Today

- Markov chains
 - Review
 - Stationary distributions
- Models of sequence evolution
 - Nucleotide substitution models
 - (Amino acids in about 2 weeks)

Box 2: Summary of Markov chain notation

- A Markov chain has states E₁, E₁, ..., E_s corresponding to the range of the associated random variable.
- $\varphi_j(t)$ is the probability that the chain is in state E_j at time t. The vector $\varphi(t) = (\varphi_1(t), \dots, \varphi_s(t))$ is the state probability distribution at time t.
- $\pi = \varphi(0)$ is the initial state probability distribution.
- P is the transition probability matrix. P_{jk} gives the probability of making a transition to state E_k at time t+1, given that the chain was in state E_j at time t. The rows of this matrix sum to one: $\sum_k P_{jk} = 1$.
- The state probability distribution at time t+1 is given by $\varphi(t+1)=\varphi(t)\cdot P$. The probability of being in state E_k at t+1 is

$$\varphi_k(t+1) = \sum_j \varphi_j(t) P_{jk}$$

The Markov property states that Markov chains are memoryless. The probability that the chain is in state E_k at time t+1, depends only on $\varphi(t)$ and is independent of $\varphi(t-1), \varphi(t-2), \varphi(t-3)$.

Markov chain properties

In this course, we consider *finite, discrete, time-homogeneous* Markov chains:

- Number of states finite
- Independent variable is discrete
- *Time homogeneous:* The transmission matrix does not change over time.

that are

- *irreducible:* every state may be reached from every other state
- · aperiodic:

There is no state that can only be visited multiples of m time steps, where m > 1

Questions to ask about steady state behavior:

• Does the Markov chain have a stationary distribution, φ^* , such that

$$\varphi^* = \varphi^* P$$
 ?

- If so, is it unique?
- Does the Markov chain have a *limiting distribution*? That is, a solution to

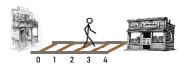
$$Q = \lim_{n \to \infty} P^n$$
 ?

If so

$$Q = \begin{bmatrix} \varphi_1^* & \cdots & \varphi_S^* \\ \vdots & \ddots & \vdots \\ \varphi_1^* & \cdots & \varphi_S^* \end{bmatrix}$$

where $\varphi_1^* ... \, \varphi_{\mathcal{S}}^*$ is the limiting and stationary disribution.

Random walk with absorbing boundaries

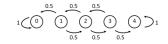


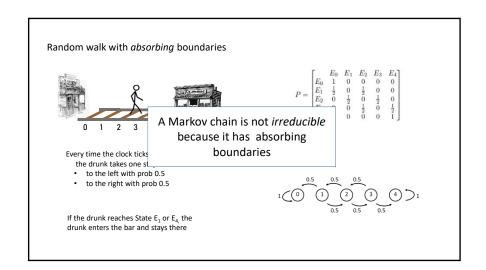
 $P = \begin{bmatrix} E_0 & E_1 & E_2 & E_3 & E_4 \\ E_0 & 1 & 0 & 0 & 0 & 0 \\ E_1 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ E_2 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ E_3 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ E_4 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

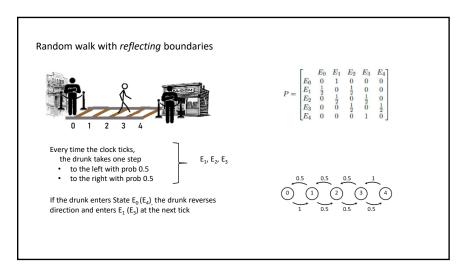
Every time the clock ticks, the drunk takes one step

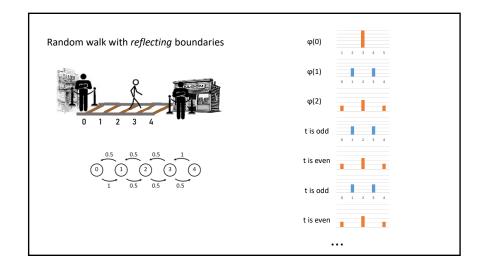
- · to the left with prob 0.5
- to the right with prob 0.5

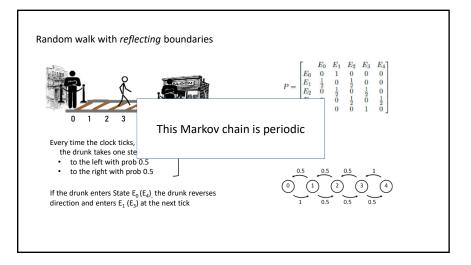
If the drunk reaches State E₁ or E_{4,} the drunk enters the bar and stays there



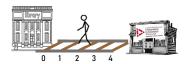








A third random walk

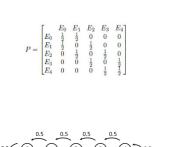


Every time the clock ticks, the drunk takes one step

- to the left with prob 0.5
- · to the right with prob 0.5

If the drunk enters State $E_0(E_4)$, the drunk

- rests with prob 0.5
- reverses direction and enters E₁ (E₃) with prob 0.5



A third random walk $P = \begin{bmatrix} E_0 & E_1 & E_2 & E_3 & E_4 \\ E_0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ E_1 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ E_2 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ E_2 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ E_2 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ E_2 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ E_2 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ E_2 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ E_1 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ E_2 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ E_1 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ E_2 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ E_1 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ E_2 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ E_1 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ E_1 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ E_1 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ This Markov chain is *irreducible* and *aperiodic*. It has a unique stationary distribution. • to the left with prob 0.5 If the drunk enters State $E_0(E_1)$, the drunk • rests with prob 0.5 • reverses direction and enters $E_1(E_3)$ with prob 0.5

Random walk with absorbing boundaries

- Not irreducible because it has absorbing boundaries
- Does not have a unique stationary distribution.

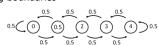
Random walk with reflecting boundaries

- This Markov chain is periodic
- It has a unique stationary distribution.
- It does not have a limiting distribution

$$0\underbrace{\underbrace{0.5}_{1}\underbrace{0.5}_{0.5}\underbrace{0.5}_{0.5}\underbrace{3}_{0.5}\underbrace{4}_{0.5}$$

Random walk with neither absorbing nor reflecting boundaries

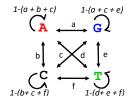
- This Markov chain has a *unique stationary* distribution.
- It has a *limiting distribution* which is the same as the *stationary distribution*.



Today

- Announcements
- Markov chains
 - Review
 - Stationary distributions
- Models of sequence evolution
 - Nucleotide substitution models
 - (Amino acids in about 2 weeks)

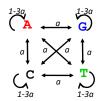
Properties of DNA substitution models



- State space: {E₁ = A, E₂ = G, E₃ = C, E₄ = T}
- · States are fully connected
- · Transition probabilities: substitution frequencies (a, b, c, d ...)
- · Implicitly also specifies stationary base frequencies: $\phi^* = (p_A, p_G, p_C, p_T)$

17

Jukes-Cantor model (1969)



p(A) = 0.25p(G)=0.25p(C)=0.25p(T)=0.25

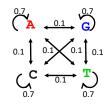
Assumptions:

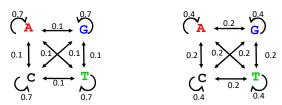
- · All substitutions have equal probability
- Base frequencies are equal

18

Two Jukes Cantor models with different rates

All Jukes Cantor models have a single rate parameter, a, $0 \le a \le 1/3$ Different instances of the JC model can have different rates. Rates are typically learned from data

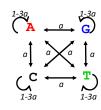




The model on the right changes twice as fast as the model on the left. In both models, all substitutions are equally probable

19

Three representations of the Jukes Cantor model



	A	С	G	T
A	1-3a	а	а	а
С	а	1-3a	а	а
G	а	а	1-3a	а
T	а	а	а	1-3a

More nucleotide substitution models

Jukes Cantor

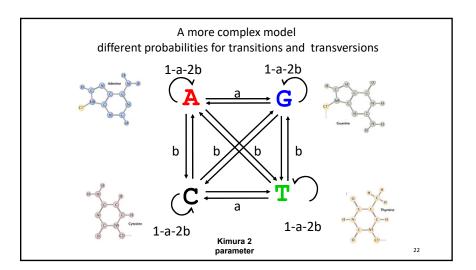
- Uniform substitution probabilities
- Uniform base frequencies

Substitution models can be extended by allowing

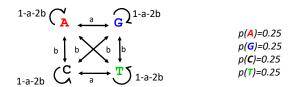
- different substitution probabilities for different base pairs
- non-uniform base frequencies

or both

21

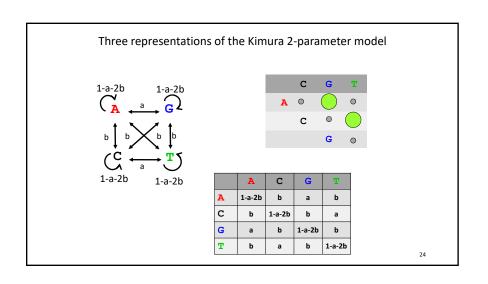


Kimura 2 parameter model (K2P) (1980)

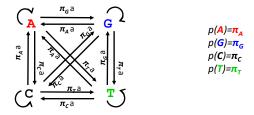


- Transitions and transversions have different probabilities
- · Base frequencies are equal

23



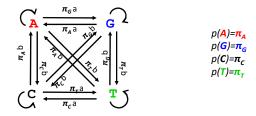
Felsenstein (1981)



- All substitutions have equal probability
- Unequal base frequencies $p(A) \neq p(G) \neq p(C) \neq p(T)$

25

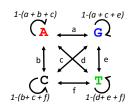
Hasegawa, Kishino & Yano (HKY) (1985)



- Transitions and transversions have different probabilities
- Unequal base frequencies $p(A) \neq p(G) \neq p(C) \neq p(T)$

26

General Time Reversible model



- All six pairs have different substitution frequencies
- Unequal base frequencies $p(A) \neq p(G) \neq p(C) \neq p(T)$

27