Siloz: Leveraging DRAM Isolation Domains to Prevent Inter-VM Rowhammer

Kevin Loughlin

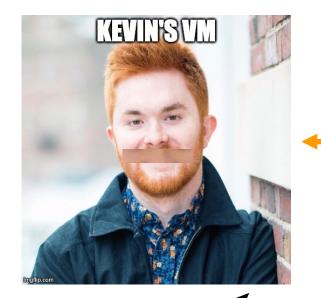
Jonah Rosenblum, Stefan Saroiu, Alec Wolman, Dimitrios Skarlatos, Baris Kasikci

UNIVERSITY of MICHIGAN

Routine Multi-Tenant Life in the Cloud

Virtual Machine (VM) 0

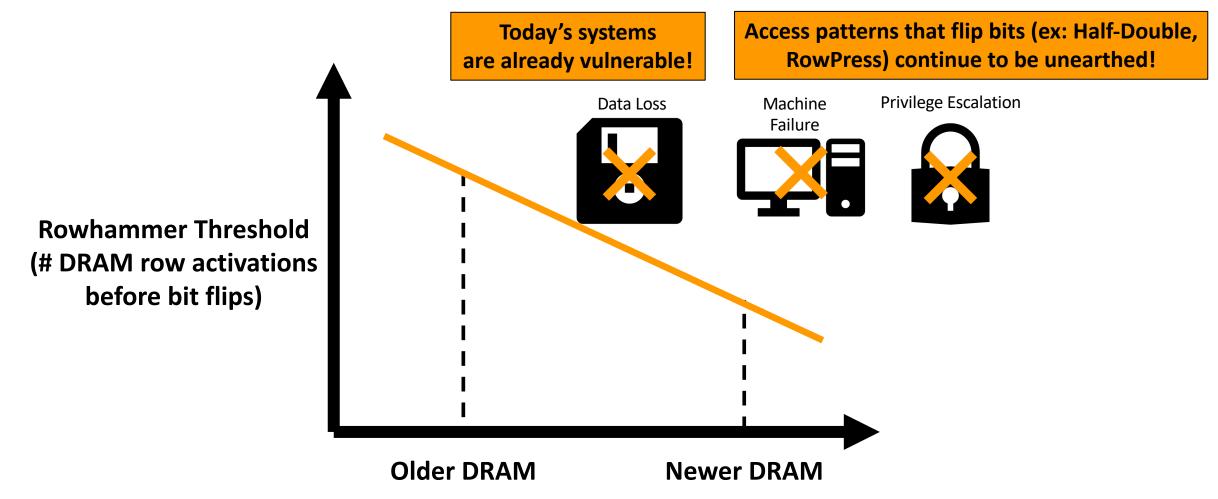
Shared Physical Machine


Virtual Machine (VM) 1

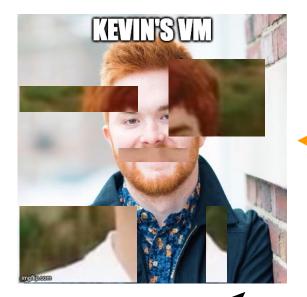
2

Routine Actual Multi-Tenant Life in the Cloud

DATA CORRUPTION OF PROFILE PIC


"How" you ask? ROWHAMMER BIT FLIPS

Shared Physical Machine



Rowhammer Susceptibility is Increasing

Increasing Susceptibility Risks More Bit Flips

DATA CORRUPTION OF PROFILE PIC

Shared Physical Machine

We All Definitely Want to Prevent the Worst Case

DATA CORRUPTION OF PROFILE PIC

Shared Physical Machine

Today's Cloud DRAM Lacks Strong Isolation

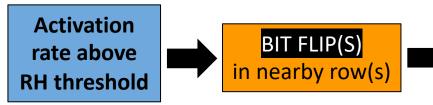
- Motivation Tenants (VMs) can interfere with each other in DRAM
 - Leads to security problems (Rowhammer) and performance problems (contention)
- Key Contribution #1 Subarray Groups as DRAM Isolation Domains
 - Prevent inter-VM bit flips *without sacrificing performance*
- Key Contribution #2 Siloz Hypervisor for Subarray Group Management
 - Provides first step towards practical management of DRAM as isolated domains

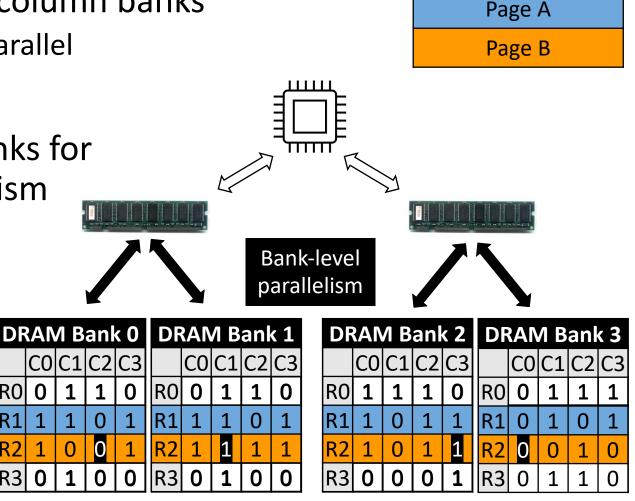
This Paper = Per-Tenant DRAM Isolation

Siloz Outline

- Background: What We Want, and Why We Don't Have It
- Subarray Group Primitive
- Siloz Hypervisor
- Evaluation

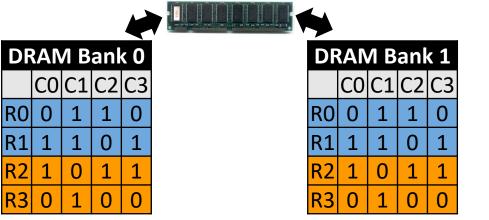
Siloz Outline

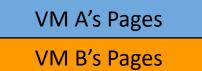

- Background: What We Want, and Why We Don't Have It
- Subarray Group Primitive
- Siloz Hypervisor
- Evaluation

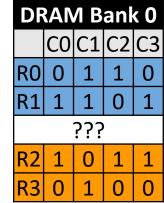


Problem: DRAM Performance Sacrifices Isolation

RO

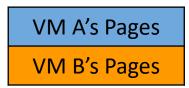

- DRAM architecture is a set of row-column banks
 - Different banks can be accessed in parallel
- Each page is interleaved across banks for performance of bank-level parallelism
- Downside: Rowhammer (RH) bit flips are possible between nearby rows in same bank




Our Primitive Must Have Two Properties

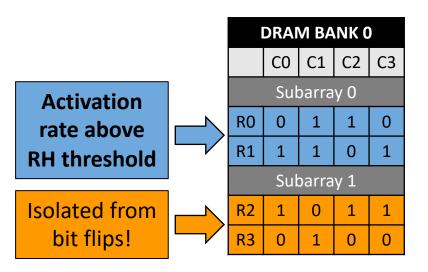

1. Allows page interleaving across banks (performance)

2. Isolates different VMs without wasting DRAM (security)

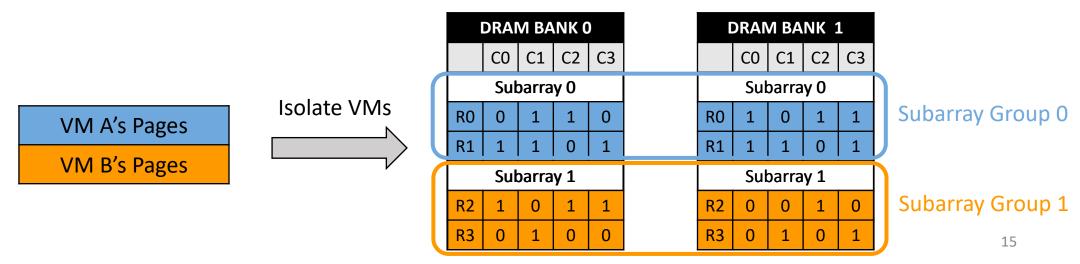


Siloz Outline

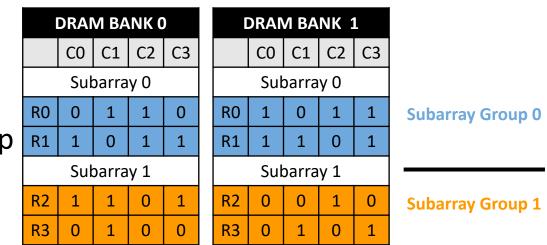
- Background: What We Want, and Why We Don't Have It
- Subarray Group Primitive
- Siloz Hypervisor
- Evaluation


Bank Microarch is a Set of Row-Column Subarrays

- Subarrays are not directly-exposed, but visible with reverse engineering
- Subarrays provide Rowhammer isolation [mFIT 2021]
 - Each subarray is physically-separated by I/O circuitry


	DRAI	M BA	NK ()	
	C0	C1	C2	C3	Microarchitectura
RO	0	1	1	0	Implementation
R1	1	1	0	1	
R2	1	0	1	1	
R3	0	1	0	0	

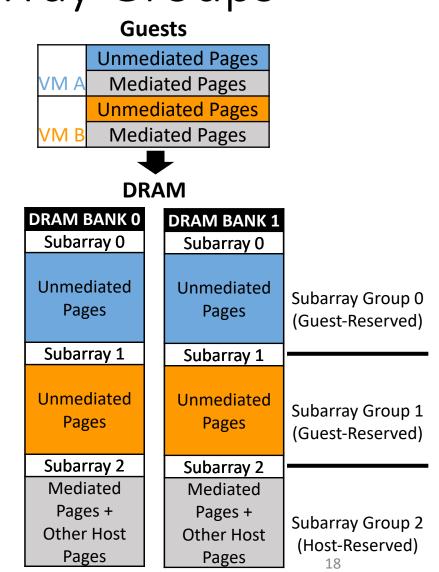
		DRAI	M BA	NK C	
		C0	C1	C2	C3
al		Sub	barra	y 0	
	RO	0	1	1	0
	R1	1	1	0	1
		Sub	barra	y 1	
	R2	1	0	1	1
	R3	0	1	0	0


Siloz Insight: Provide Isolation via Subarray *Groups*

- A subarray group is comprised of a subarray from each bank
- Security benefit: subarray groups still provide subarray-level isolation
- Performance benefit: subarray groups preserve bank-level parallelism

Factors Affecting Subarray Group Size

- Subarray group size is the product of 3 system factors
 - Number of interleaved banks (ex: 192)
 - Rows per subarray (ex: 1024)
 - Row size (ex: 8 KiB)
 - **192** * **1024** * **8 KiB** = 1.5 GiB Subarray Group


• Finer-grained subarray group sizes are possible (see paper)

Siloz Outline

- Background: What We Want, and Why We Don't Have It
- Subarray Group Primitive
- Siloz Hypervisor Design
- Evaluation

Siloz Places VMs in Private Subarray Groups

- Siloz places guest pages according to preexisting **mediation status**
- Unmediated page: guest can access without host intervention
 - Guest can trivially-hammer unmediated pages
- Mediated page: traps to host on all accesses
 - Host can trivially rate-limit attempted hammering

Provisioning Private Subarray Groups via NUMA

- Requirement: Siloz must manage DRAM as subarray group partitions
- Existing NUMA support already provides DRAM partition management!

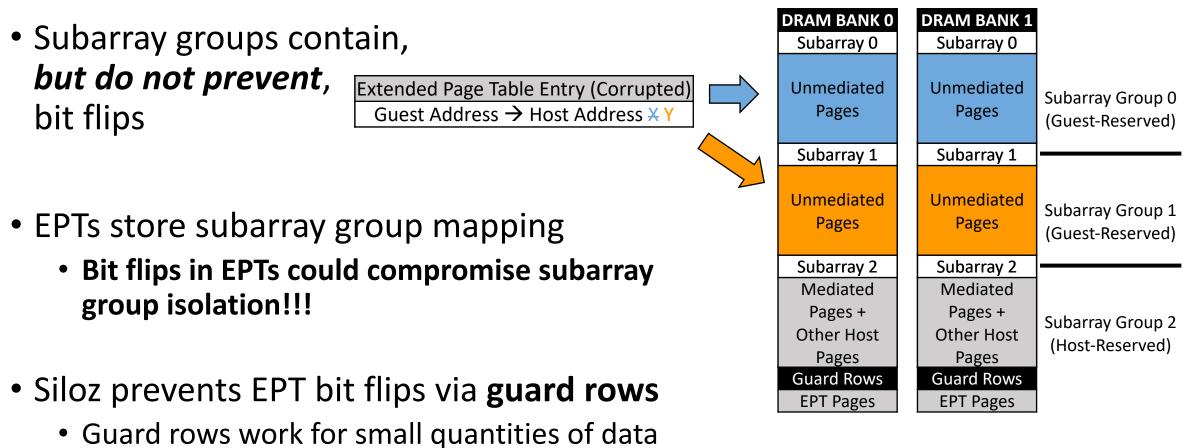
DRAM

DRAM BANK 1

Subarray 0

Unmediated

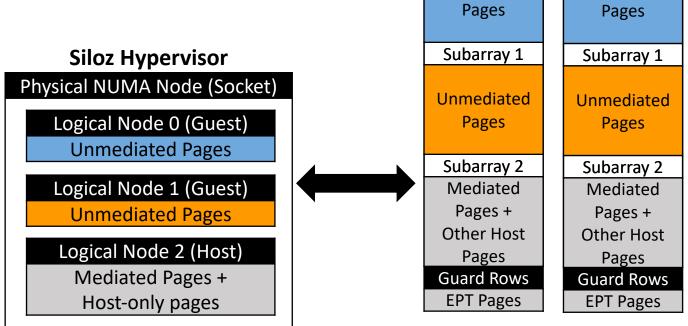
DRAM BANK 0


Subarray 0

Unmediated

 Siloz extends physical NUMA node support (socket-level) to manage DRAM as logical NUMA nodes (subarray groups)

Is Isolation Enough for Extended Page Tables (EPTs)?



DRAM

• EPTs + guard rows: 0.024% of DRAM

Recapping Siloz Design

- Siloz places VMs in private subarray groups
- Siloz manages subarray groups via logical NUMA nodes
- Siloz protects the subarray group mapping via guard rows

Guests

VM A

VM B

DRAM BANK 0

Subarray 0

Unmediated

Unmediated Pages Mediated Pages

Unmediated Pages Mediated Pages

DRAM BANK 1

Subarray 0

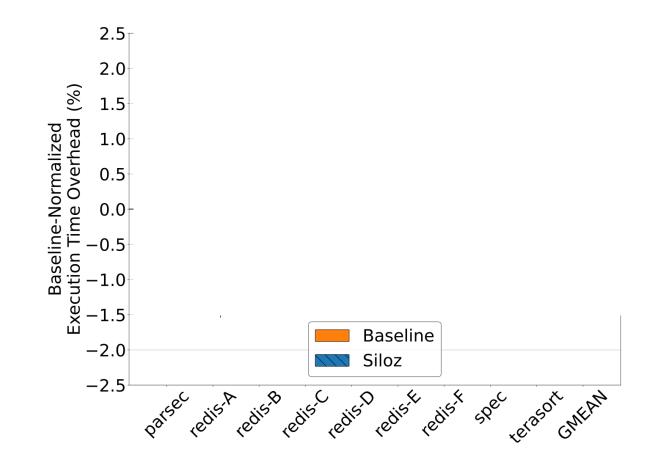
Unmediated

DRAM

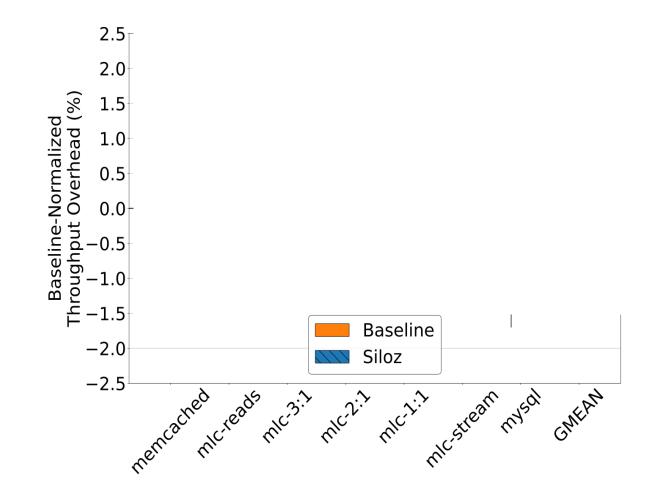
Accounting for DRAM-Internal Remaps

- DIMMs can internally remap rows
 - Risks violating subarray group isolation!
 - See paper for how we handle remaps

Dia	Even	Rank	Odd Rank		
Bit	A-side	B-side	A-side	B-side	
b_0	b_0	b_0	b_0	b_0	
b_1	b_1	b_1	b_1	b_1	
b_2	b_2	b_2	b_2	b_2	
b_3	b_3	! b3	b_4	! b4	
b_4	b_4	! b4	<i>b</i> ₃	! b3	
b_5	b_5	! b5	b_6	! b ₆	
b_6	b_6	! b ₆	<i>b</i> ₅	! b5	
b_7	b_7	! b7	b_8	! b ₈	
b_8	b_8	! b ₈	b 7	! b 7	
b_9	b_9	! b9	<i>b</i> 9	! b9	
b_{10}	b_{10}	b_{10}	b ₁₀	b_{10}	


Siloz Outline

- Background: What We Want, and Why We Don't Have It
- Subarray Group Primitive
- Siloz Hypervisor
- Evaluation


Siloz Evaluation Methodology

- Siloz is evaluated against Ubuntu 22.04 LTS baseline
- Host is a major cloud provider Intel Skylake server configuration
- Security verified via Rowhammer fuzzer [Blacksmith, 2022]
 - Siloz contains bit flips to subarray groups + prevents EPT bit flips
- Performance effects measured across variety of benchmarks
 - Cloud workloads (ex: memcached)
 - Intel Memory Latency Checker (MLC)
 - SPEC CPU 2017 + PARSEC 3.0

Siloz's Effect on Execution Time is Negligible

Siloz's Effect on Throughput is Also Negligible

Siloz Recap

- **Objective:** prevent inter-VM hammering with negligible effect on performance
- Approach: isolate VMs to private subarray groups
- **Deliverable:** Linux/KVM implementation provides comprehensive protection within ±0.5% of baseline average performance
- Broader Impact: 1st step toward managing DRAM as set of isolated domains


Thank You!

Jonah Rosenblum

Stefan Saroiu

Alec Wolman

Dimitrios Skarlatos

Baris Kasikci

QUESTIONS?

Siloz: Leveraging DRAM Isolation Domains to Prevent Inter-VM Rowhammer

Kevin Loughlin

Jonah Rosenblum, Stefan Saroiu, Alec Wolman, Dimitrios Skarlatos, Baris Kasikci

UNIVERSITY of MICHIGAN

