03-327/727 Phylogenetics

Dannie Durand

- Office hours: Tuesday 5pm 6:30pm
- MI 646

Pieter Spealman

- TBA

From "Trees and networks before and after Darwin", Mark A Ragan Biology Direct, 2009

03-327/727 Phylogenetics

Course website:

http://www.cs.cmu.edu/~durand/Phylogenetics

Password required to access some material when logging in from off campus

id: compbio

password: genomics

2

Textbook

Textbook: *Molecular Evolution: A phylogenetic approach,* Page and Holmes

This book is available, free, in pdf format on the course website.

Additional readings from journal articles and scanned textbooks will be provided on the syllabus page.

3

03-327/727 Phylogenetics: Course work, homework, grading

- 6-8 homework assignments
- 4 data analysis practica
- Two in-class exams
- Final exam
- Project for 727

4

03-327/727 Phylogenetics: Course work, homework, grading

• 03-327:

• 03-727: Homework: 25 pts

Practica: 30 pts

In class exams: 15 pts

Final: 30 pts Total: 100 pts Homework: 25 pts Practica: 30 pts

In class exams: 15 pts

Final: 30 pts Project: 25 pts Total: 125 pts

5

03-727 Project: Phylogenetic analysis of a molecular data set

Milestones

- Formulate a phylogenetic question involving a sequence family of interest
- Collect appropriate sequences
- · Multiple sequence alignment
- · Phylogeny estimation
- · Assess the reliability of your tree
- Interpret results

6

03-727 Project: Phylogenetic analysis of a molecular data set

Deliverables

- Project plan
- Final paper
- In-class presentation
- 3-5 pages (plus appendices)
 - Introduction
 - Methods
 - Results/Discussion
 - Appendix including alignments, trees, etc.

Project can be carried out by a 2-person team

Topics

- Introduction:
 - a phylogeny is an evolutionary tree that represents a hypothesis concerning evolutionary history
- The underlying evolutionary processes
 - Species evolution
 - Gene and genome evolution
 - Gene trees versus species trees
- · How to interpret an evolutionary tree
 - Tree terminology
 - Evolution of traits on a tree
- Molecular phylogenetics: Building evolutionary trees using sequences
 - Finding and aligning sequences
 - Models of sequence evolution
 - Tree reconstruction methods
 - Sources of error, assessing accuracy

What is a phylogeny?

Phylogeny:

An <u>evolutionary tree</u> that represents a <u>hypothesis</u> concerning the <u>evolutionary history of a group of taxa</u> and their ancestors.

Taxon:

- a unit of classification
- strain, species, individual, gene

A phylogeny is (sort of) like a pedigree or family tree....

9

The Darwin Wedgewood Galton Family Pedigree of H.H. Laughlin. Berra, Alvarez, Shannon. Biological Journal of the Linnean Society, 2010, 101, 228–241

Two motivating examples

- > Darwin's family and Darwin's finches
 - Similarities and differences between family trees and evolutionary trees
- Color vision in Primates
 - Why is it useful to think about the evolutionary history of genes independent of the evolutionary history of species?

A pedigree...

- represents a branching process where
- an individual gives rise to zero, one, or more than one offspring

12

Family relationships

- Parent versus child, ancestor versus descendant
- Siblings versus cousins

You are more closely related to your siblings than to your cousins. Why?

13

Differences between family trees and phylogenies

Family trees

- Each node corresponds to a single individual
- The history is derived from the historical record
- Every node has two parents
- Not binary: A couple can have many children

Species trees

- Each node corresponds to a species
- The history is inferred from information about presentday species
- Each node has one "parent"
- Binary: every node has two children, except for leaf nodes

Two motivating examples

- Darwin's family and Darwin's finches
 - Similarities and differences between family trees and evolutionary trees
- > Color vision in Primates
 - Why is it useful to think about the evolutionary history of genes independent of the evolutionary history of species?

Evolutionary tree reconstruction

What are the processes we are trying to reconstruct?

- ➤ Species evolution
- Sequence evolution
- Gene family evolution

(a) Allopatric speciation

Many Intrinsic Reproductive Isolating Mechanisms Drive Speciation

Ecological Isolation:

Individuals from separate species do not mate because they do not come into contact (e.g., different habitats within an overlapping range).

Temporal isolation:

Individuals from separate species do not mate because they breed at different times.

Many Intrinsic Reproductive Isolating Mechanisms Drive Speciation

Behavioral isolation:

Individuals from separate species do not mate because they are not attracted to one another.

Courtship rituals are

- critical for mating within a species
- ineffective for attracting members of other species.

Many Intrinsic Reproductive Isolating Mechanisms Drive Speciation

Mechanical isolation:

Individuals from separate species do not mate because they are not physically compatible.

Gametic isolation:

Even if they are physically compatible, an embryo will not form if the egg and sperm do not fuse properly.

Many Intrinsic Reproductive Isolating Mechanisms Drive Speciation

Hybrid inviability or infertility:

Even if fertilization occurs successfully, the offspring may not survive, or be infertile (e.g., mule).

In this course,

- we will consider speciation as a separation of populations with reproductive isolation;
- species concepts and process of speciation are not the focus.

Why phylogeny reconstruction?
Some applications

Independent sites of pig domestication Source: Greger Larson, et al. 2005. Worldwide Phylogeography of Wild Boar Reveals Multiple Centers of Pig Domestication. Science 11 March 2005. Vol. 307. no. 5715, pp. 1618 - 1621. DOI: 10.1126/science.1106927.

