Two widely used families of Amino Acid Substitution Matrices Parameterized for evolutionary divergence (N)

▶ PAM matrices, Dayhoff et al, 1978

• BLOSUM (Block Sum) matrices, Hennikoff & Hennikoff, 1991

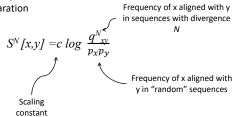
Amino Acid Substitution Matrices <u>Parameterized for evolutionary divergence (N)</u>

Overall strategy for both PAM and BLOSUM

- 1. Trusted amino acid alignments
- 2. Obtain amino acid pair counts (A_{xy}^N) with corrections for
 - · Evolutionary divergence
 - · Sample biases
- 3. Estimate substitution frequencies, q_{xy}^N , from pair counts, A_{xy}^N
- 4. Log odds substitution matrix: $S^N[x,y] = c \log \frac{q^N_{xy}}{p_x p_y}$

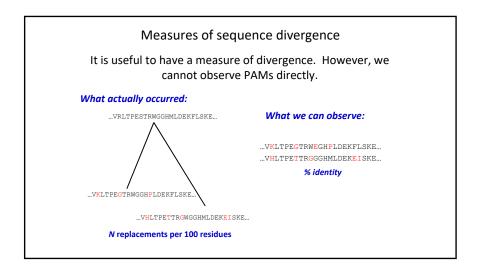
Log odds substitution matrices

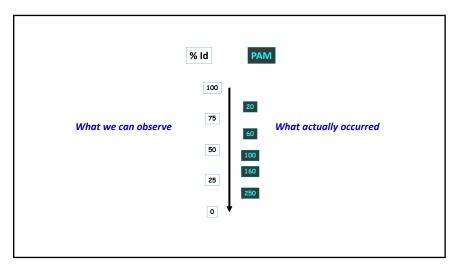
Two sequences have *N* PAMs divergence, if, on average, *N* amino acid replacements per 100 residues occurred since their separation

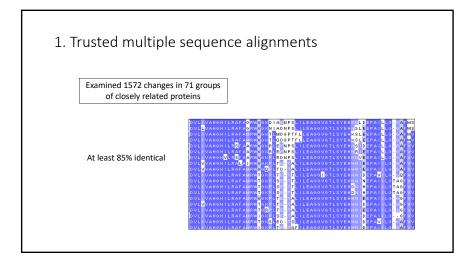


PAM: A unit of evolutionary divergence

- PAM: Percent Accepted Mutation
 - Accepted Mutations are mutations that are retained and passed on to future generations
- We say the divergence between two sequences is *N* PAMs, if, on average, *N* amino acid replacements per 100 residues (including multiple substitutions) occurred since their separation.







2. Obtain amino acid pair counts (A_{xy}) with corrections for evolutionary divergence and sample biases

Counting amino acid pairs on a tree:

For each unrooted tree with k leaves

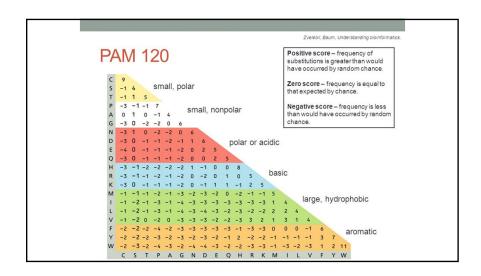
Select the tree(s) that require the fewest substitutions to explain the data

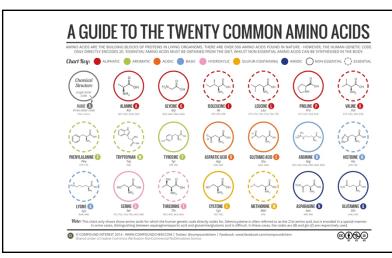
Count amino acid pairs on the branches of the tree

- 3. Estimate substitution frequencies, q_{xy}^N , from pair counts, A_{xy}
 - Markov model with 20 states (A, C, D, E ... Y)
 - Estimate 1 PAM transition matrix P^1 from A_{xy}
 - N-PAM transition matrix: $P^1 = (P^1)^N$
 - $q_{xy}^N = p_x P_{xy}^N$
 - $S^N[x,y] = c \log \frac{q^N_{xy}}{p_x p_y}$

Is P_{xy}^N a symmetric matrix? No. (Check this algebraically).

Is $S^N[x,y]$ a symmetric matrix? Yes (Check this algebraically).





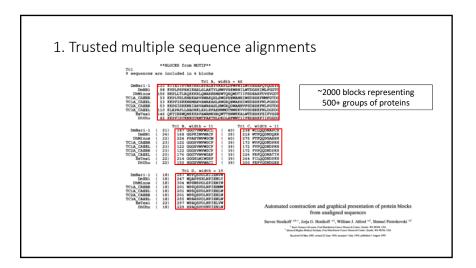
Two widely used families of Amino Acid Substitution Matrices Parameterized for evolutionary divergence (N)

- PAM matrices, Dayhoff et al, 1978
- ▶ BLOSUM (Block Sum) matrices, Hennikoff & Hennikoff, 1991

BLOSUM Matrices

- Trusted data
 - 2000 blocks of conserved regions in ~500 groups of proteins
- Count amino acid pairs: A_{xy}^N
 - Parameterize by evolutionary distance, N
 - Correct for sample bias
- Calculate amino acid frequencies:
 - Related pairs: q_{xy}^N
- Background pair frequencies calculated from blocks: E_{xy}
- Log likelihood scoring matrix

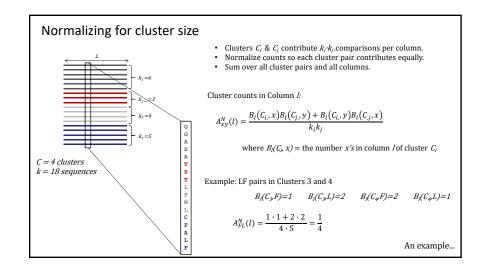
$$-S^N = 2 \log_2 \frac{q_{xy}^N}{E_{xy}}$$

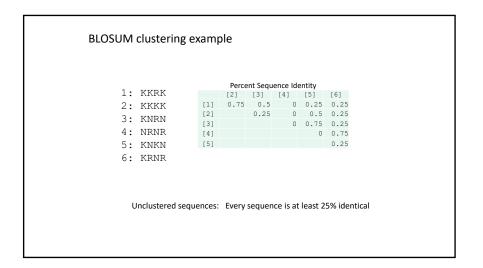


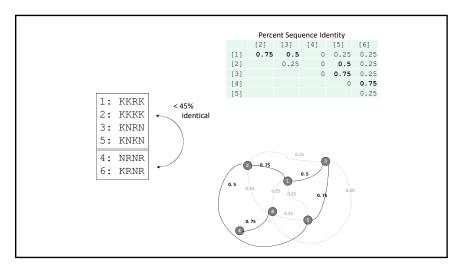
2. Count amino acid pairs: A_{xy}^N

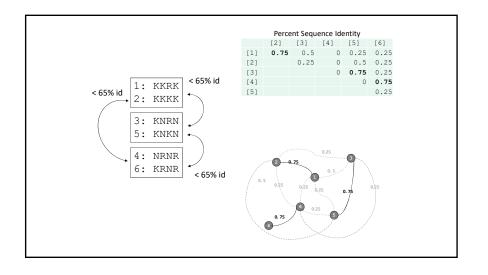
Parameterize by evolutionary distance, *N* Correct for sample bias

- Cluster sequences such that if s1 and s2 are in different clusters, then identity(s1, s2) < N%
- Count amino acid pairs in s1 aligned with s2 <u>only</u> if s1 and s2 are in different clusters
- Normalize for cluster size









Two widely used families of Amino Acid Substitution Matrices Parameterized for evolutionary divergence (N)

- PAM matrices, Dayhoff et al, 1978
- BLOSUM (Block Sum) matrices, Hennikoff & Hennikoff, 1991

Similarities and differences between PAM and BLOSUM

	PAM	BLOSUM
Evolutionary model	Explicit evolutionary model	None
Data	Full length MSAs of closely related sequences.	Conserved blocks. i.e., ungapped local MSAs
Bias correction	Trees	Clustering
Multiple substitutions	Markov model: $P^n = (P^1)^n$	Implicitly represented in data (clustering)
Evolutionary distance	Markov model: $P^n = (P^1)^n$	Clustering
Matrices	Transition and log odds scoring matrices	Log odds scoring matrix only.
Parameter n	Distance increases with n	Distance decreases with n
Biophysical properties	Derived indirectly from data	Derived indirectly from data

