
Chapter 1

Sequence Alignment

The goal of pairwise sequence alignment is to establish a correspondence between the elements
in a pair of sequences that share a common property, such as common ancestry or a common
structural or functional role. In computational biology, the sequences under consideration
are typically nucleic acid or amino acid polymers. We will consider three variants of the
pairwise sequence alignment problem: global alignment, semi-global alignment, and local
alignment.

Global alignment is used in cases where we have reason to believe that the sequences are
related along their entire length. If, for example, sequences s1 and s2 are two independent
sequencing runs of the same PCR product, then they should differ only at those positions
where there are sequencing errors. In order to find those sequencing errors, we align all of
sequence s1 with all of sequence s2. Other applications of global alignment include finding
mutations in closely related gene or protein sequences and identification of single nucleotide
polymorphisms (SNPs).

Semi-global alignment is a variant of global alignment that allows for gaps at the
beginning and/or the end of one of the sequences. Semi-global alignment is used in
situations where we believe that s1 and s2 are related along the entire length of the region
where they overlap. For example, if s1 is the open reading frame of a eukaryotic gene with
a single exon and s2 is the mRNA transcript produced when s1 is expressed, every base
in s1 should correspond to some base in s2. Semi-global alignment “jumps” over the 5′

untranslated region in s2 without exacting a penalty, but forces an alignment along the
entire length of s1.

In contrast, local alignment addresses cases where we only expect to find isolated regions
of similarity. One example is alignment of genomic DNA upstream from two co-expressed
genes to find conserved regions that may correspond to transcription factor binding sites.
Another application is identification of conserved domains1 in two amino acid sequences

1A domain is a peptide sequence that encodes a protein module that will fold into its characteristic

Computational Molecular Biology. Copyright c©2019 D. Durand. All rights reserved. 1

Chapter 1 Sequence Alignment

that encode proteins that share one or more domains, but are otherwise unrelated.

Prior to introducing algorithms for these pairwise alignment problems, we introduce
some notation in Box 1.

1.1 Global pairwise alignment

Now that we have some notation to work with, we will introduce a formal definition of a
global alignment. Next we will consider how to assign a numerical score to an alignment.
The score represents an assessment of the quality of the alignment. Finally, we will introduce
an efficient algorithm to find the alignment that is optimal with respect to a scoring function.

Let Σ′ = Σ ∪ { } be the alphabet expanded to include a character to represent gaps.
Given sequence s1 ∈ Σ∗ of length n1 and sequence s2 ∈ Σ∗ of length n2, ακ(s1, s2) = {sκ, sκ2}
is a global alignment of s1 and s2 if and only if

• sκ1 , sκ2 ∈ (Σ′)∗,

• |sκ1 | = |sκ2 | = lκ, where max(n1, n2) ≤ lκ ≤ n1 + n2,

• s1 is the subsequence obtained by removing ‘ ’ from sκ1 and s2 is the subsequence
obtained by removing ‘ ’ from sκ2 ,

• there is no value of i for which sκ1 [i] = sκ2 [i] = ‘ ’.

There are many alignments of s1 and s2. The superscript κ is an index to designate a
specific alignment. In situations where only one alignment is under consideration or there is
no ambiguity, we use the simpler notation α(s1, s2) = {s′1, s′2}, where the length of α(s1, s2)
is simply denoted l.

Our goal is to find the global alignment that best captures the relationship between s1

and s2. Which alignment best reflects the relationship between s1 and s2 is fundamentally
a biological question. From a practical perspective, we use a mathematical approach: We
introduce an objective criterion that provides a measure of the quality of an alignment and
then seek the alignment, α∗(s1, s2), that optimizes that criterion. There may be more than
one.

1.1.1 Scoring an alignment

Given sequences s1 and s2 and an alignment ακ(s1, s2) = {sκ1 , sκ2}, it is convenient to assign
a score to alignment ακ that quantifies how well ακ captures the relationship between s1

and s2. This score may be a minimization or a maximization criterion.

shape independent of the surrounding amino acid context and that is found in many different proteins.

2 Computational Molecular Biology. Copyright c©2019 D. Durand. All rights reserved.

1.1 Global pairwise alignment

Box 1: Notation for pairwise alignment

Alphabet:

An alphabet, denoted by Σ, is a finite, unordered set of symbols; e.g.,

DNA: ΣD = {A,C,G, T}
RNA: ΣR = {A,C,G,U}
Amino acids: ΣAA = {A,C,D,E, F,G,H, I,K,L,M,N,
P,Q,R, S, T, V,W, Y }

Sequences or Strings:

A sequence or string, s, is a finite succession of the symbols in Σ.

Σ∗ denotes the set of all sequences over alphabet Σ, in-
cluding the empty sequence, ∅. For example, Σ∗R =
{∅, A,C,G,U,AA,AC,AG,AU,CA,CC,CG,CU, . . .}.
Given a sequence s of length n, we use s[1]s[2] · · · s[n] to denote the symbols
in s.

Subsequences:

A subsequence of s is any sequence obtained by removing zero or more symbols
from s. The sequences CATA and CTG are subsequences of CATTAG. AATTCG is
not.

A proper subsequence is a subsequence obtained by removing one or more
symbols from s.

Substrings:

A substring of s is a subsequence of s consisting of consecutive symbols in s.
Given a sequence, s, of length n, the substring that begins with s[i] and ends
with s[j] is denoted s[i . . . j], 1 ≤ i ≤ j ≤ n. The sequence CAT is a substring
of CATTAG. CATA is not.

A prefix of s is denoted s[1 . . . j], j ≤ n.

A suffix of s is denoted s[i . . . n], 1 ≤ i.

Computational Molecular Biology. Copyright c©2019 D. Durand. All rights reserved. 3

Chapter 1 Sequence Alignment

Distance scoring: An alignment can be scored using a distance-based metric. This is
a minimization criterion: a lower distance indicates a better alignment. We define the
distance score of an alignment ακ(s1, s2) = {sκ1 , sκ2} to be

D
(
ακ(s1, s2)

)
= D(sκ1 , s

κ
2)

=

lκ∑
i=1

d(sκ1 [i], sκ2 [i]),
(1.1)

where d(x, y) is the distance between a pair of symbols x and y in Σ′ and lκ is the length of
the alignment. The optimal alignment, denoted α∗, is the alignment that minimizes the
distance between s and t:

α∗(s1, s2) = argmin
κ

D
(
ακ(s1, s2)

)
.

The function specifying the distance between pairs of symbols must satisfy the following
properties, for all x, y, and z in Σ′:

1. d(x, x) = 0
2. d(x, y) > 0
3. d(x, y) = d(y, x)
4. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

Several properties of the distance scoring function are worth noting. First, D(sκ1 , s
κ
2)

is a metric; that is, it satisfies the triangle inequality. This means that the penalty for
replacing x with y is never improved by first replacing x with z and they replacing z with
y. When z = ‘ ’, this says that deleting x and then inserting y is never an improvement on
a direct substitution of x with y. One consequence of the triangle inequality is that the
cost of a substitution can never be greater than twice the cost of an indel. Intuitively, this
makes sense: Alignments obtained by minimizing a function where one substitution costs
more than two indels would contain no substitutions. With such a function, an alignment
in which x is aligned with y could always be replaced by a lower cost alignment in which x
and y are both aligned with gaps.

Second, the symmetric property, d(x, y) = d(y, x), implies that there is no directionality
in the scoring system. This is because, given a column with symbols x and y in a pairwise
alignment, we have no way of knowing whether the ancestral symbol was an x that was
later replaced by a y, or vice versa. It is also possible that the ancestor was neither x nor y
and some combination of substitutions gave rise to x in one sequence and to y in the other.
Similarly, when a symbol, x, in sequence s1 is aligned with a gap in sequence s2 (or vice
versa), there is no way to know whether x was inserted in s1 or deleted from s2. For this
reason, gaps are also called “indels.”

4 Computational Molecular Biology. Copyright c©2019 D. Durand. All rights reserved.

1.1 Global pairwise alignment

If d(x, y) = 1 and d(x,) = 1, ∀x, y, then D
(
α∗(s1, s2)

)
corresponds to the minimum

number of operations required to transform s1 into s2, where the operations are substitution,
insertion, and deletion. This is called the edit distance. If d(x, y) > 1 or d(x,) > 1 or both,
then D(α∗(s1, s2)) is called the weighted edit distance.

Similarity scoring: Alignments can also be scored with similarity measures. These are
maximization criteria: a higher score indicates a better alignment. The similarity score of
ακ(s1, s2) = {sκ1 , sκ2} is

S(αk(s1, s2)) =

lκ∑
i=1

p(sκ1 [i], sκ2 [i]), (1.2)

where p(x, y) is a score that reflects the similarity of x and y and p(x,) is the gap score.
The optimal alignment is the alignment that maximizes the similarity between s1 and s2:

α∗(s1, s2) = argmax
κ

S
(
ακ(s1, s2)

)
.

In general, amino acid alignments are scored with substitution matrices that assign a
different similarity score to each pair of amino acid residues. Typically, pairs of amino acids
with similar properties have higher scores than pairs with divergent properties. Examples
of substitution matrices used to score alignments include the PAM and BLOSUM matrices.
We will discuss how such substitution matrices are derived later in the semester. For now,
we consider a simple similarity scoring function that treats all symbols in Σ equally. This
simple scoring function has just three values; a score for matching symbols (M), a score for
a mismatch (m), and a gap score (g):

p(x, x) = M,

p(x, y) = m,

p(x,) = g.

(1.3)

In order to obtain alignments that make sense with similarity scoring, several constraints
are imposed on the values of M , m, and g. First, we require that M > m, because matches
are preferred over mismatches. We further require that a substitution be preferred over two
gaps (i.e., m > 2g). A scoring function with m < 2g would exclude the possibility of an
alignment with substitutions, because the score of any substitution could be improved by
replacing it with two gaps.

Note that for both distance and similarity scoring, the score of an alignment is defined to
be the sum of the scores for the individual positions in the alignment (Equations 1.1 and 1.2),
which implies that each position in the alignment is independent of neighboring positions.
This assumption is unrealistic: In real biomolecular sequences, there can be interactions
between neighboring, or even distant, residues in the sequence. However, scoring functions
that assume positional independence are widely used because they greatly simplify the
calculation of alignment scores and other mathematical analyses.

Computational Molecular Biology. Copyright c©2019 D. Durand. All rights reserved. 5

Chapter 1 Sequence Alignment

1.1.2 A dynamic programming algorithm to align a pair of sequences

We now have a formal definition of an alignment and a way of assigning a numerical score
to any given alignment. How do we find the alignment with the optimal score? We could
generate all possible alignments, score each one, and choose the alignment with the best
score. However, the computational cost would be prohibitive, since the size of the space of
all possible alignments of s1 and s2 is O(2n1+n2). (Convince yourself this is the case.)

Dynamic programming can be used to find the optimal alignment efficiently. This
strategy takes advantage of the fact that every prefix of an optimal pairwise alignment is
the optimal alignment of a prefix of s1 and a prefix of s2. This means that the optimal
alignment of pairs of progressively longer prefixes of s1 and s2 can be obtained by extending
the optimal alignment of shorter prefixes of s1 and s2. It is not necessary to examine a
suboptimal alignment of prefixes in order to find the optimal alignment of the full length
strings.

The dynamic programs for all three sequence alignment problems compute a matrix A,
where A[i, j] is the score of the optimal alignment of the prefixes s1[1..i] and s2[1..j], that
is, the prefixes of s1 and s2 that end at positions i and j, respectively.

Dynamic programming algorithms for sequence alignment have four components:

• Initialization of the first row and column of A.

• A recurrence relation that specifies how to calculate the value of A[i, j], i > 0, j > 0,
from the values of neighboring cells.

• Determination of the score of the optimal alignment from the entries in matrix A.

• A procedure to trace back through the matrix to obtain the optimal alignment.

The details of each of these steps are what differentiate global, semi-global, and local
alignment. In all cases, the dynamic program proceeds from the upper left to the lower
right corner of A, calculating the cost of progressively longer optimal alignments of prefixes.
The details of dynamic programming for global alignment are given below for both distance
and similarity scoring functions.

Global alignment with distance scoring:

Input:

Sequences s1 and s2 of lengths n1 and n2, respectively.

Initialization:

A[0, j] = A[0, j − 1] + d(, s2[j]) (top row)

A[i, 0] = A[i− 1, 0] + d(s1[i],) (left column)

6 Computational Molecular Biology. Copyright c©2019 D. Durand. All rights reserved.

1.1 Global pairwise alignment

Recurrence:

A[i, j] = min


A[i− 1, j] + d(s1[i],)

A[i− 1, j − 1] + d(s1[i], s2[j])

A[i, j − 1] + d(, s2[j])

(1.4)

Store the indices of the entry (or entries) in A that minimize the right hand side of
Equation 1.4 in an n1 x n2 matrix, T , which we call the traceback matrix.

Trace back:

Follow the pointers from T [n1, n2] to T [0, 0] to obtain the optimal alignment.

Output:

The optimal alignment score, A[n1, n2].

The optimal global alignment of s1 and s2 with respect to distance function, D.

The dynamic programming algorithm for global alignment with similarity scoring has
the same general structure as the global alignment algorithm for distance scoring. However,
the details of the initialization and recurrence differ.

Global alignment with similarity scoring:

Initialization:

A[0, j] = A[0, j − 1] + g

A[i, 0] = A[i− 1, 0] + g

Recurrence relation:

A[i, j] = max


A[i− 1, j] + g

A[i− 1, j − 1] + p(i, j)

A[i, j − 1] + g

(1.5)

Store the indices of the entry in A that maximize the right hand side of Equation 1.5
in a traceback matrix, T .

Traceback:

From T [n1, n2] to T [0, 0] to obtain the optimal alignment.

Output:

Computational Molecular Biology. Copyright c©2019 D. Durand. All rights reserved. 7

Chapter 1 Sequence Alignment

The optimal alignment score, A[n1, n2].

The optimal global alignment of s1 and s2 with respect to similarity function, s1.

At each step, the algorithm computes the value of A[i, j] from the values of A[i −
1, j],A[i, j − 1], and A[i− 1, j − 1]. With distance scoring, all entries in A are non-negative,
since d(x, y) ≥ 0,∀ x, y. With a similarity scoring function, the entries in A may be positive
or negative. The indices of the entry in A that optimize the right hand side of the recurrence
(Equations 1.4 and 1.5) are stored in a matrix, T . These pointers are used to reconstruct
the alignment that gave the optimal score. The algorithm continues until all entries in
the matrix A have been assigned values. This algorithm computes the scores of all pairs
of prefixes in O(n1 · n2) time. The trace back through the alignment matrix to obtain
the optimal alignment requires O(n1 + n2) time. Note that there may be more than one
optimal alignment.

1.2 Semi-global alignment

Global alignment seeks the best, full length alignment of a pair of sequences; that is, the
best way to match up two sequences along their entire length. For some applications, it is
desirable to relax this requirement and not penalize gaps at the beginning and/or end of an
alignment. For example, for sequence assembly, we seek sequence fragments that overlap;
that is, we expect to be able to align the end of one fragment with the beginning of another.
Very occasionally, we may find sequence fragments that start and end at the same position,
but, in general, we expect some gaps at the beginning and at the end of the alignment.
Another example is aligning cDNA’s with genomic DNA to identify gene structure. Because
the cDNA corresponds to a small region in the genome, the cDNA fragment will be flanked
by gaps at both ends when aligned with the genomic DNA.

Semi-global alignment is a modification of global alignment that allows the user to
specify that gaps will be penalty-free at the beginning of one of the sequences and/or at
the end of one of the sequences. Given sequences s1 and s2, there are eight possible cases
to consider:

1. Gaps are penalty-free at the beginning of s1; e.g.,

s_1: _ _ D O

s_2: R E D O

2. Gaps are penalty-free at the beginning of s2; e.g.,

s_1: R E D O

s_2: _ _ D O

8 Computational Molecular Biology. Copyright c©2019 D. Durand. All rights reserved.

1.2 Semi-global alignment

3. Gaps are penalty-free at the end of s1; e.g.,

s_1: D O _ _

s_2: D O N E

4. Gaps are penalty-free at the end of s2; e.g.,

s_1: D O N E

s_2: D O _ _

5. Gaps are penalty-free at the beginning and end of s1; e.g.,

s_1: _ _ D O _ _

s_2: R E D O N E

6. Gaps are penalty-free at the beginning and end of s2; e.g.,

s_1: R E D O N E

s_2: _ _ D O _ _

7. Gaps are penalty-free at the beginning of s1 and at the end of s2; e.g.,

s_1: _ _ D O N E

s_2: R E D O _ _

8. Gaps are penalty-free at the beginning of s2 and at the end of s1; e.g.,

s_1: R E D O _ _

s_2: _ _ D O N E

In semi-global alignment, we do not allow gaps at the beginning of s1 and the beginning
of s2 in the same alignment. Nor do we not allow gaps at the end of s1 and the end of s2.
Why not?

Like global alignment, the optimal semi-global alignment can be found using dynamic
programming with either distance or similarity scoring. Below, we describe the modifications
that are required to adapt the dynamic program for global pairwise alignment to the semi-
global alignment problem. These modifications are described in terms of alignment with
similarity scoring. Similar modifications can be made to obtain a semi-global alignment
algorithm that uses distances.

Computational Molecular Biology. Copyright c©2019 D. Durand. All rights reserved. 9

Chapter 1 Sequence Alignment

Semi-global alignment with similarity scoring:

Initialization:

To allow gaps at the beginning of s1 (Case 1), set A[0, j] = 0,∀j ; i.e., the first row is
zero. The first column is initialized as in global alignment.

To allow gaps at the beginning of s2 (Case 2), set A[i, 0] = 0, ∀i; i.e., the first column
is zero. The first row is initialized as in global alignment.

Recurrence relation:

Same as global.

Optimal alignment score and trace back:

To avoid trailing gap penalties at the end of s1 (Case 3), we define the optimal
score to be maxj A[n1, j], the optimal score in the bottom row. Trace back from
T [n1, j

∗], where j∗ = argmaxj A[n1, j]. In other words, trace back from the
cell(s) in the last row with optimal score.

To avoid trailing gap penalties at the end of s2 (Case 4), we define the optimal
score to be maxiA[i, n2], the optimal score in the last column. Trace back from
T [i∗, n2], where i∗ = argmaxiA[i, n2]. In other words, trace back from the cell(s)
in the last column with optimal score.

Note that when the first row (or column) of the matrix is initialized to zero, the
traceback will end in the first row (or column), but not necessarily in the cell A[0, 0].

Like global alignment, either distance or similarity scoring can be used for semiglobal
alignment. There may be more than one optimal semiglobal alignment.

1.3 Local pairwise alignment

Global and semiglobal alignment are used in cases where we expect that s1 and s2 are
related from end to end. Semi-global allows for some gaps at the beginning or end of one
sequence, but the underlying assumption is the same: s1 and s2 share a relationship within
the entire aligned region. In contrast, local alignment is used in cases where s1 and s2 share
one or more local regions that are related, but are not related from end to end.

The alignment of any substring s1[h . . . i] of s1 and any substring s2[j . . . k] of s2 is a
local alignment of s1 and s2. The optimal alignment of s1[h . . . i] and s2[j . . . k] is the highest
scoring global alignment of those substrings. where 1 ≤ h ≤ i ≤ n1, and 1 ≤ j ≤ k ≤ n2

and S is the similarity scoring function defined in Equation 1.2. Note that there may be

10 Computational Molecular Biology. Copyright c©2019 D. Durand. All rights reserved.

1.3 Local pairwise alignment

more than one The optimal local alignment of s1 and s2 is the highest scoring optimal
alignment of all possible substrings of s1 and s2, that is,

α∗(s1, s2) = argmax
h,i,j,k

S(α∗(s1[h . . . i], s2[j . . . k])),

where 1 ≤ h ≤ i ≤ m, and 1 ≤ j ≤ k ≤ n and S is the similarity scoring function defined in
Equation 1.2. Note that there may be more than one optimal local alignment. High scoring
sub-optimal alignments may also be of interest.

For local alignment, the pairwise alignment dynamic programming algorithm must
be modified to allow the alignment to start and stop anywhere in s1 and s2. Unlike the
dynamic programs for global alignment, the local alignment recurrence (Equation 1.6) has
a fourth term that sets the score A[i, j] to zero whenever adding a substitution or a gap to
the alignment results in a negative score. This is what allows the local alignment algorithm
to consider all possible starting positions in s1 and in s2.

Local alignment with similarity scoring:

Initialization:

Set the first row and column to zero: A[i, 0] = 0 and A[0, j] = 0, for all i and j.

Recurrence:

A[i, j] = max


A[i, j − 1] + g

A[i− 1, j − 1] + p(s1[i], s2[j])

A[i, j − 1] + g

0

(1.6)

For non-zero entries in A, store the indices of the entry in A that maximize the right
hand side of Equation 1.6 in a traceback matrix, T .

Optimal alignment score:

The score of the optimal alignment is maxi,j A[i, j], where the maximum is taken
over all i and all j.

Trace back:

Trace back starting at T [i∗, j∗], where (i∗, j∗) = argmaxi,j A[i, j] is the cell corre-
sponding to the maximum score. End the trace back at the first cell with value
zero encountered.

Computational Molecular Biology. Copyright c©2019 D. Durand. All rights reserved. 11

Chapter 1 Sequence Alignment

The point at which A[i, j] drops below zero depends on the scoring function and critically
determines what the resulting alignment will look like. For this reason, scoring functions for
local alignment are subject to more stringent constraints than scoring functions for global
and semi-global alignment.

In order to find biologically meaningful conserved regions, a scoring function for local
pairwise alignment must satisfy the following requirements:

• M > m > 2g.

• The scoring function must be a similarity function. The local alignment that minimizes
the edit distance (weighted or unweighted) is the empty alignment, which tells us
nothing.

• There must be at least one pair of residues, x and y, for which the similarity score
p(x,y) is positive. Otherwise, the optimal alignment is always the empty alignment.

• The expected alignment score of a pair of randomly generated sequences (i.e., sequences
sampled from a background distribution) must be negative.

These rules apply to general scoring functions, where the score for each pair of residues
can have a different numerical value. For our simple similarity function, we require a positive
score for matches (M > 0) and a negative score for mismatches (m < 0) and gaps (g < 0).

1.4 Multiple Sequence Alignment

In multiple sequence alignment, the goal is to align k sequences, so that residues in each
column share a property of interest, typically descent from a common ancestor or a shared
structural or functional role. Applications of multiple sequence alignment include identifying
functionally important mutations, predicting RNA secondary structure, and constructing
phylogenetic trees.

Given sequences s1,...,sk of lengths n1,...,nk, α = {s′1,...,s′k} is an alignment of s1,...,sk
if and only if

• s′a ∈ (Σ′)∗, for 1 ≤ a ≤ k

• |s′a| = l, for 1 ≤ a ≤ k, where l ≥ max(n1, . . . , nk)

• sa is the sequence obtained by removing gaps from s′a

• No column contains all gaps

12 Computational Molecular Biology. Copyright c©2019 D. Durand. All rights reserved.

1.4 Multiple Sequence Alignment

1.4.1 Scoring a multiple alignment

As with pairwise alignment, multiple sequence alignments (MSAs) are typically scored
by assigning a score to each column and summing over the columns. The most common
approach to scoring individual columns in a multiple alignment is to calculate a score for
each pair of symbols in the column, and then sum over the pair scores. This is called
sum-of-pairs or SP-scoring. For global multiple sequence alignment, SP-scoring can be used
with either a distance metric or a similarity scoring function. The sum-of-pairs similarity
score of an alignment of k sequences is

Ssp(s
′
1, . . . , s

′
k) = Σl

i=1Σk
a=1Σb>a p(s

′
a[i], s

′
b[i]), (1.7)

where l is the length of the alignment. As before, p(x, y) is a numerical score that represents
the similarity of x and y and p(x,) is the gap score. Further, we define p(,) to be zero.
In pairwise alignment there is no need to assign a value to p(,), because the definition of
a pairwise alignment specifies that no column may contain two gaps. However, in a multiple
alignment, two aligned sequences can have a gap in the same column (i.e., s′a[i] = s′b[i] =),
as long as there exists at least one sequence in the MSA that does not have a gap in that
column.

As an example, let us calculate the SP-score for the alignment of three sequences shown
below:

s1 A TT

s2 A T

s3 ACAT

We can calculate the SP-score for each column separately:

A TT

A T

ACAT

s1, s2 M0Mg

s1, s3 MgmM

s2, s3 Mgmg

Note that the second column contains two gaps and that these are assigned a score of
zero. The total SP-score is 5M + 2m+ 4g. (Is this alignment optimal? If not, how could
you improve it?)

We can also use sum-of-pairs with distance scoring for global multiple alignment. This
is how we would score the same alignment using unweighted edit distance:

Computational Molecular Biology. Copyright c©2019 D. Durand. All rights reserved. 13

Chapter 1 Sequence Alignment

A TT

A T

ACAT

s1, s2 0001

s1, s3 0110

s2, s3 0111

The sum-of-pairs edit distance for this alignment is 6.

Sum-of-pairs scoring tends to overestimate the number of mutations required to explain
the data. For example, a single mutation is required to explain the column (A, A, A, G,

G), when scored on the tree in Fig. 1.1a. In contrast, SP-scoring assigns this column a score
of six (Fig 1.1b), because SP-scoring is based on the implicit assumption that each pair of
symbols is independent of all other pairs.

(a) (b)

Figure 1.1: Two ways of scoring the column (A, A, A, G, G) in a multiple alignment. Green
edges represent mismatches. (a) Scoring mutations on a tree. (b) Sum-of-pairs scoring

Scoring an alignment on a tree, also known as tree alignment, is based on the assumption
that the residues in the columns of the multiple sequence alignment share an evolutionary
history and that this history can be expressed as a single tree for all columns.

Given a known tree topology as input, the k extant sequences are associated with the
k leaves of the tree. Sequences for the internal nodes are selected such that the sum of
edge costs, i.e. the total number of mutations required along the branches of the tree, is
minimized. Under this model, the cost of an edge (Xi, Xj) in the tree is the minimum
number of mutations required to transform sequence Xi into sequence Xj .

In order to use this approach, several issues must be resolved. First, a tree topology is
needed. In general, the underlying tree is not known. In fact, multiple sequence alignments
are generally used to estimate evolutionary trees and not vice versa. Second, tree alignment
methods are often based on the assumption that every column in the alignment has the
same underlying tree topology. For many sequences, such as those that that have undergone

14 Computational Molecular Biology. Copyright c©2019 D. Durand. All rights reserved.

1.4 Multiple Sequence Alignment

domain shuffling, this is not the case. Third, in order to compute the branch costs of the tree,
we must infer the ancestral sequences associated with the internal nodes. Tree alignment has
historically been based exclusively upon the parsimony criterion; that is, on the assumption
that mutations are rare and the minimum number of evolutionary steps required to explain
the data is the best evolutionary hypothesis. Data that does not happen to be parsimonious
can favor the wrong tree model. In addition, column-oriented optimization approaches to
MSA usually assume that sequence positions are independent and identically distributed.
These assumptions frequently do not hold for biological sequence data.

Finally, for some data sets, a tree may not be a suitable model for describing the
relationship between residues in each column, for example, when property of interest is
functional or structural. When alignment is used to study function or structure, residues
in a column do not always share a common ancestor. Although residues that share a
functional or structural role often also share an evolutionary history, this is not the case
when functional or structural roles migrate to neighboring residues. For all of these reasons,
tree alignment is rarely used in practice.

Given two sequences sa and sb in a multiple alignment, the pairwise alignment of sa and
sb induced by the MSA is the alignment obtained by deleting the other sequences in the
MSA and then removing any column that contains two gaps. For example, in the multiple
alignment below,

AC T G

A GT G

ACGTAG

the induced alignment of the first two sequences is

AC TG

A GTG.

Further, the pairwise alignment induced by the optimal multiple alignment is not necessarily
the optimal pairwise alignment. In this example, the optimal pairwise alignment is

ACTG

AGTG.

Although the optimal pairwise alignment may have a better score, the induced pairwise
alignment may be a biologically more realistic alignment because it reflects properties of
the family as a whole.

Computational Molecular Biology. Copyright c©2019 D. Durand. All rights reserved. 15

Chapter 1 Sequence Alignment

1.4.2 A dynamic programming algorithm for multiple alignment

The dynamic programming algorithm used for finding the optimal global alignment of two
sequences can be extended to the problem of global alignment of k sequences. First, let
us consider a dynamic program to align three sequences using a sum-of-pairs similarity score.

Global alignment of three sequences with similarity scoring:

Input:

Sequences s1, s2, and s3 of lengths n1, n2, and n3, respectively.

Initialization:

A[i1, 0, 0] = A[i1 − 1, 0, 0] + 2g

A[0, i2, 0] = A[0, i2 − 1, 0] + 2g

A[0, 0, i3] = A[0, 0, i3 − 1] + 2g

Recurrence:

A[i1, i2, i3] = max



A[i1 − 1, i2, i3] + 2g

A[i1, i2 − 1, i3] + 2g

A[i1, i2, i3 − 1] + 2g

A[i1 − 1, i2 − 1, i3] + 2g + p(s1[i1], s2[i2])

A[i1 − 1, i2, i3 − 1] + 2g + p(s1[i1], s3[i3])

A[i1, i2 − 1, i3 − 1] + 2g + p(s2[i2], s3[i3])

A[i1 − 1, i2 − 1, i3 − 1] + p(s1[i1], s2[i2]) + p(s1[i1], s3[i3]) + p(s2[i2], s3[i3])

Store the indices of the entry in A that maximize the right hand side of the recurrence
in a trace-back matrix, T .

Trace back:

From T [n1, n2, n3] to T [0, 0, 0] to obtain the optimal alignment.

Output:

The optimal alignment score, A[n1, n2, n3].

The optimal alignment of s1, s2, and s3 with respect to similarity function, S.

16 Computational Molecular Biology. Copyright c©2019 D. Durand. All rights reserved.

1.4 Multiple Sequence Alignment

The dynamic program for multiple sequence alignment has the same structure as the
algorithms for pairwise sequence alignment, but the initiation and recurrence steps are
more complex. Since the alignment matrix, A, is a 3-dimensional matrix, the first row in
each of the three dimensions must be initialized. The algorithm calculates the entries in A
according to the recurrence proceeding diagonally from A[0, 0, 0] to A[n1, n2, n3]. As in the
pairwise case, a trace-back matrix, T , is used to record the indices that gave the optimal
score for each i1, i2, i3 prefix. Once the entire matrix has been filled in, the optimal score is
found in A[n1, n2, n3].

It is straightforward, if messy, to generalize the dynamic program for three sequences
to a dynamic program for k sequences. To convince yourself that you understand how
this works, try writing down the algorithm for four sequences. For three sequences, the
recurrence has seven entries. How many entries will there be in the recurrence when k = 4?
How many entries will there be for arbitrary k?

The computational complexity of the dynamic programming algorithm to align k
sequences is O(nk2kk2). To see this, note that for k sequences, the alignment matrix has
O(nk) entries. For each entry in A, the recurrence relation considers O(2k) neighboring cells.
Calculating the SP-score for each of those neighbors requires O(k2) time. (Why?) Thus,
the time complexity of the dynamic program for multiple sequence alignment is exponential
in the number of sequences. Given 10 sequences of length at most 500, it is possible to
calculate the optimal alignment using dynamic programming. For larger problem instances,
a heuristic is typically used.

1.4.3 Heuristics for global multiple alignment

The dynamic programming approach to global multiple sequence alignment is framed as an
optimization problem. In this approach, we design an optimization criterion over the set
of all possible MSAs and then seek the MSA that optimizes this criterion using dynamic
programming. The advantage of this approach is that the optimization criterion makes
explicit the assumptions upon which the optimization is based. Because they are explicit,
these assumptions are open to scrutiny and falsification.

However, this formal optimization approach has disadvantages as well. One, as we have
already seen, is that the computational complexity is exponential in the number of sequences.
A second problem is the selection of an optimization criterion. In computational biology,
the optimization criterion must follow a specific biological model relating the data to the
evolutionary, structural, or functional question at hand. If the optimization criterion is not
directly linked to a biological model, then the optimal solution may not reflect biological
relationships. As we have seen, both sum-of-pairs and tree alignment have limitations in
how well they capture the underlying biology.

In practice, the most widely used multiple alignment programs are based on heuristic
methods, not only because of the exponential running time of the exact algorithm, but

Computational Molecular Biology. Copyright c©2019 D. Durand. All rights reserved. 17

Chapter 1 Sequence Alignment

also because heuristics often give MSAs that are more convincing biologically, even though
they do not guarantee mathematically optimal alignments. A survey of multiple alignment
software based on heuristic methods, Protein multiple sequence alignment by Do and
Katoh, 2008, is posted in the “Optional reading” section of the course syllabus.

The performance of MSA programs is typically evaluated empirically using curated or
automated structural alignments. BALiBase (http://www.lbgi.fr/balibase/), a collection of
“high quality, manually refined, reference alignments based on 3D structural superpositions”2,
is one of the most widely used benchmarks. The BALiBase reference data sets are designed
to mimic properties of different types of data sets encountered in practice, especially those
that are challenging to align. Examples of challenging data sets include highly divergent
sequences that are variable in length and have less than 50% identity, related sequences
combined with several outlier, or “orphan”, sequences, and related sequences that differ
due to large insertions, deletions or terminal extensions.

One of the most commonly used heuristic strategies is progressive alignment. This
approach is used in a number of programs, including the widely-used CLUSTAL family
of multiple alignment programs. Given k sequences, s1, . . . , sk, of lengths n1, . . . , nk,
progressive methods construct an alignment as follows:

1. Construct pairwise alignments for all pairs of sequences.
2. Compute D, the matrix of pairwise distances, where D[a, b] is the distance between

sequences sa and sb. Note that D is a symmetric matrix with zeros on the diagonal.
3. Construct a “guide tree”, T , from D. T is a rooted tree with k leaves corresponding

to the k sequences.
4. Construct an MSA by repeatedly merging intermediate multiple alignments to obtain

progressively larger alignments, until all k sequences have been incorporated in the
alignment. The order of merging is determined by the guide tree, T .

The merge operation in Step 4 takes as input two multiple alignments of k1 sequences
and k2 sequences and returns a multiple alignment of k1 + k2 sequences. This is repeated
until all k sequences are incorporated into the alignment. The order in which sequences are
merged is determined by a bottom up traversal of the guide tree. For example, if the tree
in Fig. 1.2 were the guide tree, then the pairwise alignment of s1 and s2 would be merged
with the pairwise alignment of s3 and s4, yielding an intermediate MSA of four sequences.
A similar merging of two pairwise alignments would result in the MSA of s5, s6, s7 and s8.
Finally, these two alignments, of four sequences each, would be merged to obtain a full
alignment of eight sequences.

The actual merge operation is carried out using the pairwise global alignment algorithm
to align the two alignments, where the input alignments are treated as sequences over an

2 “BAliBASE 3.0: latest developments of the multiple sequence alignment benchmark.” Thompson JD,
Koehl P, Ripp R, Poch O., Proteins. 2005 Oct 1;61(1):127-36.

18 Computational Molecular Biology. Copyright c©2019 D. Durand. All rights reserved.

1.4 Multiple Sequence Alignment

expanded alphabet. Durbin calls this a “profile.” Two aligned sequences can be viewed as
a sequence over the alphabet Σ′ × Σ′ \ {()}. For example, when Σ = {A,C,G, T}, this
alphabet contains 24 symbols ({AA,AC,AG,AT,A ,CA, . . . T}).

We illustrate profile alignment with the case where a multiple alignment of three
sequences is obtained by aligning a profile t with a single sequence s. The elements in s[i]
are of the form x

y , x
− , or −y , where x and y are symbols in Σ. The score for aligning t[i]

with s[j] is the sum of the scores for aligning the first character in t[i] with s[j] and the
second character in t[i] with s[j]. For example, when similarity scoring is used and s[i] is of
the form, x

y , the recurrence relation for calculating the alignment matrix A[i, j] is

A[i, j] = max


A[i− 1, j − 1] + p(x, s[j]) + p(y, s[j]),
A[i, j − 1] + 2g,
A[i− 1, j] + 2g

 . (1.8)

When t[i] contains an indel (i.e., t[i] is of the form x
−), the recurrence relation for calculating

A[i, j] is

A[i, j] = max


A[i− 1, j − 1] + p(x, s[j]) + g,
A[i, j − 1] + 2g,
A[i− 1, j] + g

 . (1.9)

Note that p(x, y), the similarity of x and y, does not appear in the right hand side
of Equation 1.8. Similarly, the gap score for the alignment of x

− does not appear in the
recurrence in Equation 1.9. This is because the two symbols in s[i] were compared and scored
during the pairwise alignment in a previous step in the progressive alignment procedure.

A key aspect of the merging operation is that we are not allowed to modify the profiles
being aligned. For the example above, that means we cannot change juxtaposition of the
two symbols in t[i], even if modifying the alignment in t would result in a better alignment
with s. This is called the “once a gap, always a gap” rule (although it also applies to
mismatches). A consequence of this rule is that if a bad decision is made with regard
to the placement of gaps early in the procedure, then that bad decision will propagate
through subsequent iterations and cannot be corrected. It is this rule that makes progressive
alignment a fast heuristic; that is, this rule underlies both the improvement in running time
and the possibility that the result may be suboptimal.

The complexity of progressive alignment is O(k2n2), where n = max{na}, 1 ≤ a ≤ k.
Calculating the distance matrix in Step 2 requires O(k2) pairwise alignments. The cost of
each pairwise alignment is O(n2). The merging process also requires O(k2n2) time. The
computational complexity of merging depends on the number of profile alignments required,
the number of cells in the alignment matrix for each profile alignment, and number of
comparisons required for each cell. The size of alignment matrix is O(n2) in all profile
alignments. The number of comparisons for a single cell in an alignment of two profiles
with k1 and k2 sequences, respectively, is O(k1 · k2).

Computational Molecular Biology. Copyright c©2019 D. Durand. All rights reserved. 19

Chapter 1 Sequence Alignment

The number of profile alignments and the values of k1 and k2 depend on the shape of the
guide tree. At one extreme, we have a completely unbalanced guide tree with k sequences
(e.g., Fig. 1.3, where k = 8). In this case, each merge represents an alignment of a single
sequence (k1 = 1) with a profile of size k2 = h, 1 ≤ h ≤ k − 1, resulting in a complexity of

k−1∑
h=1

n2h,

which is O(k2n2).
At the other extreme, we have a balanced guide tree with k leaves (e.g., Fig. 1.2). We

consider the case when k is a power of 2. We leave the case where k is not a power of
two to the masochistic reader. In a balanced guide tree, there are k/2h merges at height,
h. Each of these represents an alignment of two profiles, each comprising 2h−1 sequences.
The computational complexity is the sum of the complexity of the merges at height h,
1 ≤ h ≤ log2 k, or

log2k∑
h=1

n2 · (2h−1)2 · k
2h
.

This reduces to

kn2 ·
log2k∑
h=1

2h−2. (1.10)

It is easy to verify that the series

N∑
i=1

2(i−1) = 2N − 1. (1.11)

Substituting the right hand side of Equation 1.11 into Equation 1.10, where N = log2 k, we
obtain

1

2
kn2(2(log2 k) − 1).

This reduces to (k − 1)kn2/2, so we again obtain a computational complexity of O(k2n2).

20 Computational Molecular Biology. Copyright c©2019 D. Durand. All rights reserved.

1.4 Multiple Sequence Alignment

Figure 1.2: A balanced guide tree for 8 sequences.

Figure 1.3: An unbalanced guide tree for 8 sequences.

Computational Molecular Biology. Copyright c©2019 D. Durand. All rights reserved. 21

