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Outline

• What is the -calculus?

• Semantics

• Model Checking algorithms

• [Other fixpoint theorems]



The -calculus

• A language for describing properties of 
transition systems

• It uses least and greatest fixpoint operators

–  (least fixpoint)

–  (greatest fixpoint)

• It subsumes many temporal logics

– CTL* can be translated into the -calculus



The -calculus

• More expressive than temporal logics

– See last lecture on Data Flow Analysis, but also

– Even(p) = “p must happen every two steps (p can 
happen or not in other steps)” along a given path 
(Wolper, 1981)

– Even(p) cannot be expressed in temporal logics

– Even(p) can be expressed in the -calculus (later)

• There are efficient Model Checking algorithms

• Formulae evaluate to sets of states



Semantics

• Given wrt modified Kripke structures, that is,

Kripke structures with labels on transitions 

• Example:

– s0, s1, s2, s3 states

– p atomic prop.

– a, b transitions
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Semantics

• A modified Kripke structure M = (S,T,L) consists of 

– a nonempty set of states S,

– a set of transitions T, such that for each transition       
a ∈ T , a ⊆ S × S, and

– a mapping L : S → 2AP that gives the set of atomic 
propositions true in a state.

• VAR = {Q, Q1, Q2, . . .} a set of relational variables

• Each relational variable Q ∈ VAR can be assigned 
a subset of S



Syntax

• If p ∈ AP, then p is a formula

• A relational variable is a formula

• If f, g formulas, then ¬f, f ∧ g and f ∨ g formulas

• If f is a formula, and a ∈ T , then [a]f and af are 
formulas

• For Q ∈ VAR and formula f, then μQ.f and νQ.f
are formulas

– provided that f is syntactically monotone in Q, i.e., all 
occurrences of Q within f fall under an even number 
of negations



Syntax

• Two modalities – their informal meaning is

[a] f = “f holds in all states reachable by one 
step of transition a”

a f = “f holds in a state reachable by one step of 
transition a”
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• Two modalities – their informal meaning is

[a] f = “f holds in all states reachable by one 
step of transition a”

a f = “f holds in a state reachable by one step of 
transition a”

• Example (suppose only one transition a):

– Even(p) = νQ.(p Λ aaQ) (along a path)

 



Syntax

• Two modalities – their informal meaning is

[a] f = “f holds in all states reachable by one 
step of transition a”

a f = “f holds in a state reachable by one step of 
transition a”

• Example (suppose only one transition a):

– Even(p) = νQ.(p Λ aaQ) (along a path)

– E[p U q] = μQ.(p  (q  aQ)) (over a Kripke str.)



Semantics

• Given a modified Kripke structure M

• VAR = {Q, Q1, Q2, . . .} a set of relational variables

• An environment  e : VAR → 2S

• The semantics  f Me of a formula f is the “set of 
states in which f is true”

 

 

 

 



Semantics

• Given a modified Kripke structure M

• VAR = {Q, Q1, Q2, . . .} a set of relational variables

• An environment  e : VAR → 2S

• The semantics  f Me of a formula f is the “set of 
states in which f is true”

• We denote 
– S=True (formula True holds for all states) 

– Ø=False (formula False holds for no state)

– e*Q ← W+ is the environment equal to e, except that 
(e*Q ← W+)(Q) = W 



Semantics

• The order on 2S is given by set inclusion

• The set  f e is defined recursively as follows:

• pe = {s | p ∈ L(s)}

• Qe = e(Q)

•  ¬f e = S \ fe

•  f ∧ g e = fe  ge

•  f ∨ g e = fe  ge



Semantics

•  a f e = {s | ∃t (s,t) ∈ a and  t ∈ fe}

•  [a] f e = {s | ∀t (s,t) ∈ a implies  t ∈ fe}

 

 

 



Semantics
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transformer τ: 2S → 2S defined by:
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Semantics

•  a f e = {s | ∃t (s,t) ∈ a and  t ∈ fe}

•  [a] f e = {s | ∀t (s,t) ∈ a implies  t ∈ fe}

• μQ.f e is the least fixpoint of the predicate 

transformer τ: 2S → 2S defined by:
τ(W) =  f (e*Q ← W+)

• νQ.f e is the greatest fixpoint of τ above



Semantics

• All logical connectives and modalities (except 
negation) are monotonic

• Example: conjunction
fe  f’e   f ∧ g e   f’ ∧ g e

( A  B  A  C    B  C )



Semantics

• Negations can be pushed down to atomic 
propositions by De Morgan’s laws and

• ¬ [a] f ≡ a ¬f

• ¬ a f ≡ *a] ¬f

• ¬ μQ.f(Q) ≡ νQ.¬f(¬Q)

• ¬ νQ.f(Q) ≡ μQ.¬f(¬Q)

• Variables appear under an even number of 
negations

• By applying the rules above, variables will be 
negation-free



Semantics

• Therefore, in a fixpoint formula we can only 
define monotonic operators

• Therefore, fixpoints exist! (Tarski)

 

 

 

 



Semantics

• Therefore, in a fixpoint formula we can only 
define monotonic operators

• Therefore, fixpoints exist! (Tarski)

• Furthermore, we assume that S is finite, so we 
can effectively compute the fixpoints

μQ.f e = i τi(False) 

νQ.f e = i τi(True)

• Recall that   μQ.f e  = lfp(τ)  where  τ(W) =  f (e*Q ← W+)



Model Checking: a naïve algorithm



Model Checking: example

• Calculate  νQ.(p  bQ)e on the Kripke structure
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νQ.(p  bQ)e is gfp of τ(W) = p  bQ(e*Q ← W+)

• Start iterating τ from True (the entire state space S)

τ1(True)= p  bQ(e*Q ← True])

 

 

 

 

 

 



νQ.(p  bQ)e is gfp of τ(W) = p  bQ(e*Q ← W+)

• Start iterating τ from True (the entire state space S)

τ1(True)= p  bQ(e*Q ← True])

= p(e*Q ← S+)  bQ(e*Q ← S+)
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νQ.(p  bQ)e is gfp of τ(W) = p  bQ(e*Q ← W+)

• Start iterating τ from True (the entire state space S)

τ1(True)= p  bQ(e*Q ← True])

= p(e*Q ← S+)  bQ(e*Q ← S+)

= {s2}  {s | ∃t (s,t) ∈ b and  t ∈ (Qe*Q ← S+)}

= {s2}  {s | ∃t (s,t) ∈ b and  t ∈ S}

= {s2}  {s1, s3} = {s1, s2, s3}

τ2(True) = τ(τ(True)) = τ({s1, s2, s3})

= {s2}  {s1, s3} = {s1, s2, s3}



Complexity of Model Checking

• Calculate  μX. μY. τ (X,Y)e (τ is -cont.)
• Define ζ(X) = μY. τ (X,Y) so that

μX. μY. τ (X,Y)e = μX. ζ(X)e
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Complexity of Model Checking
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Complexity of Model Checking

• Calculate  μX. μY. τ (X,Y)e (τ is -cont.)
• Define ζ(X) = μY. τ (X,Y) so that

μX. μY. τ (X,Y)e = μX. ζ(X)e
• Now: iterate ζ(False) until ζi(False) = ζi+1(False)

ζi+1(False) = μY. τ (ζi(False),Y) 

• Iterate  τ(ζi(False),False) until

τj(ζi(False),False) = τj+1(ζi(False),False)

• Overall, we need O(|S|2) iterations of τ
– A formula with k nested fixpoint operators needs O(|S|k) 

iterations of the innermost fixpoint transformer



Faster Model Checking

• Key idea: nested fixpoints of the same type do 
not need re-initialization to False (or True)

• Need to define alternation depth of a formula

– “number of alternations of μ and ν operators”

 

 

 



Faster Model Checking

• Key idea: nested fixpoints of the same type do 
not need re-initialization to False (or True)

• Need to define alternation depth of a formula

– “number of alternations of μ and ν operators”

• A top-level ν-subformula of f is a subformula νQ.g
of f not contained in any other ν-subformula of f

• Example:   f = μQ.(νQ1.g1  νQ2.g2)

– νQ1.g1 and νQ2.g2 are ν-subformulae of f



Alternation Depth

• If f contains subsentences w1, …, wn then
– AD(f) = max(AD(w1), …, AD(wn), AD(f’)) where f’ is 

obtained from f by substitution new constants c1, …,cn
for w1, …, wn

• The AD of atomic propositions or relational 
variables is 0

• The AD of f  g, f  g, af, [a]f is the maximum 
AD of subformulae f and g

• The AD of μQ.f is
– max (AD(f), 1 + max (AD(f1), …, AD(fn)) where

f1, …,fn are the top-level ν-subformulae of f 



What is the Alternation Depth of

μQ. (p  [a]Q)  = 1
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What is the Alternation Depth of

μQ. (p  [a]Q)  = 1

μQ.(νQ1.(p  aQ1)  [a]Q)

max (νQ1.(p  aQ1), μQ.(X  [a]Q),) = 1

 

 



What is the Alternation Depth of

μQ. (p  [a]Q)  = 1

μQ.(νQ1.(p  aQ1)  [a]Q)

max (νQ1.(p  aQ1), μQ.(X  [a]Q),) = 1

νQ.μQ1.a(νQ2.μQ3.(a(p  Q2)  Q3))  Q)  Q1)

 



What is the Alternation Depth of

μQ. (p  [a]Q)  = 1

μQ.(νQ1.(p  aQ1)  [a]Q)

max (νQ1.(p  aQ1), μQ.(X  [a]Q),) = 1

νQ.μQ1.a(νQ2.μQ3.(a(p  Q2)  Q3))  Q)  Q1)

 



What is the Alternation Depth of

μQ. (p  [a]Q)  = 1

μQ.(νQ1.(p  aQ1)  [a]Q)

max (νQ1.(p  aQ1), μQ.(X  [a]Q),) = 1

νQ.μQ1.a(νQ2.μQ3.(a(p  Q2)  Q3))  Q)  Q1)

max (νQ2.μQ3.(a(p  Q2)  Q3), 
νQ.μQ1.a(Y  Q)  Q1) = 2



Faster Model Checking

• E.A. Emerson and C.-L. Lei, LICS 1986

• Reset relational variables to True (False) only 
when fixpoint operators alternate

• Thus, need only O(|S|d) iterations of the 
innermost fixpoint transformer, where d=AD(f)



Emerson and Lei’s algorithm

• Lemma: Let τ: 2S → 2S be monotonic (thus - and 
-continuous, since S finite). Then:
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• Lemma: Let τ: 2S → 2S be monotonic (thus - and 
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– If  X  μQ.τ(Q)  then  μQ.τ(Q) = i τi(X)
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• “we can iterate from any approximation known to 
be below (above) the fixpoint”
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Emerson and Lei’s algorithm

• Lemma: Let τ: 2S → 2S be monotonic (thus - and 
-continuous, since S finite). Then:

– If  X  μQ.τ(Q)  then  μQ.τ(Q) = i τi(X)

– If  Y  νQ.τ(Q)  then  νQ.τ(Q) = i τi(Y)

• “we can iterate from any approximation known to 
be below (above) the fixpoint”

• In particular

τ(False)… τj(False) … i τi(False)=μQ.τ(Q)



Emerson and Lei’s algorithm

• Example:  μX.μY. τ (X,Y) (τ is monotonic)

• Let ζ(X) = μY. τ (X,Y)  so  μX.μY. τ (X,Y) = μX. ζ(X)

 

 

 

 

 

 



Emerson and Lei’s algorithm

• Example:  μX.μY. τ (X,Y) (τ is monotonic)

• Let ζ(X) = μY. τ (X,Y)  so  μX.μY. τ (X,Y) = μX. ζ(X)

• The naïve algorithm:

• Iterate ζ(False) until ζi(False) = ζi+1(False)

ζi+1(False) = μY. τ (ζi(False),Y) 

• Iterate  τ(ζi(False),False) until

τj(ζi(False),False) = τj+1(ζi(False),False)

• Need O(|S|2) iterations of τ
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Emerson and Lei’s algorithm

• Example:  μX.μY. τ (X,Y) (τ is monotonic)

• ζ(X) = μY. τ (X,Y)  μX.μY. τ (X,Y) = μX. ζ(X)

• Note that ζi-1(False)  ζi(False) and τ -continuous

μY. τ (ζi-1(False),Y)   μY. τ (ζi(False),Y) (*)

ζi+1(False) = μY. τ (ζi(False),Y) = j τj(ζi(False),False)

by (*) and Lemma

= j τj(ζi(False), μY. τ (ζi-1(False),Y))
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Emerson and Lei’s algorithm

• Example:  μX.μY. τ (X,Y) (τ is monotonic)

• ζ(X) = μY. τ (X,Y)  μX.μY. τ (X,Y) = μX. ζ(X)

• Note that ζi-1(False)  ζi(False) and τ -continuous

μY. τ (ζi-1(False),Y)   μY. τ (ζi(False),Y) (*)

ζi+1(False) = μY. τ (ζi(False),Y) = j τj(ζi(False),False)

by (*) and Lemma

= j τj(ζi(False), μY. τ (ζi-1(False),Y))

No need to use Y=False! Only O(|S|) iterations of τ.
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Emerson and Lei’s algorithm

Same as
before



Complexity

• Let d=AD(f)

• Since we need to start from False (True) only 
when μ and ν alternates, the complexity is 
O((|f|·|S|)d)

 

 



Complexity

• Let d=AD(f)

• Since we need to start from False (True) only 
when μ and ν alternates, the complexity is 
O((|f|·|S|)d)

• Clarke et al. (CAV 1994) presented an algorithm 
with complexity O((|f|·|S|)d/2+1)

• The Model Checking problem for the μ-calculus is 
in NP  co-NP



Other fixpoint theorems

Brouwer fixpoint theorem (one-dimensional case)

Every continuous f :[a,b]  [a,b] has a fixpoint

function f

identity function 

fixpoint of  f
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Other fixpoint theorems

Brouwer fixpoint theorem (one-dimensional case)

Every continuous f :[a,b]  [a,b] has a fixpoint

Proof:

Define g(x)=f(x)-x. Then g(a)0 and g(b)0. By the 
intermediate value theorem, there is a point ξ in 
[a,b] such that g(ξ) = 0 = f(ξ) – ξ. 

Thus ξ is a fixpoint for f.



Other fixpoint theorems

Brouwer fixpoint theorem (generalizations)

• Every continuous function from a closed disk 
to itself has a fixpoint

f
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Brouwer fixpoint theorem (generalizations)

• Every continuous function from a closed ball of 
an Euclidean space to itself has a fixpoint

 



Other fixpoint theorems

Brouwer fixpoint theorem (generalizations)

• Every continuous function from a closed ball of 
an Euclidean space to itself has a fixpoint

• Every continuous function from a convex 
compact subset K of an Euclidean space to K 
itself has a fixpoint



Other fixpoint theorems

Banach Contraction Principle

Say f:RnRn and d(x,y) = x-y for  x,y  Rn . 
Suppose ∃<1 such that  d(f(x),f(y))  d(x,y) for 
all x,y  Rn (f is said to be a contraction). Then: 

• f has a unique fixpoint u, and

• limifi(y) = u  for each y  Rn . 


