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Chapter 1

Sequence Alignment

Pairwise sequence alignment seeks to establish a correspondence between the elements in a
pair of sequences that share a common property, such as common ancestry or a common
structural or functional role. In computational biology, the sequences under consideration
are typically nucleic acid or amino acid polymers. We will consider three variants of the
pairwise sequence alignment problem: global alignment, semi-global alignment, and local
alignment.

Global alignment is used in cases where we have reason to believe that the sequences are
related along their entire length. If, for example, sequences s1 and s2 are two independent
sequencing runs of the same PCR product, then they should differ only at those positions
where there are sequencing errors. In order to find those sequencing errors, we align all of
sequence s1 with all of sequence s2. Other applications of global alignment include finding
mutations in closely related gene or protein sequences and identification of single nucleotide
polymorphisms (SNPs).

Semi-global alignment is a variant of global alignment that allows for gaps at the
beginning and/or the end of one of the sequences. Semi-global alignment is used in
situations where we believe that s1 and s2 are related along the entire length of the region
where they overlap. For example, if s1 is a segment of genomic DNA containing a prokaryotic
gene and s2 is the mRNA transcript produced when the gene in s1 is expressed, every base
in s2 corresponds to a base in s1, but not the reverse is not true. The bases immediately
up- and downstream of the gene appear in the genomic DNA, but not in the transcript.
Semi-global alignment “jumps” over those flanking regions in s1 without exacting a penalty,
but forces an alignment along the entire length of s2.

In contrast, local alignment addresses cases where we only expect to find isolated regions
of similarity. One example is alignment of genomic DNA upstream from two co-expressed
genes to find conserved regions that may correspond to transcription factor binding sites.
Another application is identification of conserved domains1 in two amino acid sequences

Computational Molecular Biology. Copyright c©2024 D. Durand. All rights reserved. 1



Chapter 1 Sequence Alignment

Box 1: Notation for pairwise alignment

Alphabet:

An alphabet, denoted by Σ, is a finite, unordered set of symbols; e.g.,

DNA: ΣD = {A,C,G, T}
RNA: ΣR = {A,C,G,U}
Amino acids: ΣAA = {A,C,D,E, F,G,H, I,K,L,M,N, P,Q,R,
S, T, V,W, Y }

Sequences or Strings:

A sequence or string, s, is a finite succession of the symbols in Σ.

Σ∗ denotes the set of all sequences over alphabet Σ, in-
cluding the empty sequence, ∅. For example, Σ∗R =
{∅, A,C,G,U,AA,AC,AG,AU,CA,CC,CG,CU, . . .}.
Given a sequence s of length n, we use s[1]s[2] · · · s[n] to denote the symbols
in s.

Subsequences:

A subsequence of s is any sequence obtained by removing zero or more symbols
from s. The sequences CATA and CTG are subsequences of CATTAG. AATTCG is
not.

A proper subsequence is a subsequence obtained by removing one or more
symbols from s.

Substrings:

A substring of s is a subsequence of s consisting of consecutive symbols in s.
Given a sequence, s, of length n, the substring that begins with s[i] and ends
with s[j] is denoted s[i..j], 1 ≤ i ≤ j ≤ n. The sequence CAT is a substring of
CATTAG. CATA is not.

A prefix of s is denoted s[1..j], j ≤ n.

A suffix of s is denoted s[i..n], 1 ≤ i.

2 Computational Molecular Biology. Copyright c©2024 D. Durand. All rights reserved.



1.1 Global pairwise alignment

that encode proteins that share one or more domains, but are otherwise unrelated.
Prior to introducing algorithms for these pairwise alignment problems, we introduce

some notation in Box 1. In Section 1.1, we introduce a formal definition of a global alignment.
There are many ways to align a given pair of sequences. We consider scoring functions
that assess the quality of an alignment as a basis for quantitative comparison of different
alignments. Finally, we provide an efficient algorithm to find the alignment that is optimal
with respect to the scoring function. Local and semi-global alignments are discussed in
Sections 1.3 and 1.2.

1.1 Global pairwise alignment

Given a pair of sequences, s1 and s2, the goal of global sequence alignment is to insert
gaps in s1 and s2 such that residues that share a property of interest are found in the
same column. Suppose that s1 = CATCAC and s2 = CTAGC are sequences of lengths 6 and
5, respectively. By introducing a gap after the first symbol in s2, we obtain an alignment,
α(s1, s2), of length l = 6 with three matches, two mismatches, and a gap:

CATCAC

C-TAGC

This is just one of many ways to align these sequences. A different alignment can be
obtained by introducing one gap in s1 and two gaps in s2:

CATCA-C

C-T-AGC

This alignment is longer (l = 7) and has four matches, three gaps and no mismatches. The
second alignment implies that the A’s in s1 and s2 share a relationship; the first alignment
does not.

Stacking the sequences vertically provides a visually intuitive representation that places
related residues in the same column. The same information can be represented in a
more compact form by simply indicating the positions of the gaps in the two sequences.
For example, the first alignment can also be represented as α(s1, s2) = {s′1, s′2}, where
s′1 = CATCAC and s′2 = C-TAGC. Note that although s1 and s2 have different lengths, the
alignment α(s1, s2), s′1, and s′2 are all of the same length (l = 6).

Because there are many different alignments of the same pair of sequences, we use
superscripts to distinguish between them when more than one alignment is under considera-
tion. Using this notation, the two alignments we introduced above are α1(s1, s2) = {s1

1, s
1
2},

1A domain is a peptide sequence that encodes a protein module that will fold into its characteristic
shape independent of the surrounding amino acid context and that is found in many different proteins.

Computational Molecular Biology. Copyright c©2024 D. Durand. All rights reserved. 3



Chapter 1 Sequence Alignment

where s1
1 = CATCAC and s1

2 = C-TAGC and α2(s1, s2) = {s2
1, s

2
2}, where s2

1 = CATCA-C and
s2

2 = C-T-AGC.

These ideas are the basis for the formal definition of a global sequence alignment. Given
sequence s1 ∈ Σ∗ of length n1 and sequence s2 ∈ Σ∗ of length n2, ακ(s1, s2) = {sκ1 , sκ2} is a
global alignment of s1 and s2 if and only if

• sκ1 , sκ2 ∈ (Σ′)∗, where Σ′ = Σ∪{ } is the alphabet expanded to include the gap symbol;

• |sκ1 | = |sκ2 | = lκ, where max(n1, n2) ≤ lκ ≤ n1 + n2;

• s1 is the subsequence obtained by removing ‘ ’ from sκ1 and s2 is the subsequence
obtained by removing ‘ ’ from sκ2 ;

• there is no value of i for which sκ1 [i] = sκ2 [i] = ‘ ’.

The length of the alignment is bounded below by max(n1, n2) because the alignment
cannot be shorter than the longer of the two sequences. The longest possible alignment
is one where every symbol in s1 is aligned with a gap in s2 and vice versa. In this case
the length of the alignment is lκ = n1 + n2. A longer alignment is not possible without
introducing a site with gaps in both sequences which is a violation of the fourth criterion.
The position in the alignment is indexed by columns; column i is often called site i. When
considering site i, sκ1 [i] and sκ2 [i] are the symbols in s1 and s2 that are aligned. If sκ2 [i] = -,
we say that there is a gap in s2 at site i.

1.1.1 Global sequence alignment with similarity scoring

Among the many possible ways to align s1 and s2, our goal is to find the global alignment
that best captures the relationship between them. This is fundamentally a biological
question. From a practical perspective, we use a mathematical approach: We introduce an
objective criterion that quantifies how well ακ captures the relationship between s1 and s2.
We then seek the alignment that optimizes that criterion.

Given sequences s1 and s2 and an alignment ακ(s1, s2) = {sκ1 , sκ2}, it is convenient to
assign a score to alignment ακ that quantifies how well ακ captures the relationship between
s1 and s2. One approach is to use a scoring function that reflects the similarity between the
sequences. In this case, the alignment that maximizes the scoring function is considered to
be the optimal alignment. Alternatively, we can introduce a function that quantifies the
distance between the two sequences (for example, the number of changes needed to convert
one sequence into the other) and seek the alignment that minimizes that distance.

In computational biology, similarity functions are more versatile and more widely used,
so we will start with similarity scoring, where a higher score indicates a better alignment.

4 Computational Molecular Biology. Copyright c©2024 D. Durand. All rights reserved.



1.1 Global pairwise alignment

Given sequences s1 and s2 and an alignment ακ(s1, s2) = {sκ1 , sκ2}, the similarity of
ακ(s1, s2) is defined to be

S(ακ(s1, s2)) =
lκ∑
i=1

S[sκ1 [i], sκ2 [i]], (1.1)

where S[x, y] is a score that reflects the similarity of x and y and S[x, ] is the gap score.
The optimal alignment is the alignment that maximizes the similarity between s1 and s2:

α∗(s1, s2) = argmax
κ

S
(
ακ(s1, s2)

)
.

There may be more than one optimal alignment.

In general, amino acid alignments are scored with a substitution matrix, S, that assigns
a similarity score to each pair of amino acid residues. Broadly speaking, a higher similarity
score will be given to a site where the same amino acid is observed in both sequences (S[x, x])
than to a site where the amino acids in the two sequences are different (S[x, y], x 6= y).
However, some amino acid matches will be assigned higher similarity scores than others.
When different amino acids are aligned (x 6= y), S[x, y] is typically higher when x and y
have similar biochemical properties. Examples of amino acid substitution matrices used
to score alignments include the PAM and BLOSUM matrices. Substitution matrices are
used less often with nucleic acid sequences because the alphabet is smaller (four nucleotides
versus 20 amino acids) and the biophysical properties of nucleotides are less varied. In
Chapter 3, we will discuss how amino acid substitution matrices are derived.

In this chapter, we will ignore these biological nuances and consider a simple similarity
scoring function that treats all symbols in Σ equally. In this simple system, the symbols at
given site in an alignment may be the same (a match) or they may differ (a mismatch):

S[x, y] =

{
M if x = y,

m if x 6= y,
(1.2)

where M is a match score and m is the mismatch score. For this simple scoring function,
we require that M > m, because matches are preferred over mismatches. The third case of
interest arises when a residue is aligned with the gap character (′ ′). This case is scored
with a gap penalty2,

S[x, ] = g

. The value of g is selected so that a substitution is preferred over two gaps (i.e., m > 2g).
A scoring function with m < 2g would exclude the possibility of an alignment with

2Strictly speaking, the gap score is not an integral part of the substitution matrix. We use this notation
here for convenience, as in the sum in Equation 1.1.

Computational Molecular Biology. Copyright c©2024 D. Durand. All rights reserved. 5



Chapter 1 Sequence Alignment

substitutions, because the score of any substitution could be improved by replacing it with
two gaps.

A final requirement is that the scoring function be symmetric; i.e., S[x, y] = S[y, x] and
S[x, ] = S[ , x]. Given a column with symbols x and y in a pairwise alignment, we have no
way of knowing whether the ancestral symbol was an x that was later replaced by a y, or
vice versa. (It is also possible that the ancestor was neither x nor y and some combination
of substitutions gave rise to x in one sequence and to y in the other.) For this reason, the
same score is assigned when x in s1 is aligned with y in s2 as when y in s1 is aligned with
x in s2. Similarly, when a symbol, x, in sequence s1 is aligned with a gap in sequence s2

(or vice versa), there is no way to know whether x was inserted in s1 or deleted from s2.
For this reason, sites with gaps are also called “indels” to indicate that either an insertion
or a deletion may have occurred. Our very simple scoring function (Equation 1.2) is, by
definition, symmetric because all mismatches have the same score. In Chapter 3, we will
see that more complex similarity functions have this property.

Note that the score of an alignment is defined to be the sum of the scores for the
individual positions in the alignment (Equations 1.1), which implies that each position in
the alignment is independent of neighboring positions. This assumption is unrealistic: In
real biomolecular sequences, there can be interactions between neighboring, or even distant,
residues in the sequence. However, scoring functions that assume positional independence
are widely used because they greatly simplify the calculation of alignment scores and other
mathematical analyses.

1.1.2 A dynamic programming algorithm to align a pair of sequences

We now have a formal definition of an alignment and a way of assigning a numerical score
to any given alignment. How do we find the alignment with the optimal score? We could
generate all possible alignments, score each one, and choose the alignment with the best
score. However, the computational cost would be prohibitive, since the size of the space of
all possible alignments of s1 and s2 is O(2n1+n2). (Convince yourself this is the case.)

Dynamic programming can be used to find the optimal alignment efficiently. This
strategy takes advantage of the fact that every prefix of an optimal pairwise alignment is
the optimal alignment of a prefix of s1 and a prefix of s2. This means that the optimal
alignment of pairs of progressively longer prefixes of s1 and s2 can be obtained by extending
the optimal alignment of shorter prefixes of s1 and s2. It is not necessary to examine a
suboptimal alignment of prefixes in order to find the optimal alignment of the full length
strings.

The dynamic programs for all three sequence alignment problems compute an n1 x n2

alignment matrix A, where A[i, j] is the score of the optimal alignment of the prefixes s1[1..i]
and s2[1..j], that is, the prefixes of s1 and s2 that end at positions i and j, respectively.

Dynamic programming algorithms for sequence alignment have four components:

6 Computational Molecular Biology. Copyright c©2024 D. Durand. All rights reserved.



1.1 Global pairwise alignment

• Initialization of the first row and column of A.

• A recurrence relation that specifies how to calculate the value of A[i, j], i > 0, j > 0,
from the values of neighboring cells.

• Determination of the score of the optimal alignment from the entries in matrix A.

• A procedure to trace back through the matrix to obtain the optimal alignment. This
is achieved by storing the information required to construct the optimal alignment in
an n1 x n2 traceback matrix, T .

The calculation of the optimal global alignment of s1 and s2 requires two passes through
the A and T matrices. In the first pass, the dynamic program proceeds from the upper left
to the lower right corner of A, populating the cells in A. Whenever a value is assigned to a
cell in A, the associated pointer is entered into the corresponding cell in T . In the second
pass, the optimal alignment is constructed from the pointers in T . The details of each of
these steps are what differentiate global, semi-global, and local alignment.

A formal statement of the dynamic program for global sequence alignment is given below.
In the first pass, the dynamic program progresses from A[0, 0] to A[n1, n2], populating the
cells in A with the scores of progressively longer optimal alignments of prefixes. At each
iteration, the value of A[i, j] is calculated from the values of A[i−1, j], A[i−1, j−1], and
A[i, j−1].

The initialization step calculates the values in the first row and column of A. The
score in A[0, j] reflects the alignment obtained by inserting gaps at the beginning of s1 and
aligning them to the first j symbols in s2 . Similarly A[i, 0] is the score of the alignment of
i gaps inserted prior to the first symbol in s2 with the first i symbols in s1.

The internal entries in A are calculated by the recurrence relations. The value in A[i, j]
is the score of the optimal alignment of the first i symbols in s1 (i.e., s1[1..i]) with the first
j symbols in s2 (i.e., s2[1..j]). The optimal alignment of s1[1..i] and s2[1..j] is obtained by
inserting one additional column at the end of a shorter optimal alignment. There are three
optimal alignments of prefixes of s1 and s2 that, when extended in this way, will yield a
candidate optimal alignment of s1[1..i] and s2[1..j].

1. The column −
s2[j] can be added to the end of the optimal alignment of s1[1..i] and

s2[1..j−1]. The alignment score of this prefix is stored in A[i, j−1], the cell to the
immediate left of A[i, j−1].

2. The column s1[i]
s2[j]

can be added to the end of the optimal alignment of s1[1..i−1] and

s2[1..j−1], which corresponds to A[i−1, j−1], the cell diagonally up and to the left of
A[i, j].

3. The column s1[i]
− can be added to the end of the optimal alignment of s1[1..i−1] and

s[1..j], which corresponds to the cell immediately above A[i, j].

Computational Molecular Biology. Copyright c©2024 D. Durand. All rights reserved. 7



Chapter 1 Sequence Alignment

Of these candidates, the alignment that optimizes the scoring function is the optimal
alignment of s1[1..i] and s2[1..j]. The score of this alignment is entered in A[i, j]. The
indices of the entry (or entries) in A that optimize the right hand side of the recurrence
relation (Equation 1.3) are stored in the traceback matrix, T . T [i, j] contains the index
of an adjacent cell to the left (i, j−1), upper left (i−1, j−1), and/or above (i−1, j) the
current cell. In class, we use arrows (←,↖, and ↑) to designate these indices. Note that
more than one of the recurrence cases may optimize the value of A[i, j]. In this case, more
than one pointer will be added to T [i, j].

The first pass completes when all entries in the matrix A have been assigned values. At

Dynamic program for global alignment: similarity scoring

Input:

Sequences s1 and s2 of lengths n1 and n2, respectively.

Initialization:

A[0, j] = A[0, j−1] + g (top row)

A[i, 0] = A[i−1, 0] + g (left column)

Recurrence relation:

A[i, j] = max


A[i, j−1] + g

A[i−1, j−1] + S[s1[i], s2[j]]

A[i−1, j] + g

(1.3)

T [i, j] = argmax
i,j


A[i, j−1] + g ←
A[i−1, j−1] + S[s1[i], s2[j]] ↖
A[i−1, j] + g ↑

(1.4)

Optimal alignment score:

The score of the optimal alignment is A[n1, n2].

Trace back:

Follow the pointers from T [n1, n2] to T [0, 0] to obtain the optimal alignment.

8 Computational Molecular Biology. Copyright c©2024 D. Durand. All rights reserved.



1.1 Global pairwise alignment

this point, A[n1, n2] contains the score of the full length optimal alignment, but the actual
alignment has not been explicitly determined. In the second pass, the alignment, α, is
constructed in reverse order by following the pointers through T from the lower right corner
to the upper left corner. This traceback procedure begins with an alignment consisting of
only the last column of the alignment, which is determined from the indices in T [n1, n2],
like this:

if T [n1, n2] =←
α = −

s2[n2]

i = n1, j = n2−1

if T [i, j] =↖
α = s1[n1]

s2[n2]

i = n1−1, , j = n2−1

if T [n1, n2] = ↑
α = s1[n1]

−

i = n1−1, j = n2

The second pass reconstructs the optimal alignment(s) by tracing back though T from the
lower right ((i = n1, j = n2) corner to the upper left corner (i = 0, j = 0). At each iteration,
α is extended by inserting an additional column at the beginning of α, according to the
following rules:

if T [i, j] =←
insert −

s2[j] at the beginning of α

j = j−1

if T [i, j] =↖
insert s1[i]

s2[j]
at the beginning of α

i = i−1; j = j−1

if T [i, j] = ↑
insert s1[i]

− at the beginning of α

i = i−1

If an entry in T with more than one pointer is encountered during the traceback, then there
is more than one optimal alignment of s1 and s2. Multiple passes through T are required to

Computational Molecular Biology. Copyright c©2024 D. Durand. All rights reserved. 9



Chapter 1 Sequence Alignment

generate all optimal alignments, with additional bookkeeping to ensure that each optimal
alignment is constructed once and only once.

This two pass alignment algorithm outputs an optimal alignment score, A[n1, n2], and
one or more optimal global alignments. In the first pass, the dynamic program computes
the scores of all pairs of prefixes in O(n1 · n2) time. The trace back through the alignment
matrix to obtain the optimal alignment requires O(n1 +n2) time for each optimal alignment.
Note that with similarity scoring, the entries in A may be positive or negative; the optimal
alignment score may also be positive or negative.

1.1.3 Global sequence alignment with distance scoring

With similarity scoring, we seek the alignment that maximizes the similarity between s1 and
s2. With distance-based scoring, the optimal alignment is one that minimizes the distance
between s1 and s2. One advantage of this approach is that distance functions are metrics,
in the formal sense, and have nice mathematical properties. The alignment distance also
has a concrete interpretation: the minimum alignment distance corresponds to the smallest
number of operations required to transform one sequence into another. In computational
biology, a major disadvantage of distance scoring is that it can be used for global and
semi-global alignment, but not for local alignment. In addition, distance functions penalize
mismatches and gaps, but do not reward matches.

We define the distance score of an alignment ακ(s1, s2) = {sκ1 , sκ2} to be

D
(
ακ(s1, s2)

)
= D(sκ1 , s

κ
2)

=
lκ∑
i=1

d(sκ1 [i], sκ2 [i]),
(1.5)

where d(x, y) is the distance between a pair of symbols x and y in Σ′ and lκ is the length of
the alignment. The optimal alignment, denoted α∗, is the alignment that minimizes the
distance between s1 and s2:

α∗(s1, s2) = argmin
κ

D
(
ακ(s1, s2)

)
.

The function specifying the distance between pairs of symbols must satisfy the following
constraints, for all x, y, and z in Σ′:

1. d(x, x) = 0
2. d(x, y) > 0
3. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)
4. d(x, y) = d(y, x)
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1.1 Global pairwise alignment

The first three constraints guarantee that D(sκ1 , s
κ
2) is a metric. In particular, D satisfies

the triangle inequality. This means that the penalty for replacing x with y is never greater
than the penalty for first replacing x with z and then replacing z with y. When z =
‘ ’, this says that deleting x and then inserting y is never an improvement on a direct
substitution of x with y. One consequence of the triangle inequality is that the cost of a
substitution can never be greater than twice the cost of an indel. The symmetric property,
d(x, y) = d(y, x), implies that there is no directionality in the scoring system; we have
no information about the order in which events occured. Like similarity scoring, distance
scoring assumes positional independence; Equation 1.5 is the sum of the distance scores
for the individual positions in the alignment. If d(x, y) = 1 and d(x, ) = 1, ∀x, y, then

Dynamic program for global alignment: distance scoring

Input:

Sequences s1 and s2 of lengths n1 and n2, respectively.

Initialization:

A[0, j] = A[0, j−1] + d( , s2[j]) (top row)

A[i, 0] = A[i−1, 0] + d(s1[i], ) (left column)

Recurrence relation:

A[i, j] = min


A[i, j−1] + d( , s2[j])

A[i−1, j−1] + d(s1[i], [j])

A[i−1, j] + d(s1[i], )

(1.6)

T [i, j] = argmin
i,j


A[i, j−1] + d( , s2[j]) ←
A[i−1, j−1] + d(s1[i], [j]) ↖
A[i−1, j] + d(s1[i], ) ↑

(1.7)

Optimal alignment score:

The score of the optimal alignment is A[n1, n2].

Trace back:

Follow the pointers from T [n1, n2] to T [0, 0] to obtain the optimal alignment.
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Chapter 1 Sequence Alignment

D
(
α∗(s1, s2)

)
corresponds to the minimum number of operations required to transform s1

into s2, where the operations are substitution, insertion, and deletion. This is called the
edit distance. If d(x, y) 6= 1 or d(x, ) 6= 1 or both, then D(α∗(s1, s2)) is called the weighted
edit distance.

Global alignment with a distance metric uses the same the two pass procedure described

above for global alignment with similarity scoring. However, the details of the initializa-
tion and recurrence differ. And in contrast to similarity scoring, with distances, all entries
in A are non-negative, since d(x, y) ≥ 0, ∀ x, y.

1.2 Local pairwise alignment

Global alignment is used in cases where we expect that s1 and s2 are related from end to
end. Semi-global allows for some gaps at the beginning and/or end of one sequence, but
the underlying assumption is the same: s1 and s2 share a relationship within the entire
aligned region. In contrast, local alignment is used in cases where s1 and s2 share one or
more local regions that are related, but are not related from end to end.

The alignment of any substring s1[h..i] of s1 and any substring s2[j..k] of s2 is a local
alignment of s1 and s2. The optimal alignment of s1[h..i] and s2[j..k] is the highest scoring
global alignment of those substrings, where 1 ≤ h ≤ i ≤ n1, and 1 ≤ j ≤ k ≤ n2 and S is
the similarity scoring function defined in Equation 1.1. Note that there may be more than
one. The optimal local alignment of s1 and s2 is the highest scoring optimal alignment of
all possible substrings of s1 and s2, that is,

α∗(s1, s2) = argmax
h,i,j,k

S(α∗(s1[h..i], s2[j..k])).

Note that there may be more than one optimal local alignment. High scoring sub-optimal
alignments may also be of interest.

For local alignment, the pairwise alignment dynamic programming algorithm (see p.
13) must be modified to allow the alignment to start and stop anywhere in s1 and s2. Unlike
the dynamic program for global alignment, the local alignment recurrence (Equation 1.8)
has a fourth term that sets the score A[i, j] to zero whenever adding a substitution or a
gap to the alignment results in a negative score. This is what allows the local alignment
algorithm to consider all possible starting positions in s1 and in s2.

The value in A[i, j] is the score of the optimal local alignment of a substring in s1[1..i]
and a substring in s2[1..j]. The score of the optimal local alignment over all possible
substrings of s1 and s2 is the maximum value in A, taken over all i and all j. The alignment
itself is obtained by tracing back through T , starting from the cell corresponding to the
maximum score. The alignment is constructed in reverse order by following the pointers
through T until end symbol “♦” is encountered; this corresponds to reaching the first
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1.2 Local pairwise alignment

Dynamic program for local alignment: similarity scoring

Input:

Sequences s1 and s2 of lengths n1 and n2, respectively.

Initialization:

A[0, j] = 0, ∀j
A[i, 0] = 0, ∀i

Recurrence relation:

A[i, j] = max


A[i, j−1] + g

A[i−1, j−1] + S[s1[i], s2[j]]

A[i−1, j] + g

0

(1.8)

T [i, j] = argmax
i,j


A[i, j−1] + g ←
A[i−1, j−1] + S[s1[i], s2[j]] ↖
A[i−1, j] + g ↑
0 ♦

(1.9)

Optimal alignment score:

The score of the optimal alignment is

max
i,j
A[i, j].

Trace back:

Follow the pointers from T [i∗, j∗], where (i∗, j∗) = argmaxi,j A[i, j], and end the
trace back at the first cell with value zero encountered.
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Chapter 1 Sequence Alignment

zero-valued cell in A on the trace back path. This is in contrast to global alignment where
the trace back starts in the lower right hand corner and proceeds to position i = 1, j = 1.

At each step,

If T [i, j] =←
align s2[j] with a gap ‘ ’
j = j−1

If T [i, j] =↖
align s1[i] with s2[j]
i = i−1; j = j−1

If T [i, j] = ↑
align s1[i] with a gap ‘ ’
i = i−1

If T [i, j] = ♦
align s1[i] with s2[j] and end
i = 0; j = 0

The point at which A[i, j] drops below zero and restarts depends on the scoring function
and critically determines what the resulting alignment will look like. For this reason, scoring
functions for local alignment are subject to more stringent constraints than scoring functions
for global and semi-global alignment.

In order to find biologically meaningful conserved regions, a scoring function for local
pairwise alignment must satisfy the following requirements:

• The scoring function must be a similarity function. Edit distance penalizes mismatches
and gaps, but does not reward matches and is therefore not appropriate for finding
local regions of similarity.

• There must be at least one pair of residues, x and y, for which the similarity score
S[x, y] is positive. Without this requirement, all entries in the alignment matrix, A,
would be set to zero.

• The expected alignment score of a pair of randomly generated sequences (i.e., sequences
sampled from a background distribution) must be negative.

• The standard requirements for the similarity function must be upheld (m > 2g).

The rationale for a negative expected alignment score is as follows: The goal of local
alignment is to find similar regions in a pair of sequences, s1, s2 ∈ Σ∗. The optimal
local alignment obtained from the dynamic programming algorithm will depend on the
function used to score matches and mismatches. We seek a scoring function that will
yield local alignments that correspond to biologically meaningful features. However, even
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1.2 Local pairwise alignment

unrelated sequences, when aligned, will match at a few positions. In order to have a strong
presumption that a high-scoring local alignment is biologically meaningful, the match and
mismatch scores should be chosen in such a way that chance matches contribute little to
the alignment score.

If a pair of symbols, sampled at random, were appended to the end of an existing
alignment, how much would the alignment score increase? The increase, on average, is given
by the expected alignment score per position. Let x be a symbol in Σ and let px be the
background frequency of x in the genomes from which sequences s1 and s2 were sampled.
Then, using our simple scoring function, the expected alignment score per position is

S =
∑
x∈Σ

∑
y∈Σ

pxpy S[x, y]

=
∑
x∈Σ

p2
x M +

∑
x∈Σ

∑
y∈Σ,
y 6=x

pxpy m,

where M and m are the match and mismatch scores, respectively.
For example, suppose that s1 and s2 are DNA sequences with uniform nucleotide

frequencies; i.e., pA = pG = pC = pT = 0.25. Since the nucleotide frequencies are uniform,
the nucleotide pairs also have uniform frequencies: pxpy = (0.25)2,∀x, y. There are 16
possible pairs of nucleotides; four pairs consist of the same nucleotide (AA, GG, CC, and
TT) and 12 pairs are made up of different nucleotides. In this case, the expected alignment
score per position is

S =4 (0.25)2 M + 12 (0.25)2 m

=0.25 M + 0.75 m.

Why is it important that the expected alignment score be negative? If the expected
score were positive, then extending a local alignment with unrelated pairs of symbols would
increase its score. Such an alignment would have a higher score because it is longer, not
because it contains stronger evidence of a shared biological relationship. In the nucleotide
example given above, M and m should be selected so that

0.25 M + 0.75 m < 0.

The rules above apply to general scoring functions, where the score for each pair of
residues can have a different numerical value. For our simple similarity function, we achieve
these goals by requiring a positive score for matches (M > 0) and a negative score for
mismatches (m < 0) and gaps (g < 0).
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1.3 Semi-global alignment

Global alignment seeks the best, full length alignment of a pair of sequences; that is, the
best way to match up two sequences along their entire length. For some applications, it is
desirable to relax this requirement and not penalize gaps at the beginning and/or end of an
alignment. For example, for sequence assembly, we seek sequence fragments that overlap;
that is, we expect to be able to align the end of one fragment with the beginning of another.
Very occasionally, we may find sequence fragments that start and end at the same position,
but, in general, we expect some gaps at the beginning and at the end of the alignment.
Another example is aligning cDNAs with genomic DNA to identify gene structure. Because
the cDNA corresponds to a small region in the genome, the cDNA fragment will be flanked
by gaps at both ends when aligned with the genomic DNA.

Semi-global alignment is a modification of global alignment that allows the user to
specify that gaps will be penalty-free at the beginning of one of the sequences and/or at
the end of one of the sequences. The optimal semi-global alignment can be found using
dynamic programming, with modifications to adapt the dynamic program for global pairwise
alignment to the semi-global alignment problem. These modifications are described in
terms of alignment with similarity scoring. Similar modifications can be made to obtain a
semi-global alignment algorithm that uses distances.

For penalty-free prefixes, the gap penalties in the first column or row are replaced with
zeros. To achieve penalty-free gaps at the beginning of s1, the entries in the first row are
set to zero. Allowing penalty-free gaps at the beginning of s2 requires zeros in the first
column. Penalty-free suffixes are achieved by re-defining the optimal alignment score to
be the maximum in the last row or column, rather than the value in the cell at the lower
right hand corner of the alignment matrix. Considering all cells in the last row allows for
penalty-free gaps at the end of s1 For penalty-free gaps at the end s2, the algorithm may
consider all cells in the last column. As with global alignment, the traceback begins from
the cell associated with the optimal score. This means that, unlike global alignment, the
traceback can start from a cell in the last row or column, rather than being required to
start from the lower right corner.

There may be more than one optimal semi-global alignment. First, two or more cells in
the last row (respectively, column) may contain the maximum value. In addition, as with
global alignment, for each maximum-valued cell in the last row (respectively, column) there
may be more than one path that traces back through in the alignment matrix.
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1.3 Semi-global alignment

Dynamic program for semi-global alignment: similarity scoring

Input:

Sequences s1 and s2 of lengths n1 and n2, respectively.

Initialization:

To allow penalty-free gaps at the beginning of s1 (as in Case 1), set the first row to
zero and initialize the first column as in global alignment.

A[0, j] = 0, ∀j (top row)

A[i, 0] = A[i−1, 0] + g (left column)

To allow penalty-free gaps at the beginning of s2 (as in Case 2), set the first column
to zero and initialize the first row as in global alignment.

A[0, j] = A[0, j−1] + g (top row)

A[i, 0] = 0, ∀i (left column)

Recurrence relation:

Same as global.

Optimal alignment score and trace back:

To avoid trailing gap penalties at the end of s1 (as in Case 3), we define the optimal
score to be the optimal score in the bottom row

max
j
A[n1, j].

Trace back from T [n1, j
∗], where j∗ = argmaxj A[n1, j]. In other words, trace

back from the cell(s) in the last row with optimal score.

To avoid trailing gap penalties at the end of s2 (as in Case 4), we define the optimal
score to be the optimal score in the last column

max
i
A[i, n2].

Trace back from T [i∗, n2], where i∗ = argmaxiA[i, n2]. In other words, trace
back from the cell(s) in the last column with optimal score.
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Figure 1.1: Semi-global alignment matrix with similarity scoring (M = 2,m = −1, g = −1)
and penalty-free gaps at the beginning and end of s1. With this configuration, there are
two optimal semi-global alignments. The traceback starts at the cell corresponding to
the maximum value in the last row, highlighted in pink. Arrows along the traceback are
indicated in red. Zeros in the first row allow the traceback to terminate any position in the
top row.

As an example, Figure 1.1 shows the alignment matrix for the semi-global alignment of
s1 = BOUND and s2 = SPELLBINDING, with penalty-free gaps at the beginning and end of
s1. Zeros in the top row allow the algorithm to start late in SPELLBINDING. This results in
five gaps that are not penalized before the first character in s1. The alignment terminates
at the highest-scoring cell in the last row, resulting in three penalty-free gaps after the last
character in s1. In this example, there is a unique maximum in the bottom row.

With this scoring function, there are two optimal semi-global alignments because there
are two paths from the maximum value in the last row to the a zero-valued cell in the first
row.

s_1: B O U N D

s_2: S P E L L B I _ N D I N G

and

s_1: B O U N D

s_2: S P E L L B _ I N D I N G

Multiple optimal semi-global alignments could also arise if there are two or more maximum-
valued cells in the last row, but that is not the case here. To emphasize that indels at the
beginning and end of s1 are penalty-free, we do not show the gap symbols before and after
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1.3 Semi-global alignment

BOUND. This distinguishes leading and lagging indels from the indel in SPELLBINDING that
is penalized, because it is in the middle of the alignment.

In the example in Fig. 1.1, the semi-global alignment algorithm was configured to allow
gaps to be penalty-free at the beginning and end of s1. In general, semi-global alignment
can be set up to allow penalty-free gaps at the beginning of either sequence. There are
eight possible cases to consider:

1. Gaps are penalty-free at the beginning of s1 (A[0, j] = 0,∀j); e.g.,

s_1: D O

s_2: R E D O

2. Gaps are penalty-free at the beginning of s2 (A[i, 0] = 0, ∀i); e.g.,

s_1: R E D O

s_2: D O

3. Gaps are penalty-free at the end of s1 (opt = maxj A[n1, j]); e.g.,

s_1: D O

s_2: D O N E

4. Gaps are penalty-free at the end of s2 (opt = maxiA[i, n2]); e.g.,; e.g.,

s_1: D O N E

s_2: D O

5. Gaps are penalty-free at the beginning and end of s1; (A[0, j] = 0,∀j and opt =
maxj A[n1, j].); e.g.,

s_1: D O

s_2: R E D O N E

6. Gaps are penalty-free at the beginning and end of s2; (A[i, 0] = 0, ∀i and opt =
maxiA[i, n2].); e.g.,

s_1: R E D O N E

s_2: D O

7. Gaps are penalty-free at the beginning of s1 and at the end of s2; (A[0, j] = 0, ∀j and
opt = maxiA[i, n2].); e.g.,

s_1: D O N E

s_2: R E D O
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8. Gaps are penalty-free at the beginning of s2 and at the end of s1; (A[i, 0] = 0, ∀i and
opt = maxj A[n1, j].); e.g.,

s_1: R E D O

s_2: D O N E

In semi-global alignment, we do not allow penalty-free gaps at the beginning of s1 and
the beginning of s2 in the same alignment. Nor do we allow penalty-free gaps at the end of
s1 and the end of s2. Why not?
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