End of Semester Logistics

711-3: due Sunday, Dec 1, 11:59pm

Last day of class: Thursday Dec 5th

PS7/711-4: due Friday, Dec 6, 11:59pm

Review session: Sunday, Dec 8th?

Final exam: Monday, Dec 9th, 1pm-4pm

– Cummulative, emphasis last 3rd of the semester

- Closed book, 2 pages of notes

Searching a sequence database

Input:

- query Q of length m
- database D=D1 D2 D3... D_N
 of length n

Search:

for j = 1 to N

- Find best local alignment of Q with Dj
- If "good alignment", add Dj to Results

Output: Results

PROBLEMS

- Too slow
- What is a "good" alignment?
- Which matrix should you use?
- Which results are trustworthy?
- Can you find all related sequences in the database?

3

Blast heuristic

Last Thursday

 Blast statistics: How significant is a matching sequence with score S?

Today

 How much information is available to distinguish between chance MSPs and MSPs in related sequences?

Next Week

- Information content of substitution matrices
- Information content of alignments
- Which substitution matrix will maximize precision and recall?

Terminology

Segment Pair (SP): ungapped local alignment.

<u>Maximal Segment Pair</u> (MSP): an ungapped local alignment that cannot be improved by making it bigger or smaller.

High-Scoring Segment Pair (HSP): an MSP with score at least S_T , where S_T is a user-defined minimum.

Word: String of length w. Typically, w<10.

<u>Hit</u>: An ungapped alignment of a word in *Q* and a word in *D* with score at least *T*.

6

Given a query sequence, Q, of length m, and a database sequence, D, of length n, find all ungapped local alignments with score at least S_{τ} (HSPs)

Sensitivity and Specificity

False Positives: Unrelated sequences with score $\geq S_T$

Depend on S_T

False Negatives: Related sequences with score $< S_T$

Given a query sequence, Q, of length m, and a database sequence, D, of length n, find all ungapped local alignments with score at least S_T

For sufficiently large *D*, dynamic programming is too slow.

$$Q \qquad \qquad D_1 \qquad D_2 \qquad D_j \qquad D_j$$

	Non-redundant (nr) sequence database	
Sequences	Nucleic Acid	Amino Acid
Date:	Nov 18, 2024 4:16 AM	Nov 19, 2024 4:05 AM
Letters:	2,520,486,308,772	321,840,402,579
Sequences:	110,905,049	841,786,231

Ungapped BLAST

Basic Local Alignment Search Tool

Altschul et al, 90

- 1. Construct *L*: a list of words of length w with score $\geq T$
- 2. Scan database D for hits instances of words in L
- 3. Extend hits to find MSPs with score $> S_T$.

Given a query sequence, Q, of length m and database, D, of length n, find HSPs

	Non-redundant (nr) sequence database	
Sequences	Nucleic Acid	Amino Acid
Date:	Nov 18, 2024 4:16 AM	Nov 19, 2024 4:05 AM
Letters:	2,520,486,308,772	321,840,402,579
Sequences:	110,905,049	841,786,231

Blast90 parameters

False Positives: Unrelated sequences with score $\geq S_T$

False Negatives:

1. Related sequences with score $< S_{\tau}$

2. Related sequences that do not contain a hit

Increased running time:

Hits that are not in a high scoring segment pair.

Depend on S_T

Depend on w and T

Select w and T to get the best balance between false negatives and efficient running time.

Problems with Blast 90

- 1. Construct L: a list of words of length w with score $\geq T$
- 2. Scan database D for hits instances of words in L
- 3. Extend hits to find MSPs with score $> S_T$.

90% of runtime

- 1. Running time: Too many unnecessary extensions
- 2. Ungapped extensions: related sequences with several short regions of similarity are not retrieved

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

Altschul et al, 97

- Gapped BLAST
- Two-Hit BLAST
- PSI-BLAST

2. Ungapped extensions: related sequences with several short regions of similarity are not retrieved

```
FSFLKDSAGVVDSPKLGAHAEKVFGMVRDSAVCLRATGEVV - LDGKDGS ----- 90
F L + V+ +PK+ AH +KV L + GE V LD G+

45 FGDLSNPGAVMGNPKVKAHGKKV ----- LHSFGEGVHFLDNLKGTFAALSE 90
```


Altschul et al, 97

An example: This alignment has two conserved regions connected by gapped region

Two-Hit BLAST

Altschul et al, 97

- Reduce threshold *T* to obtain *more* hits
- Only trigger an ungapped extension if there are *two hits* on the *same diagonal* within distance **A**

Gapped Extensions

- Find hits of length w with similarity threshold T.
- If D_i contains
 - two hits
 - two mits

• on same diagonal

- separated by a distance of at most A,
- Perform an ungapped extension using cutoff, X1.
- For each ungapped MSP with score S_1 , if $S_1 > S_a$. 2nd test
- perform a gapped extension with dynamic programming with cutoff X2

1st test

• If gapped extension score $S_2 > S_T$, report match. 3rd test

Two Hit BLAST: Performance

- Reduce threshold T to obtain more hits
- Only trigger an ungapped extension if there are *two hits* on the *same diagonal* within distance **A**
- For w=3, T=11, A=40,
 - 3.2 times as many hits
 - 0.14 times as many extensions
 - speed up $\sim 2X$

Gapped Extensions: Performance

- 1. Find HSP's, using ungapped extensions
- 2. If HSP score $> S_{q}$, perform a gapped extension.
- 3. If gapped extension score $S_2 > S_T$, report match.
- Two Hit strategy reduces the number of ungapped extensions
- Gapped extensions cost 500 times ungapped extensions
- One gapped extension per 4000 ungapped extensions
- ➤ An additional reduction in running time by more than a factor of 2.

Blast heuristic

Last Thursday

· Blast statistics: How significant is a matching sequence with score S?

Today

 How much information is available to distinguish between chance MSPs and MSPs in related sequences?

Next Week

- Information content of substitution matrices
- Information content of alignments
- · Which substitution matrix will maximize precision and recall?

BLAST (Karlin-Altschul) Statistics

E = Expected number of matches with score at least S under the null model

E-values depend on K and λ , which in turn depend on the scoring matrix, S[i,j].

Maximal Segment Pair (MSP): an ungapped local alignment that cannot be improved by making it bigger or smaller.

BLAST (Karlin-Altschul) Statistics

E = Expected number of matches with score at least S under the null model

By normalizing the alignment scores

$$S_b = \frac{\lambda S - \ln K}{\ln 2}$$

we obtain a "bit score" S_b and an expression for E that is independent of K and λ

29

• Blast heuristic

Last Thursday

 Blast statistics: How significant is a matching sequence with score S?

Today

 How much information is available to distinguish between chance MSPs and MSPs in related sequences? Next Week

- Information content of substitution matrices
- Information content of alignments
- Which substitution matrix will maximize precision and recall?