ServiceRouter

HYPERSCALE AND MINIMAL COST SERVICE MESH AT META

Harshit Soteris Nick Max Josh Margot Dimitrios Hitesh Chungiang

Saokar Demetriou Magerko Kontorovich Kirstein Leibold Skarlatos Khandelwal Tang

1 1,2 1 1 1 1 1,3 1

1 2 3
Imperial College Carnegie Mellon University
N Meta Gh S G e,

London Computer Science Department

01 Background & Motivation

01 Background & Motivation

Machine 1 Machine 2 Machine 3 Machine 4

A
E Huye et al. Lifting the veil on Meta's microservice architecture: Analyses of topology and request workflows. USENIX ATC ‘23

3

01 Background & Motivation

RPC
Frameworks

* No Advanced Load Balancing

- Need external support for service
discovery

- Examples: gRPC, Thrift

Machine 2 Machine 3 Machine 4

01 Background & Motivation: Service Mesh

CONTROL PLANE

L7 Proxy pusssssssssd L7 Proxy

L7 Proxy

Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

L7 Proxy

L7 Proxy

REGION A REGION B

01 BACKGROUND & MOTIVATION

Service Mesh
Challenges

« [SCALABILITY] How can we scale
service discovery to O(109) clients and
proxies?

Service

O(106)

01 BACKGROUND & MOTIVATION Istio: 0.35vCPU for O(103) rps

1,750,000 AWS t4g.small VMs for 10B rps

Service Mesh €m oy

— =
Challenges ean_ 0O(109)
RPS ——

« [SCALABILITY] How can we scale

service discovery to O(108) clients and A SerV|Ce
proxies?
« [HW COST] How to minimize HW cost?

01 BACKGROUND & MOTIVATION

Service Mesh

Challenges

[SCALABILITY] How can we scale service _ _
discovery to O(106) clients and proxies? Machine 2 Machine 3

[HW COST] How to minimize HW cost?

[RPC LATENCY & LB] How to Zhu et al show that Istio MRPC shows that a sidecar approach:
simultaneously minimize RPC latency and _ o
load balance across geo-distributed * increases the latency by 185% » increases P99 RPC latency by 180%
hosts?

%

Chen, et al. Remote procedure call as a managed
system service. NSDI ‘23

Zhu et al. Dissecting Service Mesh Overheads.
In arXiv preprint arXiv:2207.00592, 2022.

%

- Sidecars add extra latency

01 BACKGROUND & MOTIVATION

Service Mesh
Challenges

[SCALABILITY] How can we scale service
discovery to O(109) clients and proxies?

[HW COST] How to minimize HW cost?

[RPC LATENCY & LB] How to
simultaneously minimize RPC latency and
load balance across geo-distributed
hosts?

- Sidecars add extra latency
- O(10-104) hosts per service

- P90 cross-region latency: 106ms

100%
90%
80%
70%
60%
50%

CDF

LOAD §\-\

l ' LOAD

&=V /0

L7 Proxy

Machine 1

30%
20%
10%

0%

P99

L7 Proxy

Service B

Machine 2 Machine 3 Machine 4

REGION A

0 15 30 45 60 /5 90 105 120 135 150 165

RTT across different regions (ms)

g\-, CONTROL PLANE

LOAD

L7 Proxy

Machine 5

REGION B

03 ServiceRouter

KEY DESIGN CONCEPTS

10

03 KEY DESIGN CONCEPTS

RIB

Routing Information Base

>
Decentralize the unscalable part of the control

plane in order to scale out.

T

Independent controllers execute different
functions such as registering services and
generating a per-service cross-region
routing table.

The data distribution layer massively

replicates the RIB so that there are log_d config_d
suff|.0|ent RIB. r.epllcas to h'?mdle read T
traffic from millions of proxies. SR Sidecar
RIB

Each proxy self-configures and self-
manages without the control plane’s direct :
manas P Service A
Involvement.

Machine 1

11

CONTROLLERS

dl» : Service Discovery Info

* Per-service routing config

- Cross-region service routing info

1
_ _

— I~ — I~

log_d config_d RIB_d log_d config_d RIB_d

<> >
SR Sidecar SR Sidecar
==! RIB
Service A Service A
Machine 2 Machine 3

Data Distribution Layer

03 KEY DESIGN CONCEPTS

Versatility

Controllers are agnostic to the L7 architecture.

Routing metadata traffic Application RPC traffic

‘ Routing Info Base (RIB) |

‘ Routing Info Base (RIB) |

‘ Routing Info Base (RIB) |

e — . .
E- SRLookasideService ‘ Routing Info Base (RIB) |

Machine | . :
- N Machine . .\ Machine) . Machine (\
S Server | Server Server . Server
[RIBDaemonJ N J | [Client SRLib } - g — - 7 S J
e . 2 (Server h SRProxy f : N [— <RP J - . N
erver erver -mm, roxy erver
[J - J N J N\ J - J
Client | SRLib [- }
Client (SRLD Cient |
[Server } 'en [Server } Client [Server } m [Server }
(a) SRLib (b) SRLookaside (c) SRSidecarProxy (d) SRRemoteProxy

990/ RPC traffic routed
O through SRLib. .

03 KEY DESIGN CONCEPTS

RIB_d

SRLib

Provide the service-mesh functions out of a
library that is directly linked into the RPC
client’s executable

Service A

Eliminates side car latency overhead

Run a separate RIBDaemon on the client
machine to cache miniRIB.

Performance isolation between service
discovery and routing.

13

03 KEY DESIGN CONCEPTS

LATENCY RINGS
AND CROSS-
REGION
ROUTING

SR strives to simultaneously minimize RPC
latency and balance load across global
regions.

- SR introduces the concept of latency rings
to minimize latency.

Ring1 : 5ms | Ring2 : 35ms | Ringsz : 80ms | Rings : o

14

Ring1 : 5ms | Ringz2 : 35ms | Ringsz : 80ms | Ring4 : o

03 KEY DESIGN CONCEPTS

LATENCY RINGS
AND CROSS-
REGION
ROUTING

SR strives to simultaneously minimize RPC
latency and balance load across global
regions.

LOAD

LOAD

- SR introduces the concept of latency rings

to minimize latency. Servers in Ring1 are overloaded!

LIy - (OIUIRN b

Rings : 80ms

Rings :
15

03 KEY DESIGN CONCEPTS

LATENCY RINGS
AND CROSS-
REGION
ROUTING

SR strives to simultaneously minimize RPC
latency and balance load across global
regions.

SR collects per-service global traffic and
load information, computes a per-service
cross-region routing table, and
disseminate it to L7 routers to guide their
local routing decisions.

LOAD RPS

Cross-region Routing Service (xRS)

ing: : 56% | Ring2 : 35ms 6b%Rings : 80ms

Load threshold for Rings

16

| [Bfgy :

04 ServiceRouter

OVERALL ARCHITECTURE

17

04

CONTROL PLANE

DATA PLANE

ServiceRouter Architecture

Latency Monitoring
Service

. Cross- Twine
Routing region
Config Latency
Config
Logging Configerator
A
N SosP 18
Iog;_d con?ig_d Iog._d conffg_d Iogid

SRLib

SRLib

Service B

Machine 1 Machine 2

18

oo 20

SRProxy

Machine 3

A
Tsosp 21
Shard
Manager

cross-region Routing Service (xRS)

Global Registry Service (GRS)

peﬁ;d

Service C

Machine 4

04

CONTROL PLANE

ServiceRouter Architecture

Latency Monitoring
Service

N osor 20 Jll Nsoor o1

| Shard | _ _
| Cross- Twine cross-region Routing Service (xRS)
Rout|ng region Manager
Config Latency
Config
Logging Configerator Global Registry Service (GRS)

| s0sP 15

log_d config_d RIB_d

SRLib

SRProxy

Service B

Machine 1 Machine 2 Machine 3

19

Service C

Machine 4

04

CONTROL PLANE

DATA PLANE

ServiceRouter Architecture

Latency Monitoring
Service

/

. Cross- Twine
Routing region

Config Latency
Config

v

Logging Configerator

log_d config_d RIB_d

SRLib

Service B

Machine 1 Machine 2

20

N osor 20

SRProxy

Machine 3

A
. SOSP ‘21
Shard
Manager

cross-region Routing Service (xRS)

Global Registry Service (GRS)

peﬁ;d

Service C

Machine 4

05 ServiceRouter

EVALUATION

21

05 EVALUATION

O(10) O(108) O(109) O(1014)
Scalability
L7 Routers

Overall scale RegionS _ RPS B/sec
Clients

- Regions
 Routers/Clients/Servers

* Throughput

22

05 EVALUATION

Scalability

RIB - Routing Information Base
RIB Replicas
RIB Write bandwidth
RIB Write throughput

Data Distribution Layer

O(1012)

O(10)

Paxos
Acceptors

O(102)
commits/
sec

O(1083)

Paxos
Learners

05 EVALUATION

Cost

METHODOLOGY

Metrics: P50 avg request latency; CPU
Instructions per request

Designs

- Baseline: Thrift RPC
- SRLib

- Remote SRProxy
Simulated Payload:

- Production avg request and avg
response size

- O(10%) B
100K requests

3 trials per design

600000

450000

300000

150000

CPU Instructions/Request

24

273.4%

Thrift Client

107.4%

SRLib Client

SRProxy (Client + Proxy)

05 EVALUATION

Cross-Region
Load Shift

Real-world Example

TODO - recreate plot with animated
components (maybe just show RO and R2)
and show incident step-by-step. Refine
verbal explanation to be time-efficient.

100

90

80

70

Load

60

50

40

30

09:50

09:55

25

10:00

10:05

—— Region 0
—— Region 1
-- — Region 2
—— Region 3
Region 4
""" —— Region 5
___ —— Region 6
Region 7
—— Region 8
—— Region 9
—— Region 1
‘\-0
E@ . /AL
—
i P ——d
S < N
< e e ==
e W
\, m_/_\/-\
10:10 10:15 10:20 10:25
Time

0

10:30

ServiceRouter’s massive RIB replication allows decentralizing L7
router management and to scale to millions of routers and
proxies.

SerV|Ce ROUter ServiceRouter routes 99% of the traffic with an optimized
AVPERSEALE AE WLITSALE COST SELUTICE WESH AT WEk embedded library approach with astounding HW savings.

06 Summary

ServiceRouter’s source-based locality rings and xRS strike a
balance between latency wins and load balancing.

Built-in support for sharded services which account for 68% of
our RPCs [not covered in this talk].

Soteris Demetriou | s.demetriou@imperial.ac.uk

26

mailto:s.demetriou@imperial.ac.uk

Soteris Demetriou | s.demetriou@imperial.ac.uk

mailto:s.demetriou@imperial.ac.uk

0X Design Comparison

Attributes

Description

Al: HW cost

No extra hardware cost for proxy or lookaside service.

A2: fast RPC

No overhead on the critical path of application RPC traffic,
thanks to direct RPCs from client to server without the
overhead of going through an intermediate proxy.

A3: RPC avail | Higher availability for application RPCs as RPCs do not go
through a remote proxy outside the client machine.

A4: fast RIB |No overhead to access Routing Information Base (RIB)
outside the client machine thanks to local RIB caching.

AS: RIB avail | Higher availability for application RPCs thanks to access
to locally cached RIB without dependency on remote RIB.

A6: save mem | No extra memory usage on the client machine thanks to the
elimination of the local RIB cache.

A7:adv. LB |Support complex load-balancing algorithms.

A8: miniRIB |Low overhead in replicating and caching RIB thanks to only

fetching the actively used parts of RIB.

A9:unchgcodel No need for application source code modification.

Service Al:| A2: | A3:| A4: | A5: | A6: | A7: | A8: | A9: | A10:
Mesh HW | fast | RPC| fast | RIB | save | adv. | mini | unchg| share
Alternatives cost [RPC|avail | RIB |avail{mem| LB | RIB | code | conn
Istio [14] X | X\ /||| XXX
SRLib A A A R A I 4 VI V| XX
SRsidecarproxy | X | X |V |V | V/ I /X
SRremoteproxy | X | X | X |/ |/ |V |V |V | V/ v
SR lookaside I X\ X\ VI /X X
eBPF mesh [17] vV INNAINAINA| X |[NA| v/ | X

Al0:
share conn

Benefits of multiple clients sharing a proxy, e.g., better load
balancing or connection reuse (Figure 6).

28

OX Measured limitations of sidecar

Zhu et al show that Istio
- adds 92% extra CPU usage

* Increases the latency by 185%

MRPC shows that a sidecar approach:
* increases P99 RPC latency by 180%
» decreases throughput by 44%

Xiangfeng Zhu, Guozhen She, Bowen Xue, Yu Zhang, Yongsu Zhang, Xuan Kelvin
Zou, Xiongchun Duan, Peng He, Arvind Krishnamurthy, Matthew Lentz, Danyang

Zhuo, and Ratul Mahajan. Dissecting Service Mesh Overheads. In arXiv preprint
arXiv:2207.00592, 2022.

JingrongChen, YongjiWu,ShihanLin, YechenXu,Xin- hao Kong, Thomas Anderson,
Matthew Lentz, Xiaowe1l Yang, and Danyang Zhuo. Remote procedure call as a
managed system service. In 20th USENIX Sympo- sium on Networked Systems Design
and Implementation (NSDI 23), pages 141-159, Boston, MA, April 2023. USENIX

Association.

29

05

Evaluation - Scalability

Components Scale and Comment

Datacenter regions (O(10)

L7 routers O(10%)

RPC clients 0(10°)

RPC servers O(10%)

RPCs per second 0(10”)

GRS, O(10%). The aggregate peak bandwidth consumption

of all GRS, 1s O(10) TB/sec. This demonstrates the
importance of decentralizing part of the control plane
and making L7 routers self-managing in order to scale.

SRProxy machines

O(10°). Currently, 99% of our RPC traffic is routed by
SRLib while the rest 1% is mostly routed by O(103)
SRProxies. If 100% of our traffic were to be routed by
SRProxy without using SRLib, it would require O(10°)
SRProxy machines, a hefty hardware cost.

Cluster managers |O(10?)

Shard managers 0(10?%)

xRS machines 0(10%)

LMS machines O(1)

CMS machines O(10)

RIB size 0(10°) Bytes for Paxos acceptors; 0(10'%) Bytes for
distribution layer; O(1015) Bytes for GRS_d

Write bandwidth to|O(10°) Bytes/sec

the RIB master

Write throughput to|O(10%) commits/second

the RIB master

30

RIB replicas

0(10°%)

05 EVALUATION

Cost

METHODOLOGY

Metrics: P50 avg request latency; CPU
Instructions per request

Designs

- Baseline: Thrift RPC
- SRLib

- Remote SRProxy
Simulated Payload:

- Production avg request and avg
response size

- O(10%) B
100K requests

3 trials per design

900

675

450

225

P50 Request Latency

106.8%

Thrift Client

SRLib Client
31

SRProxy (Client + Proxy)

05 EVALUATION

P50 Request Latency
COSt 00 B Thrift B SRLib B SRProxy

METHODOLOGY

Metrics: P50 avg request latency; CPU
Instructions per request

1350
Period: 1 day

Designs

- Baseline: Thrift RPC

- SRLib 900
- Remote SRProxy

Simulated Payload:

- Small: 10-1x of production

- Production: Avg request and response 450

size
- Large: 10x of Production

100K requests

3 trials per design Small Production Large

32

05 EVALUATION

Cost

METHODOLOGY

Metrics: P50 avg request latency; CPU
Instructions per request

Period: 1 day

Designs

- Baseline: Thrift RPC

- SRLib

- Remote SRProxy
Simulated Payload:

- Small: 10-1x of production

- Production: Avg request and response
size

- Large: 10x of Production
100K requests

3 trials per design

1800000

1350000

900000

450000

CPU Instructions

B Thrift Client

Small

B SRLib Client

Production

B SRProxy (Client & Proxy)

33

Large

- Remote

0X Support for sharding services

2.5 Service A replicas: Service B replicas:
5 Aggregate requests per second for sharded services IP1:portl IP3:port3
= 2 f :) | IP2:port2 shardO [primary, 0, 100)
I‘_E shard5 [secondary, 500, 900)
'g - IP4:port4
© 1 shard3 [secondary, 300, 500)
& /\,\/\/\,J\,\/\M shard5 [secondary, 500, 900)
0.5 Aggregate requests per second for unsharded services shard9 [secondary, 900, 2000)
IP5:port5
0 shardO [secondary, 0, 100)
9/5/22 9/6/22 9/7/22 9/8/22 9/9/22 9/10/22 9/11/22 shard3 [primary, 300, 500)
Time shard5 [primary, 500, 900)
Figure 13: Total traffic for sharded vs. unsharded services. Figure 8: Examples of GRS’s service registry records.

SRClient *cln = SR_get_client("ServiceB", 618/*key*/, SECONDARY); cln->foo(); // Call RPC foo().
34

Load Estimation and Load Balancing

1.4 = Avg Normalized Outstanding Requests (U)
==wé= Avg Normalized CPU Usage (S)
--&= (Qutstanding Requests CV (U)
1.2 === CPU Usage CV (S)

4

1.0
0.8
o
S
—
0.6
0.4
02 :_:—:—. r—y—3$ e T S a— g— . =3 S— S G— e— g— ._,0
: “:L——E‘.—-@:_:\- ¥ "-t—#—#_z.-;?—-'q!_“ T ﬂ;. v — __._—t——__ '?"id:-——__g—g‘:-‘\:‘w' : {::
0.0 S A — : ; ! — N e $—e -— < ——o—
N Ot O S N Sy N NV N
N N N N S S N N N
& & &> & & & & & &
S S S S S S S S S

Date (MM-DD HH) 35

03 KEY DESIGN CONCEPTS

LOAD RPS

LATENCY RINGS

AN D C ROSS- Cross-region Routing Service (xRS) | |
REGION e
ROUTING P; from Region i to be

routed to Region |

SR strives to simultaneously minimize RPC
latency and balance load across global
regions.

Global Registry Service (GRS)

SR collects per-service global traffic and
load information, computes a per-service
cross-region routing table, and
disseminate it to L7 routers to guide their
local routing decisions.

36

0X

XxRS: Cross-routing Service Example

100

90

80

70

60

Load

50

40

30

09:50

09:55

10:00

10:05

10:10
Time

10:15

—— Region 0
— Region 1
— Region 2
—— Region 3
—— Region 4
—— Region 5
—— Region 6

Region 7

—— Region 8
—— Region 9
— Region 10

10:20 3

7

10:25 10:30

HW Awareness

38

RPC Connection Reuse

39

