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Abstract

An important vision problem is to automatically describe what people are doing a sequence of

video. This problem is difficult for many reasons. First, tracking the articulations of people is difficult

because arms and legs are small and can move quite fast. Secondly, one must sew the estimated poses

from each frame together into a coherent motion path; this is difficult because people can move in

unpredictable ways. Finally, one must describe the motion with some activity annotation. This appears

difficult for everyday motion since there may not be a canonical vocabulary of motions.

We describe a fully automatic system that labels the activities of multiple people in a video sequence.

The system decouples the choice of annotation vocabulary from the analysis procedure, allowing for

easy revision of the vocabulary. The system first uses a pictorial structure model to independently detect

2D poses in each frame. The system then synthesizes 3D motion clips that looks like the 2D motions

by matching poses to a stored library of motion capture data. The motion capture data is labeled off-

line with a class structure that allows for multiple annotations to be composed; one may walk, while

waveing, for example.

The lack of a canonical vocabulary also makes it difficult to evaluate experimental results. We

introduce a mutual information criterion that allows one to evaluate different annotation systems given

labeled test footage. We demonstrate and evaluate our system on real sequences of multiple people

interacting and commercial shots from a feature-length film.

Index Terms

people tracking, motion capture, surveillance

I. INTRODUCTION

Automatically describing what people are doing in a video sequence is task of great practical

importance. A reliable solution would open up tremendous possibilities, such as video sum-

mary/mining – one could summarize daily activities in public areas. It would also allow for

pervasive Human-Computer Interaction (HCI) – gesturing interfaces could enable smart offices

and smart homes. Finally, one could analyze human movement for surveillance purposes – from

medical analysis of patients to automatic flagging of suspicious behavior in high security areas.

Indeed, because of the many potential applications, video-based understanding of people has

been a core challenge in the vision community for over 25 years.

Understanding at a coarse scale seems to fairly well understood, but understanding activities

that depend on detailed information about the body is still hard. The major difficulties appear to
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be that (a) good kinematic tracking is hard; (b) models typically have too many parameters to be

learned directly from data; and (c) for much everyday behavior, there isn’t a natural taxonomy.

Many approaches to fine-scale activity recognition assume that a kinematic track is given,

typically by manual labeling or initialization [1, 2, 3, 4]. We argue that a practical recognition

system must deal with realistic errors in kinematic estimates. We demonstrate all results with

an existing tracker [5, 46] that is automatic, albeit imperfect.

We focus specifically on everyday behavior. In this case, a fixed vocabulary either doesn’t

exist, or isn’t appropriate. For example, one does not know words for behaviors that appear

familiar. One way to deal with this is to work with a notation (for example, Laban notation);

but such notations typically work in terms that are difficult to map to visual observables (for

example, the weight of a motion). The alternatives are either to develop a canonical vocabulary

or to develop an analysis procedure that is somehow vocabulary-independent. We take the third

approach in this work.

Evaluating models for everyday behaviors is hard, because it is difficult to obtain a large

collection of marked up video (among other things, there isn’t a vocabulary in which to mark it

up).We also introduce a quantitative measure based on mutual information that is independent

of vocabulary. We use it to evaluate a large collection of annotated sequences of multiple people

interacting as well as commercial footage.

A. Previous Work

There has been a substantial amount of work on recognizing activities from video (for review

papers, see [6, 7, 8, 9, 10]).

There seems to be a general consensus that different taxonomies are needed for interpreting

events at different time scales. Bobick [8] refers to an atomic event as a movement, a sequence

of movements as an activity, and finally terms large-scale events as actions.

Methods for recognizing small-scale movements typically match some video signature to a

template. If the background is stationary or uncluttered, than one can match low-level spatio-

temporal descriptors without explicitly tracking arms and legs [11, 12, 13, 14, 15]. Alternatively,

one could explicitly extract body pose, and directly match based on pose estimates [1, 16, 17].

These approaches are more similar to our work.
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Recognizing large scale movements probably requires more sophisticated techniques; one

approach is that of temporal logics. Here actions and events are represented with a set of logic

primitives; valid temporal relations are represented by interval bounds (to pick up a cup we must

first grab it) [18, 19, 20]. Given a video with low-level event detections, one obtains high level

descriptions by forms of constraint propagation [21, 22]. Logic formalisms can be difficult to

both author and perform inference with because they require clean input; it is not clear if they

will work given missing or noisy video summaries.

By far the most popular approach is to use a HMM, where the hidden state is an activity to be

inferred, and observations are image measurements. Models used have tended to be small (for

example, one sees three to eight state models in [23, 24, 25]). Yamato et al. describe recognizing

tennis strokes with HMM’s [26]. Wilson and Bobick describe the use of HMM’s for recognizing

gestures such as pushes [27]. Yang et al use HMM’s to recognize handwriting gestures [28].

There has been a great deal of interest in models obtained by modifying a basic activity-state

HMM. The intention is to improve the expressive power of the model without complicating

the processes of learning or inference. Variations include a coupled HMM (CHMM) [23, 24],

a layered HMM (LHMM) [29, 30, 31], a parametric HMM (PHMM) [32], an entropic HMM

(EHMM) [33], and variable length Markov models (VLMM) [34, 35]. All these HMM variations

could be seen as ways of simplifying the process of model authoring: i.e., learning the state

transition matrix. Fitting a large state space model from data is hard because one needs lots of

data.

B. Our approach

We focus on recognizing small-scale activities (movements, in Bobick’s terms). An immediate

concern is what activities to recognize? For limited domains, such as tennis footage, there maybe

natural categories – a forehand stroke, a backhand, etc. However, when observing everyday

behavior in public areas, it is not so obvious (see Figure 1). In our opinion, in order to capture

everyday movements, one must use a vocabulary that is large and expressive. To achieve this,

we allow activity labels to be composed; one can both walk and wave simultaneously. With

such a representation, we must take care to not allow invalid combinations (e.g., one cannot

simultaneously run walk).

A large vocabulary complicates matters considerably because learning and inference are now
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Fig. 1. What is the correct annotation vocabulary? Most likely, an annotation system will not contain a ‘Trying to catch

a frisbee between the legs’ term. This makes it difficult to construct a canonical vocabulary for everyday motion.

We construct a class structure that allows for different labels to be composed; such a system might label the above motion as

crouching, reaching, and kicking. This creates a large effective vocabulary size which makes direct analysis difficult. We

build a system that decouples analysis from the choice of vocabulary by matching poses rather than annotations.

difficult. In particular, estimating the parameters of a large state-space HMM is hard because one

needs an exorbitant amount of training data. We decouple both learning and inference from the

choice of vocabulary by taking an analysis as synthesis approach; we recognize activities by

synthesizing a motion that looks like a video. We synthesize motion by re-arranging pre-recorded

clips from a motion capture database. By pre-labeling clips with activity labels, we synthesize

an activity labeling “for free”.

Essentially, we replace an activity state-space HMM with a pose state-space HMM. Learning a

pose model is easier because poses live in a metric space; this means we can construct transition

matrices by looking for poses that are nearby in this space. Such matrices are typically sparse

and known as motion graphs in the graphics literature [36, 37, 38]. From our HMM perspective,

synthesis is equivalent to inferring a sequence of hidden pose states. In practice, one performs

synthesis by using graph search algorithms on an underlying motion graph.

Figure 2 shows an overview of our approach to activity recognition. We use 3 core components:

annotation, detection, and motion synthesis. Initially, a user labels a collection of 3D motion

capture frames with annotations; this can be done with minimal supervision (Section II). Given

a new video sequence to annotate, we use a pictorial structure to detect 2D poses of each figure

in a sequence [39]. We then synthesize 3D motion sequences which look like the detections

by matching them to our annotated motion capture library (Section IV). We finally accept the

annotations associated with the synthesized 3D motion sequence.

Our approach of linking video tracks with a motion capture database dates back to at least the
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Fig. 2. Our annotation system consists of 3 main components; annotation, detection, and motion synthesis. A user initially labels

a collection of 3D motion capture frames with annotations. Given a new video sequence to annotate, we track by detecting a

pictorial structure model in each frame. We then synthesize 3D motion sequences which look like the 2D tracks by lifting tracks

to 3D and matching them to our annotated motion capture library. We accept the annotations associated with the synthesized

3D motion sequence as annotations for the underlying video sequence.

work of Sidenbladh et al [40]. Similar approaches of synthesizing motions given constraints from

video are taken in [38, 41]. Those works use a motion graph to enforce a human smoothness

prior; we use a motion graph as a mechanism for explicit analysis – obtaining an activity

description [42].

II. OBTAINING ANNOTATED DATA

We have annotated a body of motion data using the system described in [43]. We repeat the

process here for convenience.

There is no reason to believe that a canonical annotation vocabulary is available for everyday

motion, meaning that the system of annotation should be flexible. In practice, this means that

it should be relatively simple for a user to revise the annotations attached to the data set.

Annotations should allow for composition as one can wave while walking, for example. We
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achieve this by representing each separate term in the vocabulary as a bit in a bit string. Our

annotation system attaches a bit string to each frame of motion. Each bit in the string represents

annotation with a particular element of the vocabulary, meaning that elements of the vocabulary

can be composed arbitrarily.

That said, we still need an initial vocabulary that can be composed/revised as needed. We

use a set that is convenient for synthesizing motions from a given database; this suggests the

vocabulary will be tied to that specific database. We use 7 minutes of football motions, collected

for a commercial video game. An independent user decided a set of 13 labels would be useful

for synthesizing motions from this collection; run, walk, wave, jump, turn left,

turn right, catch, reach, carry, backwards, crouch, stand, and pick

up. These labels are allowed to occur in any combination: turn left while walking, or

catch while jumping and running. This produces an enormous vocabulary of 213 = 8192

different annotations. Learning a HMM with such a large state space may be difficult; we avoid

such difficulties by dealing with poses rather than labels. In practice, many label combinations

will never be used; we can’t conceive of a motion that should be annotated with both stand

and run. Examining our database, we see that only 46 combinations are ever observed. We must

take care to ensure that the final analysis/synthesis algorithm respects these valid combinations

(see Section IV-C).

Actual annotation is simplified by using an online learning approach where a user bootstraps

a classifier. Initially, a user hand-labels a random subset of frames from the database. One SVM

classifier is learned for each element of our vocabulary independently; this means one learns a

run/not-run classifier, a stand/not-stand classifier, etc. The classifiers use Gaussian

kernels, and use the joint positions for one second of motion centered at the frame being classified

as a feature vector. Since the motion is sampled in time, each joint has a discrete 3D trajectory

in space for the second of motion centered at the frame. We used a public domain SVM library

(libsvm [44]). The out of margin cost for the SVM is kept high to force a good fit.

After the initial training, we use the classifiers to label the remaining frames in the database.

The user is incrementally presented with newly classified frames, and makes corrections as

necessary. The user verified data is then added to the SVM training set and the classifier’s

decision boundary is re-optimized. It is our experience that after annotating 3-4 example variants

of an annotation, the user rarely needs to correct the auto-annotation results. It is remarkable that
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such a procedure tends to respect constraints implicit in the user-labellings; the classifiers tend

not to label a new motion as both a run and a stand. This means it is possible to annotate

large databases of motions quite rapidly.

III. 2D TRACKING BY DETECTION

We represent a human body as a puppet of rectangles of fixed dimension (we find people

at different scales by searching an image pyramid). This parts-based model is often called a

pictorial structure [39, 45]. Pictorial structures represent the body with a geometric constraints

(the left leg connects to the torso) and a local appearance template for each part (the left leg is

blue).

Geometric Model: Because we wish to track people performing a variety of activities, we

employ weak geometric constraints (parts must be connected and respect reasonable joint angle

limits). This is in contrast to many other approaches that use strong priors (typically for walking).

In our opinion, tracking should be performed with weak priors. Even though we might expect

people to behave predictably most of the time, we especially want to understand unexpected

poses and movement (e.g., to evaluate suspicious behavior in an airport).

Part Template: We have described methods of learning part models automatically from a

video in previous work [5, 46]. In [46], we describe a bottom-up system that initially looks for

candidate body parts in each frame (using a detuned edge-based part template). The system builds

tuned part templates by grouping together candidate detections that look similar and that are

arranged in valid geometric layouts. In [5], we describe a system that initially uses a edge-based

pictorial structure tuned to find people in stylized poses. From those frames where it fires, the

system automatically builds appearance templates for each part. After the appearance templates

are learned, people are re-detected in previous and successive frames in unrestricted poses. We

assume that a person is symmetric in appearance and so learn a single part appearance template

for left/right limbs. For a detailed description, we refer the readers to those works. However, we

note that in many situations the part model is given (for say, sports footage where team uniforms

are known a priori).

Detection: One practical difficulty of tracking people is dealing with self-occlusion; poses

where we see both arms and legs are quite rare. We match a single arm, single leg pictorial

structure to a given frame from a video. This chain-model can be efficiently matched to an
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image in a few seconds using the method of Felzenschwalb and Huttenlocher [39]. Fixing the

torso at the estimated image position, we search for an additional arm/leg that does not overlap

the original limb estimate (only keeping those matches above a threshold). Such a procedure

implies that the detected 2D poses will suffer from left/right ambiguities and missed detections

of joints.

For simplicity, we assume that each actor in a video looks different. This means we can track

a particular person simply by detecting their appearance model at each frame. The resulting 2D

track looks jittery because the pose is independently estimated in each frame. As in [5], we

low-pass filter the pose estimates (by reporting the average pose in a 3-frame window). This

local smoothing also allows us to track through single-frame occlusions. If a video contains

multiple people that look similar, detecting them is still straightforward; we instance a single

pictorial structure multiple times in each frame. However, tracking multiple similar-looking

people probably requires more sophisticated data association algorithms (such as gating [47]).

IV. 3D MOTION SYNTHESIS

We can think of the pictorial-structure matching as generating a sequence of 2D stick figures.

Intuitively, it might seem that identifying the rough 3D pose is possible by looking at a single

2D skeleton; we define a matching criteria that does this in Section IV-A. However, a 2D stick

figure is still ambiguous in many ways; it is difficult to recover the orientation of the torso with

respect to the camera, and it is difficult to label the left/right limbs. We resolve these ambiguities

in Section IV-B by propagating information throughout a video.

A. Matching by minimizing reprojection error

In this section, we describe an approach for matching 3D poses to 2D poses, assuming a scaled

orthographic camera model. We represent each 2D pose as a point cloud of joint positions. We

define a joint position at the upper & lower torso, shoulders, elbows, wrists, knees, and ankles

(for a total of 12 points). We can similarly represent each pose from our motion capture library

as a cloud of 12 corresponding 3D points. Note that this is a subset of the 30 joints in our

original motion capture skeleton (see Figure 2). Hence our matching process also recovers extra

degrees of freedoms that are difficult to directly estimate from video. Computing the matching
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3D pose reduces to the well-studied problem of matching a 3D point cloud to a 2D point cloud,

where correspondences are known [48, 49].

To incorporate local dynamics (such as velocities and accelerations), we represent all poses

by a point cloud of joint positions collected from 15 frame (1
2

second) windows. We write the

2D point cloud extracted from the tth frame as mt, a 2X(12 ∗ 15) matrix. We compute mt at

every frame, and so the windows overlap. Similarly, we represent our motion capture library as

a collection of 3D point clouds Mi (where i varies over the 11000 poses in our database). For

convenience, we subtract out the centroids and subsample the clouds to be equal to the video

frame rate.

Background stabilization: To compute meaningful local dynamics, we assume the joint

positions mt are defined with respect to a coordinate system that is stationary over a 15-frame

window. This is trivially true for video recorded with a stationary camera. Interestingly, one

can also factor-out camera movement if most of the foreground is a tracked person(s). Such

sequences are common in sports footage and feature-film shots in which the camera pans to

follow someone (we show examples from the film ‘Run Lola Run’ in SectionV). Recall that our

2D pose estimates are obtained without any background assumption (Sec.III). This means we can

use the pose estimates to identify the foreground/background pixels. Using only the background

pixels (the pixels outside the rectangle masks), we align successive pairs of frame (by finding the

translation minimizing SSD error). Such a procedure will produce gross errors in registration over

a long sequence, but provides reasonable estimates over local 15-frame windows. We find this

approach also works for sequences containing moving objects in the background (see Figure 8).

Alignment: An important issue when comparing point clouds is that of alignment [48, 49].

We find the transformation that best aligns the 3D pose Mi with the 2D pose mt, in terms of

minimizing the reprojection error. We search over scaled-Euclidean transformations; a rotation,

translation, and an isotropic scale. We explicitly search over rotations, rendering Mi from different

orthographic cameras. We assume that the camera is at 0◦ elevation, and explicitly search over

20 azimuth (φ) values. Since the camera is fixed over a sequence, we can interpret φ as the

orientation of the root body (i.e. the center torso) of Mi with respect to the camera. Given a

pose Mi and orthographic camera matrix Rφ, we compute a 2D rendered point cloud RφMi.

Aligning two 2D point clouds is straightforward [48]; we translate and scale RφMi so that its

centroid and variance match that of mt.
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Reprojection error: We write the squared reprojection error after alignment as ||RφMi−mt||2.

We cannot directly compute this error because of left/right ambiguities. The pictorial structure

model cannot distinguish between left and right arms because they look similar. This means that

correspondence is not fully known. Interestingly, the alignment procedure described thus far still

applies; the centroid and variance of a point cloud do not change when points are permuted.

We compute a final reprojection error by finding the left/right assignment that minimizes the

reprojection error:

||RφMi −mt||2lr =
15∑

j=1

min
k
||RφMi(j)−mt(j)Fk||2, (1)

where we write Mi(j) for the joint positions from the jth frame in the 15-frame window. We

write Fk for a 12X12 binary matrix that permutes the left/right leg/arm joints of mt(j); hence

k ∈ {1, 2, 3, 4}.

Missed detections: In most frames, our pictorial structure will not recover all the limbs. We

would like to omit any missing joint positions from the 2D and 3D clouds when performing

alignment and computing the reprojection error. However, missing limbs complicate alignment;

if we detect only one leg in a frame of mt, we do not know whether to align it to a left or right

reference leg in Mi (if we detect two legs, correspondence doesn’t matter as explained above).

We explicitly search over the 4 left/right labellings of the center frame for alignment. To avoid

searching over labellings for the remaining frames in our window, we only use unambiguous

points for computing alignment (points from the center frame, points on the torso, and points

from limbs for those frames when both limbs are detected). After alignment, we use all detected

joint positions to compute the reprojection error, as in Equation 1.

Alternatives: One could build an aspect model exploiting missed detections. If the left side

of a person is not detected, this suggests something about his/her orientation with respect to

the camera. We can formalize this notion by computing the visibility of joint positions of the

rendered 3D point clouds RφMi. When matching to a specific mt with a given set of detected

(i.e., visible) limbs, we add a penalty for mis-matched visibility flags (because they suggest a

false positive or missed limb detection). In our experience, this aspect model did not significantly

improve results.

Rather than computing strict L2 reprojection error, one might want to compute a weighted

error where joint positions from the center frame are weighted more heavily. All our steps (our
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alignment procedure and reprojection error computation) still follow; in our experience this did

not significantly change the final results.

B. Synthesis by Dynamic Programming

Given the matching procedure from Section IV-A, one might find the pose Mi that best

matches mt for each frame independently. For some poses, such as lateral views of the stance

phase of a walk, it is hard to estimate both the torso orientation and left/right assignment from

the 2D stick figure mt. If someone supplied the correct camera azimuth (or equivalently the

torso orientation) and left/right assignment, the recovered pose Mi would match mt rather well.

We propagate information temporally to achieve this effect; we find a sequence of poses Mi that

match mt and that change smoothly from frame to frame.

For each frame t, let us compute the best match Mi given a particular camera orientation

{1, 2, . . . , 20} and given a particular left/right assignment of the center frame. This yields a pool

of 20×4 = 80 3D point clouds rotated, translated, and scaled to align with mt. Let us write these

aligned point clouds as Mt(lt) and their reprojection error as εt(lt) where lt ∈ {1, 2, . . . , 80}.

We now want to find a sequence of 3D point clouds that all match the image data well

and that match future and past 3D estimates well. We can efficiently compute this by dynamic

programming. Let us define

f(l1:T ) =
∑

t

εt(lt) + w||Mt(lt)−Mt−1(lt−1)||2o, (2)

where the user-defined weight w controls how closely the synthesized motion should follow the

image data (the first term) versus how continuous it should be (the second term). We use w = .1.

We compute the sequence of l̂t that minimizes Equation 2 by dynamic programming. Doing so

recovers a sequence of 3D clouds Mt(l̂t) that all match the image data, and that temporally

match each other well.

Continuity cost: We use ||.||2o to denote the squared error of the points that overlap temporally

(the first 14 frame window in Mt and the last 14 frame window in Mt−1). We make the error

translation-invariant by subtracting out the centroid of each point cloud [48]. Note that by doing

so, we are ignoring the global dynamics present in the video. For example, assume the 2D

tracked figure in the video has long legs and walks 10 meters in the video clip. Now, assume
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we are using a 3D skeleton with short legs. There are two motions we might want to synthesize.

One, the global dynamics could match; the short skeleton also moves 10 meters, but has to run

to do it. Alternatively, the local dynamics could match; the short skeleton walks, but only moves

half the distance. Different applications may require different behaviors. For our task of activity

recognition (discriminating walk versus run), we argue local dynamics are more important and

so ignore global dynamics in the continuity cost.

Alternatives: Ideally, one would perform dynamic programming over all poses in our 3D

library, but this is computationally prohibitive. An alternative is to synthesize a 3D motion by

explicitly walking along a motion graph [38, 40, 41]. Such an approach guarantees that the

synthesized motion will be globally continuous and human-looking. However, it can suffer from

drift, in the sense that the synthesized motion can get “stuck” in a part of the graph whose

poses do not follow the 2D tracks well. Essentially, enforcing global continuity might force

poor matches for local dynamics. Such an approach is not appropriate for our task since local

dynamics seem to define fine-scale activities.

C. Smoothing

For each frame t, the recovered point cloud Mt(l̂t) spans a 15 frame window. This means, for

each frame t, we have 15 possible poses, obtained from neighboring frames with overlapping

windows. Since our 3D point clouds Mt(l̂t) are subsampled representations of larger point clouds

(constructed from skeletons with additional joints), we align the full point clouds to the images

using the recovered scaled-Euclidean transformations. To compute a final 3D pose, we average

the joint positions from the 15 skeleton poses that overlap frame t.

Recall that each 3D pose was labeled off-line with a binary vector of 13 flags representing an

annotation. To compute an activity vector for the tth frame, one might be tempted to average the

binary vectors of the overlapping poses. However, this might produce a final annotation where

both run and stand are ‘on’. To respect the constraints implicit in the off-line labeling, we use a

weighted voting scheme. Each overlapping pose votes for 1 of the 213 possible annotation vectors,

and we finally choose the annotation vector with the most votes. In practice, we precompute all

valid annotation vectors from the database (of which there are 46), and only record votes for

one of them.
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Fig. 3. Unfamiliar configurations can either be annotated with ’null’ or with the closest match. We show annotation results for

a sequence of jumping jacks (sometimes known as star jumps) from two such annotation systems. In the top row, we show the

same two frames run through each system. The recovered 3D pose from Section IV-C has been reprojected back to the image.

In the bottom, we show signals representing annotation bits over time. The manual annotator records whether or not the figure

is present, front faceing, in a closed stance, and/or in an extended stance. The automatic annotation consists of

a total of 16 bits; present, front faceing, plus the 13 bits from the annotation vocabulary of Section II. In first dotted

line, corresponding to the image above it, the manual annotator asserts the figure is present, frontally faceing, and about to

reach the extended stance. The automatic annotator asserts the figure is present, frontally faceing, and is not standing,

not jumping, etc. The annotations for both systems are reasonable given there are no corresponding categories available (this

is like describing a movement that is totally unfamiliar). On the left, we freely allow ‘null’ annotations (where no annotation

bit is set). On the right, we discourage ‘null’ annotations as described in Section V. Configurations near the extend stance

are now labeled as walkwave, a reasonable approximation. We quantitatively show this approach results in better annotations,

by computing the reduction in entropy of the user signal given the automatic reports (as described in Section V.).

V. EXPERIMENTAL RESULTS

We use a motion database of 118 motions of football players. Each frame was annotated

using the procedure and vocabulary of Section II by a user who had not seen the videos to

be annotated. We tested our system on six sequences; indoor sequences of a person walking
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Fig. 4. We show annotation results for a walking sequence from two versions of our system using the convention of Figure 3.

Null matches are allowed. On the left, we infer the 3D pose Mi (and associated annotation) independently for each frame. On

the right, we synthesize a smooth set of poses (and associated annotations) by dynamic programming (Section IV-B). Each

image is labeled with an arrow pointing in the direction the inferred figure is facing, not moving. By enforcing smoothness, we

are able to fix spurious run’s and incorrect torso orientations present on the left (i.e., the first image frame and the automatic

left faceing and right faceing annotation bits). The system on the right correlates better with the user annotations, as

shown by a lower conditional entropy score.

and doing jumping-jacks, an outdoor sequence of multiple people passing a ball back and forth,

and various shots from the feature-length film ‘Run Lola Run’. For each video, our system

automatically builds a pictorial structure for each figure, and then detects each model in each

frame (Section III). Our system then synthesizes a 3D motion by matching annotated motion

clips to the 2D detections (Section IV).

Evaluation of general-purpose activity recognition systems is difficult precisely because there
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30 44 62

103 160 241

tracker miss
leaving frame correct recovery

localization error

Fig. 5. Frames sampled from a 21 second sequence of three actors playing with a ball. The numbers on each frame give

the order in which the frame appears in the sequence; the spacing is roughly even. The white annotations are automatically

generated by our system (we manually add the black words for clarity). Overlaid on each frame is the best configuration chosen

for the body of each of the three actors detected — both number and appearance are obtained automatically — using camera

consistency as in Section IV-B. Individuals are associated with a color and a fixed-height annotation label to show the tracker

has consistently identified them. We see two tracks interrupted, one because of a missed detection and the other because the

figure leaves the view. Both tracks are recovered, but we see an incorrect pose estimation because of a missed leg detection.

is no canonical vocabulary. Given a test video, we manually annotate it with labels appropriate

for that video. For example, given a video of a figure performing jumping jacks, we use the labels

closed and extended to describe phases of the jump. These labels need not correspond with

those used to describe a collection of football motions. This makes applying standard evaluation

criteria such as ROC curves or confusion matrices awkward, since there is no clear correct

detection. Furthermore, there is no meaningful standard with which to compare.

Scoring by plotting signals: Qualitatively, we lay out a visual comparison between the human

and automatic annotations signals. We show an example in Figure 3, which displays annotation

results for a 91-frame jumping jack sequence. The top 4 lower case annotations are hand-labeled

over the entire 91 frame sequence. Generally, automatic annotation is successful: the figure is

detected correctly, oriented correctly (this is recovered from the torso orientation estimates φ),

and the description of the figure’s activities is largely correct.

Scoring by conditional entropy: We quantify the degree to which the user and automatic
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Fig. 6. Annotations of 3 figures from a video sequence of the three passing a ball back and forth using the conventions of

figure 3. The dashed vertical lines indicate annotations corresponding to the frames shown above. Null matches are allowed.

The automatic annotations are largely accurate: the figures are correctly identified, and the direction in which the figures are

facing are largely correct. Most of the time, people are running, but slow down to walk when turning or passing the ball.

Throws appear to be mislabeled as catches. Generally, when the figure has the ball (after catching and before throwing,

as denoted in the manual annotations), he is annotated as carrying, though there are some missed detections. There are no

spurious crouches, waves, etc.

signals agree (without explicit correspondence) by computing the mutual information, or reduc-

tion in entropy. Intuitively, mutual information measures our ability to build a classifier for user

annotations using the automatic annotations as features. We interpret the user annotation signal

as a bit-vector defined at every frame t. On any given video sequence, only a small number

of unique bit combinations are encountered (we typically see k ≤ 10 combinations). We define

U to be a multinomial random variable taking on one of the k user-labeled annotations. We

likewise define A to be a multinomial capturing the unique automatic annotations obtained for

that video sequence. Mutual information captures the reduction in uncertainty of U given A, or
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Entropy H(U) and Mutual Information (H(U) − H(U |A))

Sequence H(U) H(U |A) H(U) − H(U |A)

Jumping Jacks .5862 .4800 .1062

Walk 2.7358 1.6336 1.1022

Weave 2.2800 1.1405 1.1395

Lola 1.859 .9024 .9566

TABLE I

WE SCORE OUR PERFORMANCE USING THE REDUCTION IN ENTROPY OF (MANUALLY-LABELED) USER ANNOTATIONS U

GIVEN THE OUTPUT OF OUR AUTOMATIC SYSTEM A. FOR THE ‘JUMPING JACK’ SEQUENCE, WE DID NOT ALLOW null

ANNOTATIONS. FOR THE ‘WEAVE’ SEQUENCE, WE AVERAGE RESULTS OVER THE THREE TRACKED FIGURES. FOR ’LOLA’,

WE AVERAGE RESULTS OVER TWO SHOTS OF LOLA PERFORMING INTERESTING MOTION (FIGURE 8 AND 9).IN ALMOST ALL

CASES, THE AUTOMATIC SYSTEM REDUCES THE ENTROPY BY A FACTOR OF 2. THE USER ANNOTATIONS FOR THE JUMPING

JACK SEQUENCE PROVE TOO SIMPLE; THERE IS LESS THAN A BIT OF UNCERTAINTY IN THEM (SINCE THEY ARE NEARLY

CONSTANT), AND SO OUR SYSTEM PROVIDES LITTLE IMPROVEMENT.

M(U,A) = H(U)−H(U |A), where

H(U) =
∑

i

Pr(U = i) log Pr(U = i)

H(U |A) =
∑
i,j

Pr(U = i, A = j) log Pr(U = i|A = j),

where the probabilities are computed by counting co-occurrences throughout a given video

sequence. Note that in general, computing these co-occurrences is just as difficult as learning

large state-space HMMs. The classic problem of not-enough training data manifests itself in a

sparse co-occurrence matrix. We avoid this pitfall by computing co-occurrences for only the k

observed combinations, as opposed to all 213 possibilities.

Given a test video with user annotation U , the entropy H(U) is equivalent to the number of bits

required to encode U . Given knowledge of some other signal A, the entropy (or uncertainty) in

U can only decrease. We evaluate different automatic annotations A for a given U by computing

which annotations reduce the entropy H(U |A) the most. We tabulate results in Table I.

Is temporal consistency required? Figure 4 compares two versions of our system on a 288

frame sequence of a figure walking back and forth. The annotations on the left were obtained by

matching poses Mi independently for each frame t. Note that the automatic LFace and RFace
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signals flip back and forth – it is difficult to estimate the orientation of the figure when he is in

the stance phase of a lateral walk. By performing explicit motion synthesis (ensuring the poses

Mi are smooth over time, as in Section IV-B), orientation is estimated much more reliably. We

quantify this by computing the conditional entropy of each set of automatic annotation signals.

The smoothed annotation signal correlates better with the ground-truth user signal.

Annotating multiple people interacting: In Figure 6, we show annotations for three figures

from one sequence passing a ball back and forth. Each actor is correctly detected, and the

system produces largely correct descriptions of the actor’s orientation and actions. The inference

procedure interprets a run as a combination of run and walk. Quite often, the walk annotation

will fire as the figure slows down to turn from face right to face left or vice versa.

When the figures use their arms to catch or throw, we see increased activity for the similar

annotations of catch, wave, and reach.

Annotating novel motions: When a novel motion is encountered, we want the system to

either respond by (1) recognizing that it cannot annotate this sequence, or (2) annotating it with

the best possible label. We can implement (2) by relabeling those poses Mi that are annotated

with a ‘null’ bit vector (all flags are off). Interestingly, almost 1
4

of the 3D poses in our library

have a null label. This implies our original annotation vocabulary is still too small for our motion

library. Off-line, we “force” a label for all null poses by matching them to the closest labeled

pose (1-NN classification). Given a synthesized motion, we can report either the user-specified

labels or the forced non-null labels. In Figure 3, we use our football library to annotate a jumping

jack sequence. Our library does not contain any jumping jack motions, and lacks a jumping

jack annotation label. System (1) responds with a stand label when the figure is near a

closed stance, and reports a null label for all other frames. By forcing non-null annotations,

we see an additional walkwave label toward the extend phase, with the occasional turn.

Quantitatively, (2) results in better annotations as seen by a lower conditional entropy score.

Note the entropy estimates for this sequence are quite small; this is because the sequence is

short and the user signal U is almost constant.

Annotating commercial footage: We have applied our system to the feature film ‘Run Lola

Run’. We show results on various shots in Figure 7-9 (these shots were identified automatically

using the kinematic tracker of [5]). In Figure 7, our annotation system correctly labels Lola as

running for the duration of the sequence. In Figure 8, Lola initially runs, and then stops in
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Fig. 7. Annotation of a shot of ‘Lola’ running (using the conventions of Figure 6). Because she is running throughout this clip,

the entropy of the user-defined annotations is 0 (there is no uncertainty). The automatic annotation results are quite successful

(the figure is present, facing left, runing, not jumping, etc), although there is a brief reach misclassification due to a

partial occlusion by a telephone pole.

front of a truck. Our system responds with a reasonable description of Lola initially running,

then slowing down to walk before standing. The final shot in Figure 9 is quite challenging.

Here, Lola runs toward the camera, runs around a corner, collides with another person, spins

around, and then continues running around the corner. The synthesized motion labels Lola as

initially running toward the camera, turning, and then running away from the camera. When

Lola is small, it is difficult to estimate her kinematics and so our system reports some spurious

annotations. However, our annotation results are impressive given the difficulty of the sequence.

On average, we reduce one bit of uncertainty in the manual annotations of our commercial

sequences.

VI. DISCUSSION

We have described a method for automatically annotating a video of everyday movements.

We do this by taking an “analysis by synthesis” approach; we first estimate the configurations of
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Pick upBkwdReachWaveCarryRTurnLTurnCrouchJumpCatchStandWalkRunRFacePresent
standstoprunrFacepresent

2

Run

35

Run Walk Stand

77 92
LolaStop: Entropy = 1.181

fr2 fr35 fr77 fr92
Conditional Entropy = 0.2859

Fig. 8. Annotation of a shot of ‘Lola’ running and stopping in front of a moving truck (using the conventions of Figure 6).

Note that our background stabilization procedure from SectionIV-A is successful even given the large changes in the background

(crowds of people and the truck are moving). Other than the a brief catch misclassification (due to a telephone-pole occlusion),

the automatic reports match the user-obtained reports extremely well. Note the automatic system equates stoping with walking,

a reasonable assignment given its limited vocabulary.

a figure over time, and then we re-create that estimate by matching to an existing set of labeled

examples. As a result, labels are generated for free from the synthesis process.

This approach requires a method that can reasonably estimate the configurations of the body

over time; we demonstrate that a pictorial structure can generate such configuration reports. By

using real data as opposed to hand-labeled body estimates [2, 3, 4], we find that our synthesis

engine must compensate for ambiguities such as torso orientation, left/right labellings, and missed

detections.

We introduce mutual information as a scoring criteria. Evaluation is hard because there is no

canonical vocabulary for describing everyday behavior (see Figure 1). Our measure provides a

reasonable scheme for ranking different systems against test footage that is labeled with some

annotation set.

Our analysis-by-synthesis approach appears to label small-scale activities reasonable well. We
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Fig. 9. Annotation of a challenging shot of ‘Lola’ running around a corner (using the conventions of Figure 6). Lola runs

toward the camera, collides with another person, spins around, and then runs away from the camera. We annotate the rendered

figures with an arrow pointing in the direction the figure is facing (down represents toward the camera). The automatic annotator

realizes the figure is initially frontally faceing, turns in the middle of the sequence, and is then back faceing. The

matched motions capture the swinging of her arm during her spin (frame 42), but do not capture her protective steps (frame

72). During the turn, the automatic system also labels Lola as walking. Towards the end of the sequence when Lola becomes

quite small, the automatic system reports spurious annotations due to poor kinematic estimates. Quantitatively, the automatic

system can be seen as successful because it reduces one bit of uncertainty in the user-defined annotations.

hope the analogy can apply to large-scale actions as well. It suggests one approach for authoring

complex models; we find rules that synthesize complex actions realistically, and apply them to

analyze such actions from video.
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