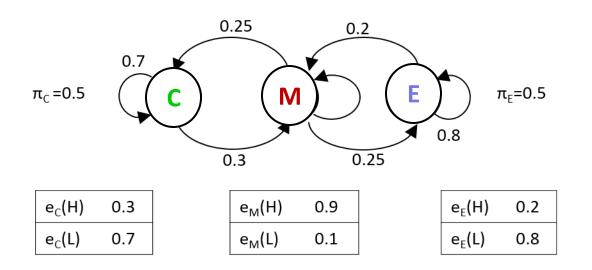
### HMMs

States:  $E_1$ ,  $E_2$ , ...  $E_N$ 

Initial state probabilities: π(i)

Transition probabilities: a<sub>ii</sub>

Alphabet, Σ


Emission probabilities: e<sub>i</sub>

The parameters of the HMM  $\lambda = (a_{ij}, e_i(\sigma), \pi)$ 

are "learned" from known examples ("labeled data").

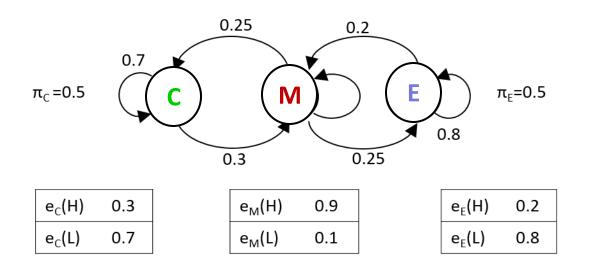
An HMM is a *generative* model: we say

"the model emitted sequence  $O = O_1 O_2 O_3 \dots O_T$  via state path  $Q = q_1 q_2 q_3 \dots q_T$ "



An HMM generates *labeled* sequences:

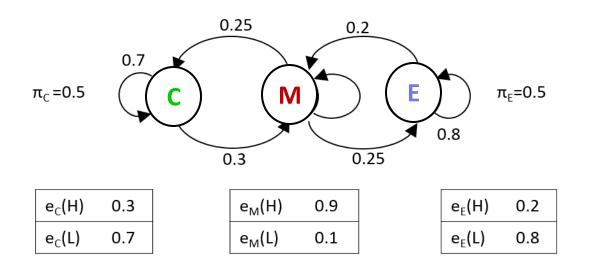
LLLHLHLLLHHHHLLHHHHHLHHHLLHLLHLL...


CCCCCCCCCCMMMMMMMMMMEEEEEEE...

LLLHLHHHHHHHLLHLLLLLHLHHHHLLHLLHLL...

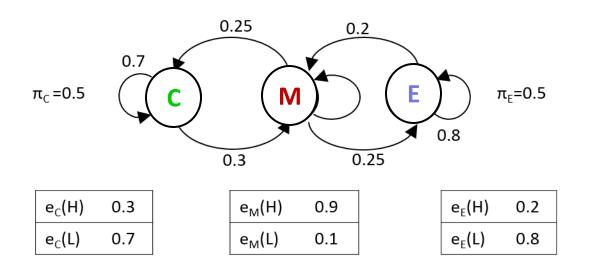
CCCCCMMMMMMEEEEEEEMMMMMCCCCCCCC...

LHLLLHLHLHHHHHHHHHHHLHLLHHHLHHHHHHHHLHLLLHLL...


LLLHLHLLHLHHHHLLHHHHLLHLLHLLLLLLLLL...



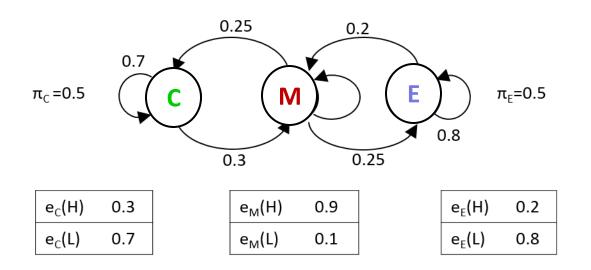
What is the probability that this model emitted LHHHL via path CMMME?


What is  $P(O, Q | \lambda)$ , where O = LHHHL and Q = CMMME?

$$P(O, Q|\lambda) = \pi_{q_1} \cdot e_{q_1}(O_1) \prod_{i=2}^T a_{q_{i-1}q_i} e_{q_i}(O_i)$$

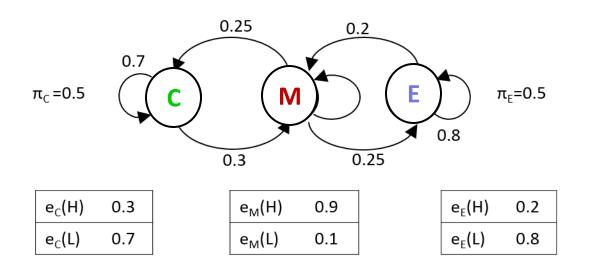


Given unlabeled data, and an HMM


LLLHLHLLLHHHHLLHHHHHLHHHLLHLLHLL...



### Given unlabeled data, and an HMM


What is P(O|HMM), the probability of a given sequence?

LLLHLHLLLHHHHLLHHHHLHHHLLHLLHLL...



Given unlabeled data, and an HMM

What is P(O|HMM), the probability of a given sequence? What is the state path?



Given unlabeled data, and an HMM

What is P(O|HMM), the probability of a given sequence? What is the state path? What state emitted the symbol  $O_t$ 

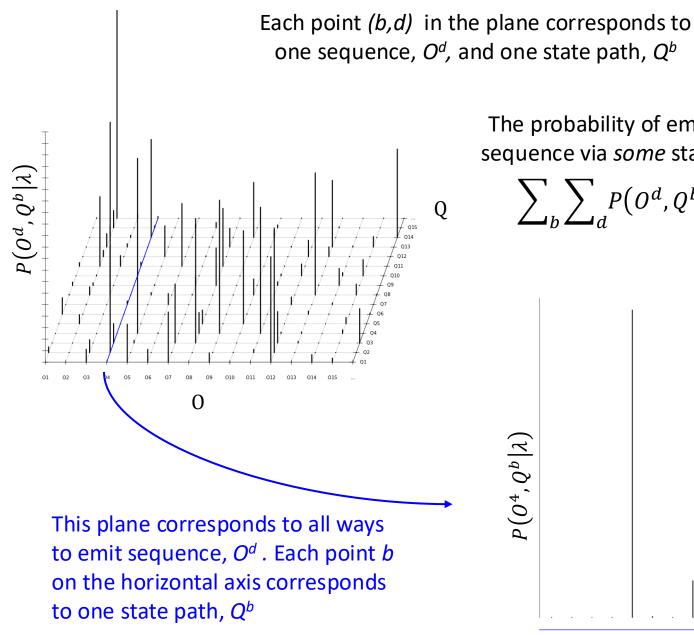
```
LLLHLHLLHLLLHHHHLLHHHHHHHHHHHHLLHLLHLL...
M
```

• What is the probability of a given sequence?

Example: given HHLHH, is it a TM sequence or not?

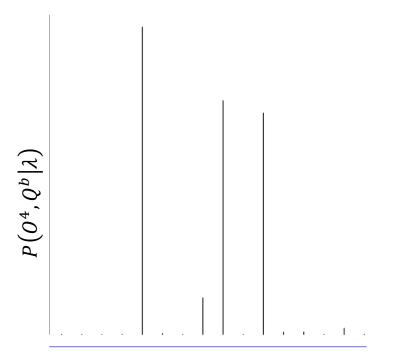
Given a sequence of symbols, what is the "true" sequence of states?

Example: given HHHLLHL..., where is the TM region?


• What state emitted the symbol O<sub>t</sub>?

*Example: is the isoleucine at position 32 localized to the membrane?* 

- What is the probability of a given sequence, O?
  - Forward algorithm
- Given a sequence O, what is the "true" sequence of states? Viterbi decoding: Viterbi algorithm


Posterior decoding: Forward and Backward algorithms

• What state emitted the symbol  $O_t$ ?



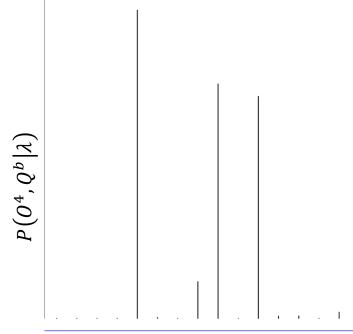
The probability of emitting *some* sequence via *some* state path is 1:

$$\sum_{b}\sum_{d}P(O^{d},Q^{b}|\lambda)=1$$



Q

• What is the probability of a given sequence, O?


### Forward algorithm

• Given a sequence O, what is the "true" sequence of states? Viterbi decoding: Viterbi algorithm

Posterior decoding: Forward and Backward algorithms

• What state emitted the symbol  $O_t$ ?

# HMM Dynamic Programming algorithms for recognition problems



The *Forward* algorithm calculates the probability of emiiting O<sup>4</sup> by summing over all possible paths

$$P(O^4) = \sum_{j} P(O^4, Q^b | \lambda)$$

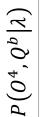
What is the probability of a given sequence, O?

Forward algorithm

Given a sequence O, what is the "true" sequence of states?
 Viterbi decoding: Viterbi algorithm

Posterior decoding: Forward and Backward algorithms

• What state emitted the symbol  $O_t$ ?


# HMM Dynamic Programming algorithms for recognition problems

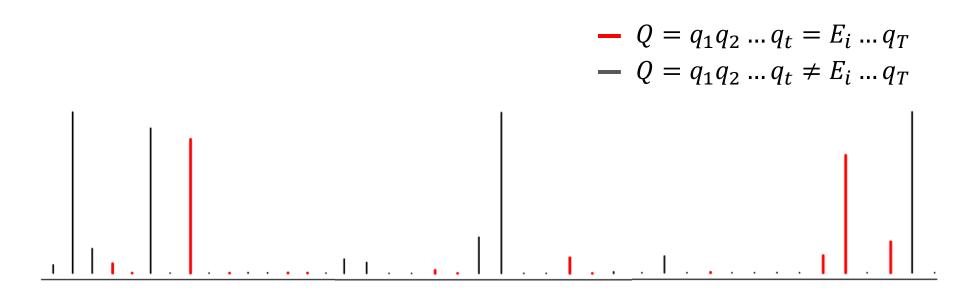
The *Viterbi* algorithm finds the path that maximizes

 $P(O^4, Q^b|\lambda)$ 

The *Forward* algorithm calculates the probability of emiiting O<sup>4</sup> by summing over all possible paths

$$P(O^4) = \sum_{j} P(O^4, Q^b | \lambda)$$




- What is the probability of a given sequence, O?
  - Forward algorithm
- Given a sequence O, what is the "true" sequence of states? Viterbi decoding: Viterbi algorithm

Posterior decoding: Forward and Backward algorithms

• What state emitted the symbol  $O_t$ ?

### What state emitted the symbol $O_t$ ?

 $P(0, q_t = E_i | \lambda)$ 



Sum over all paths that pass through  $E_i$  at t