Planning in the Know:
Hierarchical belief-space task and motion planning

Leslie Pack Kaelbling and Tomas Lozano-Pérez*

1 Introduction

As robots become more physically robust and capable of so-
phisticated sensing, navigation, and manipulation, we want
them to carry out increasingly complex tasks. A robot that
helps in a household must plan over the scale of hours or
days, considering abstract features such as the desires of the
occupants of the house, as well as detailed models that sup-
port locating and getting objects. The complexity of such
tasks derives from very long time horizons, large numbers of
objects to be considered and manipulated, and fundamental
uncertainty about properties and locations of those objects.

Recent research [Erez and Smart, 2010; Platt et al., 2010;
Toit and Burdick, 2010] has shown the value of planning in
belief space using simplified models and replanning. We have
developed an approach to combining logic and geometry with
online hierarchical planning that is effective in large deter-
ministic domains with long planning horizons [Kaelbling and
Lozano-Pérez, 2011]. The focus of this paper is to integrate
these two ideas into a method for planning, acting, and esti-
mating in large uncertain robotic domains.

Several other approaches to integrating task and motion
planning exist, although none of them treats issues of uncer-
tainty. In the work of Cambon et al. [Cambon e al., 2009],
a symbolic domain acts as a constraint and provides a heuris-
tic function for a complete geometric planner. Plaku and
Heger [Plaku and Hager, 2010] extend this approach to han-
dle robots with differential constraints and provide a utility-
driven search strategy. The work of Wolfe et al. [Marthi et
al., 2010] provides a hierarchical combined task and motion
planner based on hierarchical transition networks (HTNs) and
applies it to a manipulation-planning problem.

Hierarchical task and motion planning Our basic ap-
proach to integrating task planning and motion planning has
two key properties: (1) It is aggressively hierarchical. It
makes choices and commits to them, limiting the length of
plans and exponentially decreasing the amount of search re-
quired. (2) It operates in the domain of continuous geometry,
and does not require any a priori discretization of the state or
action spaces.

Most work in hierarchical planning uses a hierarchical
structure as a way to speed the construction of a complete

*CSAIL, MIT, Cambridge, MA 02139

tlp}@csail.mit.edu

{1pk,

Figure 1: Simulated mobile robot searching for alarm; Wil-
low Garage PR2 manipulating objects.

low-level plan [Marthi e al., 2007] . Instead, we construct
a plan at an abstract level, commit to it, and then recursively
plan and execute actions to achieve the first step in the ab-
stract plan without constructing the rest of the plan in de-
tail. The risk associated with this approach is that the ab-
stract plan might not be executable: the particular way that
the first step is carried out could make it impossible to carry
out subsequent steps, at least without undoing the results of
earlier steps. We attempt to avoid such failures by constrain-
ing the abstract plan steps so that they are serializable; that
is, so that for any realization of the first plan step, there exist
realizations for the subsequent ones. So, we simply execute
the first abstract step, observe the resulting world state, and
then plan in detail for the next one. This approach results in
dramatic speed-ups from the hierarchical problem decompo-
sition when serializability holds. If serializability fails, an in-
terleaved plan is constructed that achieves the effects of both
steps; as long as actions in the environment are ultimately
reversible, then any goal can be achieved, at the expense of
sub-optimality in the behavior.

In complex, high-dimensional geometric spaces, it is cru-
cial to avoid indiscriminate discretization. We handle the in-
tegration of continuous geometric planning with task plan-
ning by using geometric ‘suggesters’, which are fast, ap-
proximate geometric computations that construct appropriate
choices for the parameters of an operator.

Handling uncertainty This paper describes an approach
to hierarchical planning under uncertainty about the outcomes
of actions as well as about the present state.

It manages uncertainty in the outcome of actions by plan-
ning in a determinized approximation of the original domain

AlarmCleared = T

~

MoveTo(b, bc, ¢ Ch

v
Plan 2
RobotRm = ¢ Alar

Expected obs

Plan 1

N

eckRm(c) Clear

min(c) = T

Replan

AlarmCleared = T

Plan 3

AlarmCleared = T

N

ClL(bc, 0.5, 0.5) FL(bc, 0.35, 0.1) FL(bc, 0.5, 0.1) MoveTo(b, c)
| | | MoveTo(c, d) CheckRm(d) Clear
I I I i N
v v v LT l .. |
CoarselLook(bc) FineLook(bc, 7.46) GoThru(6.97) Prras . 'S v
Plan 4 Replan Plan 5 ClearPrim
/ RobotRm = d RobotRm = d RobotRm = d
Cl(cd, 0.5, 0.5) FL(cd, 0.35, 0.1) FL(cd, 0.5, 0.1) MoveTo(c, d) Cl(cd, 0.5, 0.1) MoveTo(c, d)
1 I \ I 4 \\ ~
! ! -7 ! . T ~
v v s v ¥ Toa

CoarseLook(cd) FineLook(cd, 1.04) GoThru(0.88)

PNMDoorLoc(cd, 0.5, 0.1)

Antecedent Fail Replan

CoarseLook(cd) RobotRm = d

GoThru(0.73)

Figure 2: Process of planning and execution while searching for and silencing an alarm.

and replanning when execution does not have the expected re-
sults. The hierarchical structure of plans allows localized exe-
cution monitoring and replanning, in many cases handling an
execution failure by replanning just the current subtask rather
than the whole hierarchical plan.

It manages uncertainty about the current state of the world
by planning in the space of beliefs. Planning in belief
space is generally quite complex, because it seems to re-
quire representing and searching for trajectories in a very
high-dimensional continuous space of probability distribu-
tions. This is analogous to the problem of finding plans in
very high-dimensional continuous space of configurations of
a robot and many objects. We take direct advantage of this
analogy and use symbolic fluents to specify limited proper-
ties of belief states, as [Kaelbling and Lozano-Pérez, 2011]
does for properties of geometric configurations. Regression-
based planning allows the construction of high-level plans to
achieve goals articulated in terms of those fluents, without ex-
plicitly formalizing the complete dynamics on the underlying
continuous space.

We demonstrate our approach in an illustrative simu-
lated domain and provide some preliminary results in a real
mobile-robot manipulation problem (figure 1).

2 Example

Consider a mobile robot whose task is to find an alarm that is
going off and silence it. The robot is in a house and knows
the connectivity of the rooms, and is able to stay well local-
ized with respect to the objects in the house, but is uncertain,
a priori, about the location of the doors within the walls of
the house. The belief space involves continuous aspects (lo-
cations of doors) and discrete aspects (which room contains
the alarm). The robot needs to explicitly sense in order to lo-
cate the doors. We assume it has two sensors: one with low
accuracy and a wide field of view, and one with high accu-
racy but a narrower field of view. These (idealized) sensors
each deliver an estimated location of the center of the door;
the sensed location is a random variable with the true location

as the mean and Gaussian noise.

Figure 2 shows the process of planning and execution in or-
der to achieve the goal of silencing the alarm. Blue nodes rep-
resent planning problems, pink nodes represent subtasks, and
green nodes represent primitive actions. Orange and yellow
nodes indicate replanning in response to execution failures or
violations of expected observations.

There are four rooms in the house (figure 1, left). The robot
is initially in room B. It initially believes that the alarm is
most likely to be in room C, so it plans (Plan 1) to move
to room C, search for the alarm, and silence it. To move
from room B to room C, it needs to locate the door precisely
enough to go through it. So, it plans (Plan 2) to first look with
the coarse (wide field-of-view) sensor, then refine the esti-
mate with the more accurate sensor, and finally move through
the door.

The robot executes the first step and obtains an observa-
tion which is used to update an estimate of the position of
the door, and the next subtask, which is to aim the narrow
FOV sensor at the most likely location of the door is consid-
ered. The sensor is positioned and an observation received.
This observation decreases the uncertainty sufficiently that
the next planned observation is not necessary and the robot
moves through the door from room B to room C.

At this point, the robot expected to hear the alarm. It does
not hear it (indicated by the orange node), so the remaining
plan is invalidated, and a new plan (Plan 3) is made, taking
into account the knowledge that the alarm is not in room C.
It plans to move to room D: this is not the most likely loca-
tion, but it is cheapest, because moving to A would take an
extra step. The robot does not know the location of the door
between C and D, so again it plans to gain information. This
goes much as before, except that when the robot attempts to
go through the door, it fails (because its estimate of the door’s
location was too far wrong), as indicated by the yellow node.
Information gained from the failure is used to update its es-
timate of the position of the door, and it decides that it does
not have enough information to attempt to go through again

GoThru(0.94)

(indicated by the orange node), so it replans (Plan 5) to look
before attempting to go through the door. The attempt to go
through the door fails again, but it is repeated with success.

Once in room D, the robot hears the alarm and success-
fully clears it. This example illustrates: the use of the plan
hierarchy to monitor for important changes, localized replan-
ning, planning to gain information, and robust execution. We
examine some of the details of this example in subsequent
sections.

3 Probabilistic dynamics

The traditional approach to planning in domains with proba-
bilistic dynamics is to make a conditional plan, in the form
of a tree, supplying an action to take in response to any pos-
sible outcome of a preceding action [Weld, 1999]. For effi-
ciency and robustness, our approach to stochastic dynamics
is to construct a deterministic approximation of the dynam-
ics, use the approximate dynamics to build a plan, execute
the plan while perceptually monitoring the world for devia-
tions from the expected outcomes of the actions and replan
when deviations occur. This method has worked well in con-
trol applications [Erez and Smart, 2010; Platt et al., 2010;
Toit and Burdick, 2010] as well as symbolic planning do-
mains [Yoon et al., 2007].

Determinization There are several potential strategies for
constructing a determinized model. A popular approach is
to assume, for the purposes of planning, that the most likely
outcome is the one that will actually occur. An alternative
method is to consider all possible outcomes, but rather than
modeling them as a randomized choice that is made by na-
ture, instead modeling them as a choice that can be made by
the agent. We integrate the desire to have a plan with a high
success probability with the desire to have a plan with low
action cost by adopting a model where, when an undesirable
outcome happens, the state of the world is assumed to stay
the same, allowing the robot to repeat that action until it has
the desired result. If the desired outcome has probability p
and the cost of taking the action is ¢, then in this model the
expected cost to make the transition to the desired state is ¢/p.
We will search for the plan that has the least cost under this
model.

Interleaved planning and execution The planning and ex-
ecution process can be thought of as a depth-first tree traver-
sal, implemented as follows:

HPN(belief , goal, abs, world):

p = PLAN(belief, goal, abs)
for (a;, g;) inp
while HOLDS(gi-1, belief) and not HOLDS(g;, belief)
if ISPRIM(a;)
obs = world .EXECUTE(a;)
belief .UPDATE(a;, obs)
else
HPN(belief, g;, NEXTLEVEL(abs, a;), world)
if not HOLDS(g;, belief) return

It is invoked by HPN(belief, goal, abs, world), where
belief is a description of the robot’s belief about the cur-
rent state of world; goal is a conjunction of fluents (sym-
bolic predicates with time-varying values) describing a set

of goal states; abs is a structure that specifies, for any flu-
ent, the number of times it has served as a plan step in the
HPN call stack above it; and world is an actual robot or a
simulator in which primitive actions can be executed. In the
prototype system described in this paper, world is actually a
geometric motion planner coupled with a simulated or phys-
ical robot. The PLAN procedure depends on a set of operator
descriptions that describe the domain dynamics and returns a
list ((—, g0), (@1,91), ..., (@n, gn)) Where the a; are operator
instances, g, = goal, g; is the weakest precondition of g; 1
under a;, and belief € go. PLAN works by goal regression; it
computes, for each plan step, a;, the weakest conjunctive sub-
goal for that step, g;_1; these subgoals serve as the goals for
the planning problems at the next level down in the hierarchy.

HPN starts by making a plan p to achieve the top-level goal.
Then, it executes the plan steps, starting with action, a;. Each
plan step is executed repeatedly, until either its desired post-
condition, g;, holds in the environment, which means that the
execution has been successful, or until its pre-condition, g;_;
ceases to hold in the environment, which means that the suffix
of the plan starting with this step can no longer be expected
to achieve the goal. If the pre-condition becomes false, then
execution of the plan at this level is terminated and control is
returned to the level of abstraction above.

After each primitive action is executed, an observation is
made in the world and the belief state is updated to reflect
both the predicted transition and the information contained in
the observation obs. Hierarchical planning and information
gain fit together nicely: the system can make a high-level plan
to gather information and then use it, and the interleaved hier-
archical planning and execution architecture ensures that de-
tailed planning for how to use the information naturally takes
place after the information has been gathered.

4 Symbolic planning in belief space

Traditional belief-space planning approaches either attempt
to find entire policies, mapping all possible belief states to ac-
tions [Smallwood and Sondik, 1973; Kaelbling et al., 1998;
Sanner and Kersting, 2010] or perform forward search from a
current belief state, using the Bayesian belief-update equation
to compute a new belief state from a previous one, an action
and an observation [Ross ef al., 2008]. In order to take advan-
tage of the approach outlined above to hierarchical planning
and execution, however, we will take a regression-based ap-
proach to planning in belief space.

Fluents and regression In symbolic planning, fluents are
logical assertions used to represent aspects of the state of the
external physical world; conjunctions of fluents are used to
describe sets of world states, to specify goals, and to repre-
sent regression conditions. A symbolic world state can be
represented in complete detail by an assignment of values to
all possible fluents in a domain.

Real world states in robotics problems, however, are highly
complex geometric arrangements of objects and robot con-
figurations which cannot be completely captured in terms of
logical fluents. However, logical fluents can be used to char-
acterize the domain at an abstract level for use in the upper
levels of hierarchical planning.

In this paper, we use fluents to characterize aspects of the
robot’s belief state, for specifying goals and regression condi-
tions. For example, the condition Pr(In(cup, cupboard)) >
0.95, which describes a set of belief states, can be written
using a fluent such as Prin(cup, cupboard,0.95), and might
serve as a goal for planning. For any fluent, we need to be
able to test whether or not it holds in the current belief state,
and we must be able to compute the regression of a set of be-
lief states described by a conjunction of fluents through each
of the robot’s actions. Thus, our description of operators will
not be in terms of their effect on the state of the external world
but in terms of their effect on the fluents that characterize the
robot’s belief. Our work is informed by related work in par-
tially observed or probabilistic regression [Boutilier, 1997;
Fritz and Mcllraith, 2009; Scherl et al., 2009].

In the rest of this section, we provide examples of represen-
tations of beliefs using logical fluents, for both discrete and
continuous domains, and illustrate them on the example from
section 2.

Knowledge and lack of knowledge Consider a situation in
which there is initial uncertainty about the state of the world,
but where some actions can generate observations that will
completely resolve uncertainty about a particular fluent. As-
pects of many real-world domains have this character: a robot
may not know the location of a particular object in the house,
but when it looks inside a cupboard, it will either know that
the object is in that cupboard or know that it is not. We use ex-
plicit logical representation of knowledge and lack of knowl-
edge [Petrick and Bacchus, 2004] to model such situations.

The knowledge of an agent with respect to a property ¢
of the external world can be characterized in two different
ways. It may be that the agent knows the value of ¢, de-
fined as K(¢ = v) = Pr(¢ = v) > 1 — ¢, for some fixed
small e. Alternatively, we might characterize an agent’s fu-
ture knowledge state by saying that it knows a value of ¢:
KV(¢) = Fv.K(¢ = v). This formula characterizes the
set of belief states in which the agent is relatively sure about
the value of ¢, without committing to which value it will be.
Knowing a value can be particularly useful as a precondition
to a more concrete action that will make use of the fluent
value: knowing the location of an object in order to pick it
up, or knowing a phone number in order to call it. We use K
and KV as shorthand for describing fluents that make these
knowledge assertions about the belief state.

Consider an operator with the knowledge result KV (¢).
Such an operator is not sufficient to establish a result K (¢ =
V') during planning: because it cannot know in advance what
observation will result, it cannot promise what the resulting
value of ¢ will be. We apply the determinization strategy of
allowing the planner to choose any of the possible outcomes,
with a cost inversely proportional to their probability. Thus,
we can treat a single operator with a K’V (¢) effect as multiple
operators, each of which achieves the condition K (¢ = V)
with a cost ¢/ Pr(¢ = V). We also add the precondition that
the value of ¢ is not yet known.

Example Now we re-examine process shown at the top
level of figure 2 in more detail. The operator descriptions
are:

MOVETO(Q, R): K(RobotRoom = R)

pre: K (RobotRoom = Q), K (adjacent(Q, R) = T)

CHECKROOM(R): K (AlarmIn(R) = T)
pre: K (RobotRoom = R), KV (AlarmIn(R)) = F
cost: 1/ Pr(AlarmIn(R) = T)

CLEAR(R): K (AlarmClear = T)
pre: K (RobotRoom = R), K(AlarmIn(R) =T)

The first line of each one gives the name of the operator and
its arguments, followed by the fluent that is the main effect
of the operator. Following is a list of fluents describing the
preconditions, and a cost (omitted if the cost is 1).

We consider a simpler case in which there is a prior prob-
ability of 0.2 that the alarm is in room A and a probability
of 0.8 that it is in room C; the planner generates the regres-
sion search tree in figure 3. Each node contains a list of flu-
ents specifying conditions under which that partial plan will
achieve the goal condition; green nodes represent the solution
path.

The final operator must be to clear the alarm: this can hap-
pen only if the robot and the alarm are in the same room, so
there are three ways in which this operator can be executed.
The green successor node requires that the robot know that
the alarm is in room C. The only way for it to come to know
that is to perform the CHECKROOM operator in room C; that
operator has the precondition that the robot be in room C,
and that is achieved by an initial step of moving from room
B to room C. The search also considered solutions that in-
volved finding the alarm in rooms A and B. Compare the costs
on the paths that check those rooms to the path for check-
ing room C. Each primitive action has a cost of 1; but be-
cause the outcome of checking a room is probabilistic, the
cost for selecting the outcome in which we find the alarm is
1/ Pr(AlarmIn(R) = T). So, the cost of finding the alarm
in room A is 1/0.2 = 5, the cost of finding it in room B
is effectively infinite, and the cost of finding it in room C is
1/0.8 = 1.25. For this reason, it searches in room C. It will
not always go to the most likely room, however: the costs of
other action and uncertainties along the way will be combined
to find the least cost path.

When this plan is executed, the robot moves to room C,
checks, and finds that the alarm is not there. It does a belief-
state update based on this information. This plan is termi-
nated and a new plan is constructed, which causes the robot
to move to room A, find the alarm, and clear it. This example
illustrates the strength and simplicity of the approach of plan-
ning in belief space with a determinized dynamics model: it
forces the robot to perform information-gathering actions and
robustly handles cases where the information is ’surprising’
by replanning.

Noisy observation of a discrete variable In a more gen-
eral case, observations will not give certain knowledge of
properties of the world, and state transitions will be stochas-
tic. To plan in this more general belief space, we need to
establish a representation for sets of belief states that attach
different probability values to the underlying world prop-
erty, and show how to perform regression of those belief sets
through the robot’s operators. The planning goal and the sub-

cost=0
K(AlarmCleared = T)

ﬁ Clw(%o cmelw(b)

cost=1 cost=1
K(Alarmln(c) = K(AlarmlIn(b) =
K(RobotRoom = c) K(RobotRoom = b)

}():ChcekRoom[c]
cost=2.25 cost=100001
K(RobotRoom = b)

K(RobotRoom = c)

lAO:MoveTo[b, c]

cost=4.25
K(RobotRoom = b)

cost=1
K(Alarmin(a) =
K(RobotRoom = a)

A0:CheckRoom[a] A0:CheckRoom[b]

cost=6
K(RobotRoom = a)

Figure 3: Part of the regression search to find the room with
the alarm.

goals constructed during regression will be represented as
conjunctions of fluents that are bounds on the probabilities
of properties of states of the world.

Define the state estimator SE(b:, at, 0¢) as the procedure
that takes a belief state at time ¢, the action at time ¢ and the
observation at time ¢ + 1 and returns the belief state at time
t+1. The regression of a set of beliefs B, ; through an action
a, under the assumption of observing o is the set

regress(Biy1,a,0) = {by | SE(b;,a,0) € Byy1} .

We assign this action cost ¢/ Pr(o | b;), where c is the cost to
take a once; we have to aggregate this cost over all b;.

Here is a very simple illustrative example: a domain
with a single binary-valued property A, with the goal that
Pr(Aiy1 = T) > 6. If we execute a sensing action a that
generates an observation, but does not change the underlying
state, then if observation o is made, the regression of the goal
under a is:

OPr(o| A=F)
(1-0)Pr(o|A=T)+0Pr(o| A=F)

For this action, contingent on getting observation o, we would
pay a cost 1/Pr(o | A = T). Concretely, if the observation
is binary, Pr(o | A=T) =09and Pr(o | A = F) = 0.3,
and our goal is Pr(A4;11 = T) > 0.95, then the regression
under the sensing action, assuming observation o, would be:
Pr(A, = T) > 0.86. We might represent such a condition
with a fluent PrA(0.86) =

Characterizing belief of a continuous variable We might
wish to describe conditions on continuous belief distribu-
tions, by requiring, for instance, that the mean of the distri-
bution be within some value of the target and the variance
be below some threshold. Generally, we would like to derive
requirements on beliefs from requirements for action in the
physical world. So, in order for a robot to move through a
door, the estimated position of the door needs to be within
a tolerance equal to the difference between the width of the
robot and the width of the door. The variance of the robot’s
estimate of the door position is not the best measure of how
likely the robot is to succeed: instead we will use the con-
cept of the probability near mode (PNM) of the distribution.

PI'(At = T) >

It measures the amount of probability mass within some ¢ of
the mode of the distribution. So, the robot’s prediction of its
success in going through the door would be the PNM with ¢
equal to half of the robot width minus the door width.

For a planning goal of PNM (X, §) > 6, we need to know
expressions for the regression of that condition under the a
and o in our domain. In the following, we determine such
expressions for the case where the underlying belief distribu-
tion on state variable X is Gaussian, the dynamics of X are
stationary, a is to make an observation, and the observation
o is drawn from a Gaussian distribution with mean X and
variance o2.

For a one-dimensional random variable X ~ N (u, 02),

PNMI(X.5) = ®(u+8) — 8(u—3) —erf () .

where ® is the Gaussian CDF. If, at time ¢ the belief is
N (¢, 02), then after an observation o, the belief will be

<m03+00? >
) 2 2
o5+ oy

02 + o?
So, if PNM(X;,8) = 6, = exf (

\/ggt) then

5 [o2+
PNM(XtH,é)—HtH—erf(\[UO’ th)

Substituting in the expression for o7 in terms of 6, and solv-
ing for 6;, we have:

52
0; = PNMregress(0;41,0,02) = erf (\/erf1(9t+1)2 =552

o
So, to guarantee that PNM (X;41,0) > 0:11 holds after
taking action a and observing o, we must guarantee that
PNM (X,,8) > PNMregress(6;11,0,02) holds on the pre-
vious time step.

Example Now we can understand the process shown at the
lower level of figure 2 in more detail in terms of the operator
descriptions:

MoVETO(Q, D, R, 0) : K(RobotRoom = R):

pre: K (RobotRoom = Q), K (adjacent(Q, D, R) = T),
PNMDoorLoc(D, 0, doorMargin) =T

prim: GOTHRU

cost: 1/6

COARSELOOK(D, 8, 8) : PNMDoorLoc(D, 0,6) = T:
pre: PNMDoorLoc(D, PNMRegress(0, 6, 02arse),8) = T

FINELOOK(D, 6,6, 00v) : PNMDoorLoc(D, ,0) =
pre: PNMDoorLoc(D, PNMRegress(0,6,0%,.),6) = T,
PNMDoorLoc(D, 0y, fov/2) =T

cost: 1/600,
The MOVETO operator is elaborated with argument D for
door, and a precondition that the location of the door be
known to within the margin between the robot and the door
with probability . When the primitive is executed, it will
drive the robot as if the door were located at the mode of the

cost=0
RobotRoom() = ¢

IA1:MoveTo[b, bc, c]
\
cost=2.0
PNMDoorLoc(bc, 0.5, margin) = T
RobotRoom() = b

IAO:FineLook[bc, 0.5, margin]

A
cost=4.0
PNMDoorLoc(bc, 0.35, margin) = T
PNMDoorLoc(bc, 0.5, fov) = T
RobotRoom() = b

}O:FineLook[bc, 0.5, fov]

cost=6.0
PNMDoorLoc(bc, 0, margin) = T
PNMDoorLoc(bc, 0.5, fov) = T
RobotRoom() = b

}O:CoarseLOOk[bc, 0.5, fov]

cost=7.0
PNMDoorLoc(bc, 0, margin) = T
PNMDoorLoc(bc, 0, fov) = T
RobotRoom() = b

Figure 4: Planned action sequence for going through door

belief distribution. The 6 value is a free parameter; the plan-
ner tries a small number of samples of that value. The higher
6, the lower the cost of the operator, because the more likely
it is to succeed. We have two operators that can achieve a
condition on PNMDoorLoc. The first uses the coarse sensor,
and simply uses the PNM regression condition to determine
the precondition on the knowledge about the door’s location.
The 0 coarse 1s fairly high. The FINELOOK operator requires
aiming a sensor; it will aim it at the mode of the belief dis-
tribution, and will only see the door if its center is within the
sensor’s field of view. This sensor’s observations have a much
smaller standard deviation. This operator has a free parame-
ter 05, which governs both the cost of the operator based on
its likelihood of success and the stringency of the condition
on how well the door’s location is already known.

If the robot attempts to move through the door and fails,
or if it tries to look with the fine sensor and fails to see the
door, information is gained, and the belief-state update will
reflect that. Given this particular formalization of the do-
main, however, the planner cannot explicitly decide to use
these operators to gain information. If it were important,
those information-gain aspects could be formalized.

Figure 4 shows the regression plan for going through the
door. The goal is for the robot to be in room C. It selects a
version of the MOVETO operator that requires the door be lo-
calized to within an appropriate margin with probability 0.5
(which means that half of the attempts to go through the door
will fail, on average). If attempts to go through the door had
higher cost, it would select a version of this operator that was
less likely to fail. Now, we have to find a way to gain infor-
mation. The FINELOOK operator is used twice, until there is

Figure 6: The situation on the left is the real state of the world;
the one on the right represents the mode of the initial belief.

Figure 7: Point cloud (on right) for scene (on left); red points
correspond to the models at their perceived poses.

no a priori requirement on the knowledge of the door’s loca-
tion, under the assumption of getting observations from the
fine sensor. However, using the fine sensor requires enough
information to aim it, which introduces the requirement of
knowing the location to within its field of view with prob-
ability at least 0.5. The COARSELOOK operator is used to
establish this condition.

Although the computation of the regression conditions on
information gain from the door sensors assumes the belief
state is Gaussian, the state estimator need not use that rep-
resentation. Our implementation uses a particle filter, which
is able to represent the multi-modality of the belief distribu-
tion that arises, e.g., when the fine sensor looks and fails to
see the door. The process of searching for the location of the
door can be shown to converge in a finite number of replan-
ning steps if the state estimation is exact: on each step, the
robot either looks at or tries to move through the location that
is the mode of its belief distribution. In so doing, it either re-
ceives negative information, which will rule out this location
and increase the probability assigned to other locations, or it
receives positive information, increasing the likelihood of the
mode. In both cases, it non-trivially increases the probability
mass associated with the true location, so that eventually the
distribution will be as concentrated as we require. This argu-
ment is a version of Wald’s sequential analysis [Wald, 1945].

5 PR2 manipulation example

We have a pilot implementation of the HPN framework on a
Willow Garage PR2 robot, demonstrating integration of low-
level geometric planning, active sensing, and high-level task
planning, including reasoning about knowledge and planning
to gain information. Figure 6 shows a planning problem in

Al:Pick(box, ?)

Plan 4 Replan Plan 6
Holding = box Holding = box Holding = box

l o

A2:Pick(box, m1) AO0:ClearX(swept17, (box)) A2:Pick(box, m2)

Pag 1 |

-7 I 1

/”/ l ' :
» Plan 7 v

Plan 5 Antecedent Fail CanPickFrom(box, m2) = True Plan 18
Holding = box ClearX(swept16, (box)) = True Holding = nothing Holding = box

/ l \ ClearX(swept17, (box)) = True l \\

AO:MoveBase(m1) AO:LookAt(box, m1, 3) A3:Pick(box, m1) Al:ClearX(sweptl7, (box)) AO0:MoveBase(m2) AO0:LookAt(box, m2, 3) A3:Pick(box, m2)

7 | 1 I \

0 | l | \

/ : ! v \

v v | Plan 19 '
» Plan 8 v CanPickFrom(box, m2) = True v

Antecedent Fail CanPickFrom(box, m2) = True Holding = nothing PickUp(box, m2)

ClearX(swept16, (box)) = True Holding = nothing RloiSEase 2 LocAccuracy(box, m2, 3) = True

MoveBase(m1)

ClearX(sweptl7, (box)) = True

AO:remove(soup, sweptl7)

Subtree for moving soup out of the way

RobotLoc(m?2) = True
l ClearX(swept18, (box)) = True

/N

Al:LookAt(box, m2, 2)

v v
Look(box) Look(box)

Figure 5: Partial planning and execution tree; the robot notices that the soup can is in the way and removes it.

which the robot must move the blue box to another part of the
table. The actual state of the world is shown on the left, and
the mode of its initial belief is shown on the right.

Objects in the world are detected by matching known ob-
ject meshes to point clouds from the narrow stereo sensor
on the robot; example detections are shown in figure 7. As
with any real perceptual system, there is noise in both the re-
ported poses and identities of the objects. Furthermore, there
is significant noise in the reported pose of the robot base,
due to wheel slip and other odometric error. There is addi-
tional error in the calibration of the stereo sensor and robot
base. The state estimation process for the positions of ob-
jects is currently very rudimentary: object detections that are
significantly far from the current estimate are rejected; those
that are accepted are averaged with the current estimate. A
rough measure of the accuracy of the estimate is maintained
by counting the number of detections made of the object since
the last time the robot base moved. A detailed description
of the geometric representation and integration of task and
motion planning is available [Kaelbling and Lozano-Pérez,
2011]. Here, we emphasize uncertainty handling in the real
robot. Here are three of the relevant operator descriptions:

PIck(O, M) : K(Holding = O):

pre: K (ClearX (PickSwept(M),0) =T),

K (CanPickFrom(O, M) =T), K(Holding = NOTHING),
K (RobotLoc(M) = T), LocAccuracy(O, M,3) =T

LOOKAT(O, M, N) : LocAccuracy(O, M,N) =T
pre: K (RobotLoc(M) =T), LocAccuracy(O,M,N—1) =T

MOVEBASE(M) : K(RobotLoc(M) =T)
pre: K (ClearX (MoveSwept(M),()) =T)

sideEffect: LocAccuracy(O,M',N)=F

The PICK operator describes conditions under which the
robot can pick up an object O. The primitive pick operation
consists of (1) calling an RRT motion planner to find a path
for the arm to a ’pregrasp’ pose, (2) executing that trajectory
on the robot, (3) calling a modified version of the Willow-
Garage reactive grasping procedure that uses the tactile sens-
ing to robustly grasp the object, then (4) lifting the object to
a ’postgrasp’ pose.

The operator description has a free variable M, which de-
scribes a trajectory for the robot base and arm, starting from
a home pose through to a pose in which the object is grasped;
M is selected by a “suggester” procedure that takes con-
straints on grasping and motion into account and uses an effi-
cient approximate visibility-graph motion planner for a sim-
ple robot to find a path. This is not the exact path that the
motion primitives will ultimately execute, but it serves dur-
ing the high-level planning to determine which other objects
need to be moved out of the way and where the base should
be positioned while performing the pick operation. The pre-
conditions to the primitive pick operation are that: the swept
volume of the path for the arm be clear, with the exception
of the object to be picked up; that the object O be in a pose
that allows it be picked up when the robot base pose is the
one specified by M that the robot is not currently holding
anything; that the robot base is at the pose specified by M,
and that the pose of the object O is known with respect to the
robot’s base pose in M with accuracy level 3 (that is, it has to
have had at least three separate good visual detections of the
object since the last time the base was moved).

The LOOKAT operator looks at an object O from the base

Al:LookAt(box, m2, 3)

pose specified in motion M. The primitive operation com-
putes a head pose that will center the most likely pose of ob-
ject O in its field of view when the robot base is in the speci-
fied pose and moves the head to that pose. The image-capture,
stereo processing, and object-detection processes are running
continuously and asynchronously, so the primitive does not
need to explicitly call them. This operation achieves a loca-
tion accuracy of IV if the base is in the appropriate pose and
the object had been previously localized with accuracy N —1.

The MOVEBASE operator moves to the base pose specified
in motion M. The primitive operation (1) calls an RRT mo-
tion planner to find a path (in the full configuration space of
the base and one arm—the other arm is held fixed) to the con-
figuration specified in M and (2) executes it. It requires, as
a precondition, that the swept volume of the suggested path
be clear. Importantly, it also declares that it has the effect of
invalidating the accuracy of the estimates of all object poses.

Figure 5 shows a fragment of the planning and execution
tree resulting from an execution run of the system. At the
highest level (not shown) a plan is formulated to pick up the
box and then place it in a desired location. This tree shows
the picking of the box. First, the system makes an abstract
plan (Plan 4) to pick the box, and then refines it (Plan 5) to
three operators: moving the base, looking at the box until its
location is known with sufficient accuracy, and then executing
the pick primitive. The robot base then moves to the desired
pose (green box); once it has moved, it observes the objects
on the table and updates its estimate of the poses of all the
objects. In so doing, it discovers that part of the precondition
for executing this plan has been violated (this corresponds
to the test in the last line of code for HPN) and returns to
a higher level in the recursive planning and execution pro-
cess. This is indicated in planning and execution tree by the
orange boxes, showing that it fails up two levels, until the
high-level PICK operation is planned for again. Now, Plan 6
is constructed with two steps: making the swept volume for
the box clear, and then picking up the box. The process of
clearing the swept volume requires picking up the soup can
and moving it out of the way; this process generates a large
planning and execution tree which has been elided from the
figure. During this process, the robot had to move the base.
So Plan 18 consists of moving the base to an appropriate pose
to pick up the box, looking at the box, and then picking it up.
Because the robot was able to visually detect the box after
moving the base, the LOOKAT operation only needs to gather
two additional detections of the object, and then, finally, the
robot picks up the box.

Conclusion This paper has described a tightly integrated
approach, weaving together perception, estimation, geomet-
ric reasoning, symbolic task planning, and control to gener-
ate behavior in a real robot that robustly achieves tasks in
complex, uncertain domains. It is founded on these princi-
ples: (1) Planning explicitly in the space of the robot’s be-
liefs about the state of the world is necessary for intelligent
information-gathering behavior; (2) Planning with simplified
domain models is efficient and can be made robust by detect-
ing execution failures and replanning online; (3) Combining

logical and geometric reasoning enables effective planning in
large state spaces; and (4) Online hierarchical planning in-
terleaved with execution enables effective planning over long
time horizons.

References

[Boutilier, 1997] C. Boutilier. Correlated action effects in decision
theoretic regression. In UAI, 1997.

[Cambon et al., 2009] Stephane Cambon, Rachid Alami, and Fa-
bien Gravot. A hybrid approach to intricate motion, manipulation
and task planning. International Journal of Robotics Research,
28, 2009.

[Erez and Smart, 2010] T. Erez and W. Smart. A scalable method
for solving high-dimensional continuous POMDPs using local
approximation. In UAI, 2010.

[Fritz and Mcllraith, 2009] C. Fritz and S. A. Mcllraith. Generating
optimal plans in highly-dynamic domains. In UAZ, 2009.

[Kaelbling and Lozano-Pérez, 2011] Leslie Pack Kaelbling and
Tomas Lozano-Pérez. Hierarchical task and motion planning in
the now. In ICRA, 2011.

[Kaelbling et al., 1998] L. P. Kaelbling, M. L. Littman, and A. R.
Cassandra. Planning and acting in partially observable stochastic
domains. Artificial Intelligence, 101, 1998.

[Marthi er al., 2007] Bhaskara Marthi, Stuart Russell, and Jason
Wolfe. Angelic semantics for high-level actions. In ICAPS, 2007.

[Marthi er al., 2010] Bhaskara Marthi, Stuart Russell, and Jason
Wolfe. Combined task and motion planning for mobile manip-
ulation. In ICAPS, 2010.

[Petrick and Bacchus, 2004] R. P. A. Petrick and F. Bacchus. Ex-
tending the knowledge-based approach to planning with incom-
plete information and sensing. In JCAPS, 2004.

[Plaku and Hager, 2010] Erion Plaku and Gregory Hager.
Sampling-based motion planning with symbolic, geometric,
and differential constraints. In /CRA, 2010.

[Platt er al., 2010] R. Platt, R. Tedrake, L. Kaelbling, and
T. Lozano-Perez. Belief space planning assuming maximum like-
lihood observations. In RSS, 2010.

[Ross er al., 2008] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa.
Online planning algorithms for pomdps. Journal of Artificial In-
telligence Research, 2008.

[Sanner and Kersting, 2010] S. Sanner and K. Kersting. Symbolic
dynamic programming for first-order POMDPs. In AAAI, 2010.

[Scherl et al., 2009] R. B. Scherl, T. C. Son, and C. Baral. State-
based regression with sensing and knowledge. International
Journal of Software and Informatics, 3, 2009.

[Smallwood and Sondik, 1973] R. D. Smallwood and E. J. Sondik.
The optimal control of partially observable Markov processes
over a finite horizon. Operations Research, 21:1071-1088, 1973.

[Toit and Burdick, 2010] N. E. Du Toit and J. W. Burdick. Robotic
motion planning in dynamic, cluttered, uncertain environments.
In ICRA, 2010.

[Wald, 1945] A. Wald. Sequential tests of statistical hypotheses.
The Annals of Mathematical Statistics, 16(2), 1945.

[Weld, 1999] Daniel S. Weld. Recent advances in Al planning. Al
Magazine, 20(2):93-123, 1999.

[Yoon et al., 2007] S. W. Yoon, A. Fern, and R. Givan. FF-replan:
A baseline for probabilistic planning. In ICAPS, 2007.

