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Box 2: Summary of Markov chain notation

A Markov chain has states Ey, Ej, . E, corresponding to the range of the

ated random variable

#;(t) is the p

ity that the chain is in state E; at time t. The vector p(t

(p1(t), )) is the state probability distribution at time ¢

2(0) is the initial state probability distribution

P is the transition probability matriz. Py gives the probability of making a transition

at time ¢t + 1, given that the chain was in state E; at time t. The
rows of this matrix sum to one: 3, Py =1

The state probability distribution at time ¢ + 1 is given by o(t + 1) = @(t) - P. The

probability of being in state Ej at t + 1 is

The Markov property states that Markov chains are memoryless, The probability
that the chain is in state Ep at time ¢ + 1, depends only on ¢(f) and is
independent of 2(t — 1), o(t — 2), (2 -3

Markov chain properties

In this course, we consider finite, discrete, time-
homogeneous Markov chains:

* Number of states finite

* Independent variable is discrete

* Time homogeneous: The transmission matrix
does not change over time.

that are

* irreducible: every state may be reached from
every other state

* aperiodic:

There is no state that can only be visited multiples
of m time steps, where m > 1

Questions to ask about steady state behavior:

* Does the Markov chain have a stationary
distribution, ¢*, such that

@"=p"P ?
« If so, is it unique?

* Does the Markov chain have a limiting distribution?

That is, a solution to
Q = lim P ?
n-00
If so
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P1 o 95
where @7 ... @5 is the limiting and stationary
disribution.

Random walk with absorbing boundaries
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Random walk with absorbing boundaries
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A Markov chain is not irreducible
because it has absorbing

Every time the clock tick boundaries
the drunk takes one s
* to the left with prob 0.5

Random walk with reflecting boundaries

Every time the clock ticks,
the drunk takes one step Ey, E) E5
* to the left with prob 0.5
*  to the right with prob 0.5

If the drunk enters State E, (E,) the drunk reverses
direction and enters E, (E;) at the next tick
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If the drunk reaches State E, or E, the
drunk enters the bar and stays there
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Random walk with reflecting boundaries

Every time the clock ticks,
the drunk takes one stel

This Markov chain is periodic
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* to the left with prob 0.5
* to the right with prob 0.5

If the drunk enters State E, (E,) the drunk reverses
direction and enters E, (E;) at the next tick
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A third random walk

1 By By Ey
Ey ] 0 0
p=|B 0§ 0 0
By 10 % oo
Es 0 0 L 0 %
E; 0 0 0 3 ;
Every time the clock ticks, the drunk takes one step
¢ to the left with prob 0.5
* to the right with prob 0.5
0.5 05 05 0.5
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If the drunk enters State E, (E,) the drunk * 5C®~_’v v@y@)as
« rests with prob 0.5 05 0.5 0.5 05

* reverses direction and enters E, (E;) with prob 0.5
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A third random walk

* to the left with prob|

This Markov chain is irreducible
and aperiodic. It has a unique
Every time the clock ticks, stationary distribution.

* to the right with prob 0.5

If the drunk enters State E, (E,) the drunk
* rests with prob 0.5
* reverses direction and enters E, (E;) with prob 0.5
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Random walk with absorbing boundaries

o3 a8 88
* Not irreducible because it has absorbing
boundaries 1(.@ @\_"@v@v@ P}

. . . . . 0.5 05 0.5
* Does not have a unique stationary distribution.
Random walk with reflecting boundaries o5 os  os N
This Markov chain i iodi R e e~
* This Markov chain is periodic @ @ @ @ @
* It has a unique stationary distribution. ~ 5 o o
« It does not have a limiting distribution
Random walk with neither absorbing nor reflecting boundaries
* This Markov chain has a unique stationary 05 05 05 = 05
distribution. “C.@ @ @ @D 05
* It has a limiting distribution which is the same Pl

as the stationary distribution.
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Properties of DNA substitution models

1-(a+b+c) 1-(a+c+e) + State space: {E;=A,E,=G,E;=C E, =T}
( A a G « States are fully connected
« Transition probabilities:
bI c d l e substitution frequencies (a, b, ¢, d ...)
C T * Implicitly also specifies stationary base
- frequencies: ¢ = (pa, Pes Per Pz )
1-(b+c+f) 1-(d+e +f)

GACTAGCTAGACATAGCTAGACAGATACGAAGATACGAACTAGCTAGACATATTACATATAC
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Jukes-Cantor model (1969)

: p(A)=0.25
p(€)=0.25

C ——T p(T)=0.25
G D

1-3a 1-3a

Assumptions:
* All substitutions have equal probability
* Base frequencies are equal
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Two Jukes Cantor models with different rates

All Jukes Cantor models have a single rate parameter, g, 0 <a<1/3
Different instances of the JC model can have different rates. Rates are typically
learned from data

07 07 04 04
(a o1, A 2.
0.1I MJI 01 o.zI ONZI 0.2
— T —
C.AC 01 r») (S 02 AT.)
07 07 0.4 0.4

The model on the right changes twice as fast as the model on the left.

In both models, all substitutions are equally probable
19

Three representations of the Jukes Cantor model
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1-3a 1-3a
A C G T
A |1-3a |a a a
C |a 1-3a |a a
G |a a 1-3a |a
T |a a a 1-3a
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More nucleotide substitution models

Jukes Cantor
* Uniform substitution probabilities
* Uniform base frequencies
Substitution models can be extended by allowing
« different substitution probabilities for different base
pairs
* non-uniform base frequencies

or both

A more complex model
different probabilities for transitions and transversions

1-a-2b 1-a-2b

1-a-2b 1-a-2b o
Kimura 2
parameter

Kimura 2 parameter model (K2P) (1980)

1- -Zb( M -a-
a a ql a-2b
p(A)=0.25

X I b><, Ib p(G)=0.25
p(C)=0.25

1-a-2b (S a '\Tj 1-a-2b p(T)=0.25

* Transitions and transversions have different probabilities

* Base frequencies are equal
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Three representations of the Kimura 2-parameter model
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Felsenstein (1981)

p(A)=r,
p(G) =ng
p(C)=rt¢
p(T)=rt;

>
O

« All substitutions have equal probability

* Unequal base frequencies ‘ p(A)2p(G) = p(C) # p(T)

25
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Hasegawa, Kishino & Yano (HKY) (1985)

p(A)=rt,
p(G)=ng
p(C)=rt;
p(T)=rrT

9

* Transitions and transversions have different probabilities

* Unequal base frequencies ‘ p(A)Zp(G) # p(C) # p(T)
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General Time Reversible model

1-(a+b+c) 1-(a+c+e)

A 2,G

151
C —.,T
1-(b+c+f) f 1-(d+e+f)

* All six pairs have different substitution frequencies

* Unequal base frequencies | p(A)zp(G) = p(C) # p(T)
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