model in [6] with
the query optimizer in existing systems. We also deal with
the problems of selecting candidates and configurations us-
ing sensitivity analysis, so that we derive reasonably-sized
ILP instances that can be solved efficiently. In terms of so-
lutions, we do not focus on algorithms for finding optimal
solutions, as the model, due to candidate and configuration
selection, already incorporates approximations. Our work
proposes the use of LP relaxation to find approximate solu-
tions and computing optimality bounds.

Finally, to accurately model real world constraints, we
include storage limits in our formulation. [6] does not con-
sider storage and it is unclear if their analysis and proposed
algorithms can apply to problem instances resulting from
our formulation.

[10] describes an ILP and a solution based on
randomized-rounding, assuming a single index per query.
Their solution has optimal performance but requires a
bounded amount of additional storage. Since the algorithms
in [10] assume the use of a single index per query, they ig-
nore “interactions” between indexes and are therefore not
directly applicable to commercial relational systems.

Besides index selection, there is work on designing ad-
ditional features, such as materialized views and table parti-
tions [2, 12, 3]. The proposed algorithms are similar to their
index selection counterparts, only they are facing a combi-
natorial explosion in the number of alternative designs that
arises when exploring feature combinations. We believe our
modeling approach will be beneficial for problems combin-
ing multiple features, because it can better capture the “in-
teraction” between features and it offers higher scalability.

8. Conclusion

In this paper we present an Integer Linear Program-
ming (ILP) model for the index selection problem. We ap-
ply standard optimization techniques to compute optimality

bounds, derive approximate solutions with known distance
for the optimal and improve approximate solutions. We de-
scribe an efficient implementation architecture that makes
use of optimizer estimates similarly to commercial tools.
Our preliminary experiments indicate that ILP-based index
selection is efficient efficiently and offers higher qualityso-
lutions compared to existing tools.

References

[1] S. Agrawal, S. Chaudhuri, L. Kollár, A. P. Marathe, V. R.
Narasayya, and M. Syamala. Database tuning advisor for
microsoft sql server 2005. InVLDB 2004.

[2] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Auto-
mated selection of materialized views and indexes in SQL
databases. InVLDB 2000.

[3] S. Agrawal, V. Narasayya, and B. Yang. Integrating vertical
and horizontal partitioning into automated physical database
design. InProceedings of the SIGMOD Conference, New
York, NY, USA, 2004. ACM Press.

[4] D. Bertsimas and J. Tsitsiklis.Introduction to Linear Opti-
mization. Athena Scientific, 1997.

[5] N. Bruno and S. Chaudhuri. Automatic physical database
tuning: a relaxation-based approach. InSIGMOD ’05.

[6] A. Caprara and J. Salazar. A branch-and-cut algorithm for
a generalization of the uncapacitated facility location prob-
lem, 1996.

[7] S. Chaudhuri and V. R. Narasayya. An efficient cost-driven
index selection tool for Microsoft SQL server. InProceed-
ings of VLDB 1997.

[8] S. Chaudhuri and V. R. Narasayya. Index merging. InPro-
ceedings of ICDE 1999.

[9] G.Valentin, M.Zuliani, D.Zilio, and G.Lohman. DB2 ad-
visor: An optimizer smart enough to recommend its own
indexes. InProceedings of ICDE 2000.

[10] C. Heeren, H. V. Jagadish, and L. Pitt. Optimal indexing
using near-minimal space. InPODS ’03: Proceedings of the
twenty-second ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, 2003.

[11] S. Papadomanolakis, D. Dash, and A. Ailamaki. Intelligent
use of the query optimizer in automated database design.
Technical Report CMU-CS-06-151, Computer Science De-
partment, Carnegie Mellon University, 2006.

[12] D. C. Zilio, J. Rao, S. Lightstone, G. M. Lohman, A. Storm,
C. Garcia-Arellano, and S. Fadden. Db2 design advisor:
Integrated automatic physical database design. InVLDB,
pages 1087–1097, 2004.

