Model Checking for the μ-calculus

Paolo Zuliani
15-817, Spring 2011

Outline

- What is the μ-calculus?
- Semantics
- Model Checking algorithms
- [Other fixpoint theorems]

The μ-calculus

- A language for describing properties of transition systems
- It uses least and greatest fixpoint operators
- μ (least fixpoint)
$-v$ (greatest fixpoint)
- It subsumes many temporal logics
- CTL* can be translated into the μ-calculus

The μ-calculus

- More expressive than temporal logics
- See last lecture on Data Flow Analysis, but also
- Even $(p)=$ " p must happen every two steps (p can happen or not in other steps)" along a given path (Wolper, 1981)
- Even(p) cannot be expressed in temporal logics
- Even(p) can be expressed in the μ-calculus (later)
- There are efficient Model Checking algorithms
- Formulae evaluate to sets of states

Semantics

- Given wrt modified Kripke structures, that is, Kripke structures with labels on transitions
- Example:
$-s_{0}, s_{1}, s_{2}, s_{3}$ states
- p atomic prop.
$-a, b$ transitions

Semantics

- A modified Kripke structure $M=(S, T, L)$ consists of - a nonempty set of states S,
- a set of transitions T, such that for each transition $a \in \mathrm{~T}, a \subseteq \mathrm{~S} \times \mathrm{S}$, and
- a mapping $L: S \rightarrow 2^{\text {AP }}$ that gives the set of atomic propositions true in a state.
- $\operatorname{VAR}=\left\{Q, Q_{1}, Q_{2}, \ldots\right\}$ a set of relational variables
- Each relational variable $Q \in$ VAR can be assigned a subset of S

Syntax

- If $p \in A P$, then p is a formula
- A relational variable is a formula
- If f, g formulas, then $\neg f, f \wedge g$ and $f \vee g$ formulas
- If f is a formula, and $a \in \mathrm{~T}$, then [a]f and $\langle a\rangle f$ are formulas
- For $Q \in \operatorname{VAR}$ and formula f, then μQ. f and vQ. f are formulas
- provided that f is syntactically monotone in Q , i.e., all occurrences of Q within f fall under an even number of negations

Syntax

- Two modalities - their informal meaning is $[a] f=$ " f holds in all states reachable by one step of transition $a^{\prime \prime}$
$\langle a\rangle f=" f$ holds in a state reachable by one step of transition $a^{\prime \prime}$

Syntax

- Two modalities - their informal meaning is $[a] f=$ " f holds in all states reachable by one step of transition $a^{\prime \prime}$
$\langle a\rangle f=" f$ holds in a state reachable by one step of transition $a^{\prime \prime}$
- Example (suppose only one transition a):
$-\operatorname{Even}(p)=v Q .(p \wedge\langle a\rangle\langle a\rangle \mathrm{Q})$
(along a path)

Syntax

- Two modalities - their informal meaning is $[a] f=$ " f holds in all states reachable by one step of transition $a^{\prime \prime}$
$\langle a\rangle f=" f$ holds in a state reachable by one step of transition $a^{\prime \prime}$
- Example (suppose only one transition a):
$-\operatorname{Even}(p)=v Q .(p \wedge\langle a\rangle\langle a\rangle \mathrm{Q})$
(along a path)
$-\mathrm{E}[p \mathbf{U} q]=\mu \mathrm{Q} \cdot(\mathrm{p} \wedge(\mathrm{q} \vee\langle a\rangle \mathrm{Q}))$
(over a Kripke str.)

Semantics

- Given a modified Kripke structure M
- $\operatorname{VAR}=\left\{Q, Q_{1}, Q_{2}, \ldots\right\}$ a set of relational variables
- An environment $e: \operatorname{VAR} \rightarrow 2^{\mathrm{S}}$
- The semantics $\llbracket f \|_{M} e$ of a formula f is the "set of states in which f is true"

Semantics

- Given a modified Kripke structure M
- $\operatorname{VAR}=\left\{Q, Q_{1}, Q_{2}, \ldots\right\}$ a set of relational variables
- An environment $e: \operatorname{VAR} \rightarrow 2^{\mathrm{S}}$
- The semantics $\llbracket f \|_{M} e$ of a formula f is the "set of states in which f is true"
- We denote
- S=True (formula True holds for all states)
- $\varnothing=$ False (formula False holds for no state)
$-e[\mathrm{Q} \leftarrow \mathrm{W}]$ is the environment equal to e, except that $(e[\mathrm{Q} \leftarrow \mathrm{W}])(\mathrm{Q})=\mathrm{W}$

Semantics

- The order on 2^{S} is given by set inclusion
- The set $[f] e$ is defined recursively as follows:
- $\lceil p \mid e=\{s \mid p \in \mathrm{~L}(s)\}$
- $[\mathrm{Q}] e=e(\mathrm{Q})$
- $[\neg f] e=S \backslash \mid f l e$
- $\mid f \wedge g] e=|f| e \cap|g| e$
- $\mid f \vee g] e=|f| e \cup[g \mid e$

Semantics

- $[\langle a\rangle f \mid e=\{s \mid \exists \mathrm{t}(\mathrm{s}, \mathrm{t}) \in a$ and $\mathrm{t} \in[f \mid e\}$
- $\|[a] f \mid e=\{s \mid \forall \mathrm{t}(\mathrm{s}, \mathrm{t}) \in a$ implies $\mathrm{t} \in[f \mid e\}$

Semantics

- $[\langle a\rangle f] e=\{s \mid \exists \mathrm{t}(\mathrm{s}, \mathrm{t}) \in a$ and $\mathrm{t} \in[f \mid e\}$
- $\|[a] f \mid e=\{s \mid \forall \mathrm{t}(\mathrm{s}, \mathrm{t}) \in a$ implies $\mathrm{t} \in[f \mid e\}$
- $[\mu \mathrm{Q} . f \mid e$ is the least fixpoint of the predicate transformer τ : $2^{s} \rightarrow 2^{s}$ defined by:

$$
\tau(\mathrm{W})=\lceil f \rrbracket(e[\mathrm{Q} \leftarrow \mathrm{~W}])
$$

Semantics

- $[\langle a\rangle f] e=\{s \mid \exists \mathrm{t}(\mathrm{s}, \mathrm{t}) \in a$ and $\mathrm{t} \in[f \mid e\}$
- $[[a] f] e=\{s \mid \forall \mathrm{t}(\mathrm{s}, \mathrm{t}) \in a$ implies $\mathrm{t} \in \llbracket f \mid e\}$
- $\quad \mu \mathrm{Q} . f] e$ is the least fixpoint of the predicate transformer $\tau: 2^{S} \rightarrow 2^{S}$ defined by:

$$
\tau(\mathrm{W})=\lceil f\rceil(e[\mathrm{Q} \leftarrow \mathrm{~W}])
$$

- [vQ.f $] e$ is the greatest fixpoint of τ above

Semantics

- All logical connectives and modalities (except negation) are monotonic
- Example: conjunction

$$
\begin{aligned}
& |f l e \subseteq| f^{\prime}|e \Rightarrow| f \wedge g|e \subseteq| f^{\prime} \wedge g \| e \\
& (\mathrm{~A} \subseteq \mathrm{~B} \quad \Rightarrow \quad \mathrm{~A} \cap \mathrm{C} \subseteq \mathrm{~B} \cap \mathrm{C})
\end{aligned}
$$

Semantics

- Negations can be pushed down to atomic propositions by De Morgan's laws and
- $\neg[a] f \equiv\langle a\rangle \neg f$
- $\quad \neg\langle a\rangle f \equiv[a] \neg f$
- $\quad \neg \mu \mathrm{Q} \cdot f(\mathrm{Q}) \equiv v \mathrm{Q} \cdot \neg f(\neg \mathrm{Q})$
- $\quad \neg v \mathrm{Q} . f(\mathrm{Q}) \equiv \mu \mathrm{Q} . \neg f(\neg \mathrm{Q})$
- Variables appear under an even number of negations
- By applying the rules above, variables will be negation-free

Semantics

- Therefore, in a fixpoint formula we can only define monotonic operators
- Therefore, fixpoints exist! (Tarski)

Semantics

- Therefore, in a fixpoint formula we can only define monotonic operators
- Therefore, fixpoints exist! (Tarski)
- Furthermore, we assume that S is finite, so we can effectively compute the fixpoints

$$
\begin{aligned}
& {\left[\mu \mathrm{Q} . f \mid e=U_{\mathrm{i}} \mathrm{t}^{\mathrm{i}}(\text { False })\right.} \\
& {[\mathrm{vQ} . f] e=\cap_{\mathrm{i}} \mathrm{~T}^{\mathrm{i}}(\text { True })}
\end{aligned}
$$

- Recall that $\| \mu \mathrm{Q} . f \mid e=\operatorname{Ifp}(\mathrm{\tau})$ where $\mathrm{\tau}(\mathrm{~W})=|f|(e[\mathrm{Q} \leftarrow \mathrm{W}])$

Model Checking: a naïve algorithm

function $\operatorname{eval}(f, e)$

```
if \(f=p\) then return \(\{s \mid p \in L(s)\}\);
if \(f=Q\) then return \(e(Q)\);
if \(f=g_{1} \wedge g_{2}\) then return \(\operatorname{eval}\left(g_{1}, e\right) \cap \operatorname{eval}\left(g_{2}, e\right)\);
if \(f=g_{1} \vee g_{2}\) then return \(\operatorname{eval}\left(g_{1}, e\right) \cup \operatorname{eval}\left(g_{2}, e\right)\);
if \(f=\langle a\rangle g\) then return \(\{s \mid \exists t[(s, t) \in a\) and \(t \in \operatorname{eval}(g, e)]\}\);
if \(f=[a] g\) then return \(\{s \mid \forall t[(s, t) \in a\) implies \(t \in \operatorname{eval}(g, e)]\}\);
if \(f=\mu Q . g(Q)\) then
    \(Q_{\text {val }}:=\) False;
    repeat
        \(Q_{\text {old }}:=Q_{\mathrm{val}} ;\)
        \(Q_{\text {val }}:=\operatorname{eval}\left(g, e\left[Q \leftarrow Q_{\text {val }}\right]\right)\);
    until \(Q_{\text {val }}=Q_{\text {old }}\);
    return \(Q_{\text {val }}\);
end if;
```

end function

Model Checking: example

- Calculate [vQ. $(p \vee\langle b\rangle Q)] e$ on the Kripke structure

$[\vee \mathrm{Q} .(p \vee\langle b\rangle \mathrm{Q})] e$ is gfp of $\tau(\mathrm{W})=[p \vee\langle b\rangle \mathrm{Q}](e[\mathrm{Q} \leftarrow \mathrm{W}])$

- Start iterating τ from True (the entire state space S)
$\tau^{1}($ True $\left.)=\llbracket p \vee\langle b\rangle \mathrm{Q}\right\rceil(e[\mathrm{Q} \leftarrow$ True $])$

$[\vee \mathrm{Q} .(p \vee\langle b\rangle \mathrm{Q})] e$ is gfp of $\tau(\mathrm{W})=[p \vee\langle b\rangle \mathrm{Q}](e[\mathrm{Q} \leftarrow \mathrm{W}])$

- Start iterating τ from True (the entire state space S)

$$
\begin{aligned}
\tau^{1}(\text { True }) & =[p \vee\langle b\rangle \mathrm{Q}](e[\mathrm{Q} \leftarrow \text { True }]) \\
& =[p](e[\mathrm{Q} \leftarrow \mathrm{~S}]) \cup[\langle b\rangle \mathrm{Q}](e[\mathrm{Q} \leftarrow \mathrm{~S}])
\end{aligned}
$$

$[\vee \mathrm{Q} .(p \vee\langle b\rangle \mathrm{Q})] e$ is gfp of $\tau(\mathrm{W})=[p \vee\langle b\rangle \mathrm{Q}](e[\mathrm{Q} \leftarrow \mathrm{W}])$

- Start iterating τ from True (the entire state space S)

$$
\begin{aligned}
\tau^{1}(\text { True }) & =[p \vee\langle b\rangle \mathrm{Q}](e[\mathrm{Q} \leftarrow \text { True }]) \\
& =[p](e[\mathrm{Q} \leftarrow \mathrm{~S}]) \cup[\langle b\rangle \mathrm{Q}](e[\mathrm{Q} \leftarrow \mathrm{~S}]) \\
& =\left\{\mathrm{s}_{2}\right\} \cup\{\mathrm{s} \mid \exists \mathrm{t}(\mathrm{~s}, \mathrm{t}) \in b \text { and } \mathrm{t} \in([\mathrm{Q}] e[\mathrm{Q} \leftarrow \mathrm{~S}])\}
\end{aligned}
$$

$[v Q .(p \vee\langle b\rangle \mathrm{Q})] e$ is gfp of $\tau(\mathrm{W})=[p \vee\langle b\rangle \mathrm{Q}](e[\mathrm{Q} \leftarrow \mathrm{W}])$

- Start iterating τ from True (the entire state space S)

$$
\begin{aligned}
\tau^{1}(\text { True }) & =[p \vee\langle b\rangle \mathrm{Q}](e[\mathrm{Q} \leftarrow \text { True }]) \\
& =[p](e[\mathrm{Q} \leftarrow \mathrm{~S}]) \cup[\langle b\rangle \mathrm{Q}](e[\mathrm{Q} \leftarrow \mathrm{~S}]) \\
& =\left\{\mathrm{s}_{2}\right\} \cup\{\mathrm{s} \mid \exists \mathrm{t}(\mathrm{~s}, \mathrm{t}) \in b \text { and } \mathrm{t} \in([\mathrm{Q}] e[\mathrm{Q} \leftarrow \mathrm{~S}])\} \\
& =\left\{\mathrm{s}_{2}\right\} \cup\{\mathrm{s} \mid \exists \mathrm{t}(\mathrm{~s}, \mathrm{t}) \in b \text { and } \mathrm{t} \in \mathrm{~S}\}
\end{aligned}
$$

$[v Q .(p \vee\langle b\rangle \mathrm{Q})] e$ is gfp of $\tau(\mathrm{W})=[p \vee\langle b\rangle \mathrm{Q}](e[\mathrm{Q} \leftarrow \mathrm{W}])$

- Start iterating τ from True (the entire state space S)

$$
\begin{aligned}
\tau^{1}(\text { True }) & =[p \vee\langle b\rangle \mathrm{Q}](e[\mathrm{Q} \leftarrow \text { True }]) \\
& =[p](e[\mathrm{Q} \leftarrow \mathrm{~S}]) \cup[\langle b\rangle \mathrm{Q}](e[\mathrm{Q} \leftarrow \mathrm{~S}]) \\
& =\left\{\mathrm{s}_{2}\right\} \cup\{\mathrm{s} \mid \exists \mathrm{t}(\mathrm{~s}, \mathrm{t}) \in b \text { and } \mathrm{t} \in([\mathrm{Q}] e[\mathrm{Q} \leftarrow \mathrm{~S}])\} \\
& =\left\{\mathrm{s}_{2}\right\} \cup\{\mathrm{s} \mid \exists \mathrm{t}(\mathrm{~s}, \mathrm{t}) \in b \text { and } \mathrm{t} \in \mathrm{~S}\} \\
& =\left\{\mathrm{s}_{2}\right\} \cup\left\{\mathrm{s}_{1}, \mathrm{~s}_{3}\right\}=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\right\}
\end{aligned}
$$

$[v Q .(p \vee\langle b\rangle \mathrm{Q})] e$ is gfp of $\tau(\mathrm{W})=[p \vee\langle b\rangle \mathrm{Q}](e[\mathrm{Q} \leftarrow \mathrm{W}])$

- Start iterating τ from True (the entire state space S)

$$
\begin{aligned}
\tau^{1}(\text { True }) & =[p \vee\langle b\rangle \mathrm{Q}](e[\mathrm{Q} \leftarrow \text { True }]) \\
& =[p](e[\mathrm{Q} \leftarrow \mathrm{~S}]) \cup[\langle b\rangle \mathrm{Q}](e[\mathrm{Q} \leftarrow \mathrm{~S}]) \\
& =\left\{\mathrm{s}_{2}\right\} \cup\{\mathrm{s} \mid \exists \mathrm{t}(\mathrm{~s}, \mathrm{t}) \in b \text { and } \mathrm{t} \in([\mathrm{Q}] e[\mathrm{Q} \leftarrow \mathrm{~S}])\} \\
& =\left\{\mathrm{s}_{2}\right\} \cup\{\mathrm{s} \mid \exists \mathrm{t}(\mathrm{~s}, \mathrm{t}) \in b \text { and } \mathrm{t} \in \mathrm{~S}\} \\
& =\left\{\mathrm{s}_{2}\right\} \cup\left\{\mathrm{s}_{1}, \mathrm{~s}_{3}\right\}=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\right\} \\
\tau^{2}(\text { True }) & =\tau(\tau(\text { True }))=\tau\left(\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\right\}\right)
\end{aligned}
$$

$[v Q .(p \vee\langle b\rangle \mathrm{Q})] e$ is gfp of $\tau(\mathrm{W})=[p \vee\langle b\rangle \mathrm{Q}](e[\mathrm{Q} \leftarrow \mathrm{W}])$

- Start iterating τ from True (the entire state space S)

$$
\begin{aligned}
\tau^{1}(\text { True }) & =[p \vee\langle b\rangle \mathrm{Q}](e[\mathrm{Q} \leftarrow \text { True }]) \\
& =[p](e[\mathrm{Q} \leftarrow \mathrm{~S}]) \cup[\langle b\rangle \mathrm{Q}](e[\mathrm{Q} \leftarrow \mathrm{~S}]) \\
& =\left\{\mathrm{s}_{2}\right\} \cup\{\mathrm{s} \mid \exists \mathrm{t}(\mathrm{~s}, \mathrm{t}) \in b \text { and } \mathrm{t} \in([\mathrm{Q}] e[\mathrm{Q} \leftarrow \mathrm{~S}])\} \\
& =\left\{\mathrm{s}_{2}\right\} \cup\{\mathrm{s} \mid \exists \mathrm{t}(\mathrm{~s}, \mathrm{t}) \in b \text { and } \mathrm{t} \in \mathrm{~S}\} \\
& =\left\{\mathrm{s}_{2}\right\} \cup\left\{\mathrm{s}_{1}, \mathrm{~s}_{3}\right\}=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\right\} \\
\tau^{2}(\text { True }) & =\tau(\tau(\text { True }))=\tau\left(\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\right\}\right) \\
& =\left\{\mathrm{s}_{2}\right\} \cup\left\{\mathrm{s}_{1}, \mathrm{~s}_{3}\right\}=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\right\}
\end{aligned}
$$

Complexity of Model Checking

- Calculate $[\mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y})] e$
(τ is \cup-cont.)
- Define $\zeta(X)=\mu Y$. $\tau(X, Y)$ so that
$[\mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y})] e=[\mu \mathrm{X} . \zeta(\mathrm{X}) \mid e$

Complexity of Model Checking

- Calculate $[\mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y})] e$ (τ is \cup-cont.)
- Define $\zeta(X)=\mu Y$. $\tau(X, Y)$ so that

$$
[\mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y})] e=[\mu \mathrm{X} . \zeta(\mathrm{X})] e
$$

- Now: iterate $\zeta($ False $)$ until $\zeta^{i}($ False $)=\zeta^{i+1}($ False $)$

$$
\zeta^{i+1}(\text { False })=\mu \mathrm{Y} . \tau\left(\zeta^{i}(\text { False }), \mathrm{Y}\right)
$$

Complexity of Model Checking

- Calculate $[\mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y})] e$ (τ is \cup-cont.)
- Define $\zeta(X)=\mu Y$. $\tau(X, Y)$ so that

$$
[\mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y})] e=[\mu \mathrm{X} . \zeta(\mathrm{X})] e
$$

- Now: iterate $\zeta\left(\right.$ False) until $\zeta^{i}($ False $)=\zeta^{i+1}($ False $)$

$$
\zeta^{i+1}(\text { False })=\mu \mathrm{Y} . \tau\left(\zeta^{i}(\text { False }), Y\right)
$$

- Iterate $\tau\left(Z^{i}(\right.$ False $)$, False $)$ until

$$
\tau^{j}\left(\zeta^{i}(\text { False }), \text { False }\right)=\tau^{j+1}\left(\zeta^{i}(\text { False }), \text { False }\right)
$$

Complexity of Model Checking

- Calculate $[\mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y})] e$ (τ is \cup-cont.)
- Define $\zeta(X)=\mu Y$. $\tau(X, Y)$ so that

$$
[\mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y})] e=[\mu \mathrm{X} . \zeta(\mathrm{X})] e
$$

- Now: iterate $\zeta\left(\right.$ False) until $\zeta^{i}($ False $)=\zeta^{i+1}($ False $)$

$$
\zeta^{i+1}(\text { False })=\mu \mathrm{Y} . \tau\left(\zeta^{i}(\text { False }), \mathrm{Y}\right)
$$

- Iterate $\tau\left(\zeta^{i}(\right.$ False $)$, False $)$ until

$$
\tau^{\mathrm{j}}\left(\zeta^{\mathrm{i}}(\text { False }), \text { False }\right)=\tau^{\mathrm{j}+1}\left(\zeta^{i}(\text { False }), \text { False }\right)
$$

- Overall, we need $\mathrm{O}\left(|S|^{2}\right)$ iterations of τ
- A formula with k nested fixpoint operators needs $\mathrm{O}\left(|S|^{k}\right)$ iterations of the innermost fixpoint transformer

Faster Model Checking

- Key idea: nested fixpoints of the same type do not need re-initialization to False (or True)
- Need to define alternation depth of a formula - "number of alternations of μ and v operators"

Faster Model Checking

- Key idea: nested fixpoints of the same type do not need re-initialization to False (or True)
- Need to define alternation depth of a formula - "number of alternations of μ and v operators"
- A top-level v-subformula of f is a subformula vQ. g of f not contained in any other v -subformula of f
- Example: $f=\mu \mathrm{Q} .\left(\mathrm{vQ}_{1} \cdot g_{1} \vee \mathrm{vQ}_{2} \cdot g_{2}\right)$
$-\mathrm{vQ}_{1} \cdot g_{1}$ and $\mathrm{vQ}_{2} \cdot g_{2}$ are v -subformulae of f

Alternation Depth

- If f contains subsentences w_{1}, \ldots, w_{n} then
$-\operatorname{AD}(f)=\max \left(\operatorname{AD}\left(w_{1}\right), \ldots, \operatorname{AD}\left(w_{n}\right), \operatorname{AD}\left(f^{\prime}\right)\right)$ where f^{\prime} is obtained from f by substitution new constants $c_{1}, \ldots, c_{\mathrm{n}}$ for w_{1}, \ldots, w_{n}
- The AD of atomic propositions or relational variables is 0
- The AD of $f \wedge g, f \vee g,\langle a\rangle f,[a] f$ is the maximum AD of subformulae f and g
- The AD of μ Q. f is
$-\max \left(\operatorname{AD}(f), 1+\max \left(\operatorname{AD}\left(f_{1}\right), \ldots, A D\left(f_{n}\right)\right)\right.$ where $f_{1}, \ldots, f_{\mathrm{n}}$ are the top-level v -subformulae of f

What is the Alternation Depth of

$\mu \mathrm{Q} .(p \vee[a] \mathrm{Q})=1$

What is the Alternation Depth of

$\mu \mathrm{Q} .(p \vee[a] \mathrm{Q})=1$
$\mu \mathrm{Q} .\left(v \mathrm{Q}_{1} \cdot\left(p \vee\langle a\rangle \mathrm{Q}_{1}\right) \vee[a] \mathrm{Q}\right)$

What is the Alternation Depth of

$\mu \mathrm{Q} .(p \vee[a] \mathrm{Q})=1$
$\mu \mathrm{Q} .\left(\mathrm{vQ}_{1} \cdot\left(p \vee\langle a\rangle \mathrm{Q}_{1}\right) \vee[a] \mathrm{Q}\right)$

What is the Alternation Depth of

$\mu \mathrm{Q} .(p \vee[a] \mathrm{Q})=1$
$\mu \mathrm{Q} \cdot\left(\mathrm{vQ}_{1} \cdot\left(p \vee\langle a\rangle \mathrm{Q}_{1}\right) \mathrm{V}[a] \mathrm{Q}\right)$ $\max \left(v \mathrm{Q}_{1} \cdot\left(p \vee\langle a\rangle \mathrm{Q}_{1}\right), \mu \mathrm{Q} .(\mathrm{X} \vee[a] \mathrm{Q}),\right)=1$

What is the Alternation Depth of

$\mu \mathrm{Q} .(p \vee[a] \mathrm{Q})=1$
$\left.\mu \mathrm{Q} \cdot v \mathrm{Q}_{1} \cdot\left(p \vee\langle a\rangle \mathrm{Q}_{1}\right) \mathrm{V},[a] \mathrm{Q}\right)$ $\max \left(v Q_{1} \cdot\left(p \vee\langle a\rangle \mathrm{Q}_{1}\right), \mu \mathrm{Q} .(\mathrm{X} \vee[a] \mathrm{Q}),\right)=1$
$\left.\left.v \mathrm{Q} \cdot \mu \mathrm{Q}_{1} \cdot\langle a\rangle\left(v \mathrm{Q}_{2} \cdot \mu \mathrm{Q}_{3} \cdot\left(\langle a\rangle\left(p \wedge \mathrm{Q}_{2}\right) \vee \mathrm{Q}_{3}\right)\right) \wedge \mathrm{Q}\right) \vee \mathrm{Q}_{1}\right)$

What is the Alternation Depth of

$\mu \mathrm{Q} .(p \vee[a] \mathrm{Q})=1$
$\mu \mathrm{Q} .\left(\mathrm{va}_{1} \cdot\left(p \vee\langle a\rangle \mathrm{Q}_{1}\right) \vee[a] \mathrm{Q}\right)$ $\max \left(v \mathrm{Q}_{1} \cdot\left(p \vee\langle a\rangle \mathrm{Q}_{1}\right), \mu \mathrm{Q} .(\mathrm{X} \vee[a] \mathrm{Q}),\right)=1$
$\left.\left.v \mathrm{Q} \cdot \mu \mathrm{a}_{1} \cdot\langle\alpha\rangle\left(\mathrm{va}_{2} \cdot \mu \mathrm{O}_{3} \cdot\left(\langle a\rangle\left(p \wedge \mathrm{Q}_{2}\right) \vee \mathrm{Q}_{3}\right)\right) \wedge \mathrm{Q}\right) \vee \mathrm{a}_{1}\right)$

What is the Alternation Depth of

$\mu \mathrm{Q} \cdot(p \vee[a] \mathrm{Q})=1$
$\left.\mu \mathrm{Q} \cdot v \mathrm{Q}_{1} \cdot\left(p \vee\langle a\rangle \mathrm{Q}_{1}\right) \mathrm{V}[a] \mathrm{Q}\right)$
$\max \left(v \mathrm{Q}_{1} \cdot\left(p \vee\langle a\rangle \mathrm{Q}_{1}\right), \mu \mathrm{Q} .(\mathrm{X} \vee[a] \mathrm{Q}),\right)=1$
$\left.\left.\left.v \mathrm{Q} \cdot \mu \mathrm{Q}_{1} \cdot\langle a\rangle\left(v \mathrm{Q}_{2} \cdot \mu \mathrm{Q}_{3} \cdot\left(\langle a\rangle\left(p \wedge \mathrm{Q}_{2}\right) \vee \mathrm{Q}_{3}\right)\right)\right\rangle \mathcal{Q}\right) \vee \mathrm{Q}_{1}\right)$
$\max \left(v Q_{2} \cdot \mu \mathrm{Q}_{3} \cdot\left(\langle a\rangle\left(p \wedge \mathrm{Q}_{2}\right) \vee \mathrm{Q}_{3}\right)\right.$,

$$
\left.v \mathrm{Q} \cdot \mu \mathrm{Q}_{1} \cdot\langle a\rangle(\mathrm{Y} \wedge \mathrm{Q}) \vee \mathrm{Q}_{1}\right)=2
$$

Faster Model Checking

- E.A. Emerson and C.-L. Lei, LICS 1986
- Reset relational variables to True (False) only when fixpoint operators alternate
- Thus, need only $\mathrm{O}\left(|S|^{d}\right)$ iterations of the innermost fixpoint transformer, where $d=A D(f)$

Emerson and Lei's algorithm

- Lemma: Let $\mathrm{t}: 2^{\mathrm{S}} \rightarrow 2^{\mathrm{S}}$ be monotonic (thus U - and \cap-continuous, since S finite). Then:

Emerson and Lei's algorithm

- Lemma: Let $\mathrm{t}: 2^{\mathrm{S}} \rightarrow 2^{\mathrm{S}}$ be monotonic (thus U - and \bigcap-continuous, since S finite). Then:
- If $\mathrm{X} \subseteq \mu \mathrm{Q} . \mathrm{T}(\mathrm{Q})$ then $\mu \mathrm{Q} . \mathrm{\tau}(\mathrm{Q})=\mathrm{U}_{\mathrm{i}} \mathrm{T}^{\prime}(\mathrm{X})$

Emerson and Lei's algorithm

- Lemma: Let $\mathrm{t}: 2^{\mathrm{S}} \rightarrow 2^{\mathrm{S}}$ be monotonic (thus U - and \bigcap-continuous, since S finite). Then:
- If $X \subseteq \mu \mathrm{Q} . \mathrm{\tau}(\mathrm{Q})$ then $\mu \mathrm{Q} . \mathrm{\tau}(\mathrm{Q})=\mathrm{U}_{\mathrm{i}} \mathrm{T}^{\mathrm{i}}(\mathrm{X})$
- If $Y \supseteq v Q . \tau(Q)$ then $v Q . \tau(Q)=\cap_{i} \tau^{i}(Y)$

Emerson and Lei's algorithm

- Lemma: Let $\mathrm{\tau}: 2^{\mathrm{S}} \rightarrow 2^{\mathrm{S}}$ be monotonic (thus U - and \bigcap-continuous, since S finite). Then:
- If $X \subseteq \mu \mathrm{Q} . \mathrm{\tau}(\mathrm{Q})$ then $\mu \mathrm{Q} . \tau(\mathrm{Q})=\mathrm{U}_{\mathrm{i}} \mathrm{T}^{\prime}(\mathrm{X})$
- If $Y \supseteq v Q . \tau(Q)$ then $v Q . \tau(Q)=\cap_{i} \tau^{i}(Y)$
- "we can iterate from any approximation known to be below (above) the fixpoint"

Emerson and Lei's algorithm

- Lemma: Let $\mathrm{\tau}: 2^{\mathrm{S}} \rightarrow 2^{\mathrm{S}}$ be monotonic (thus U - and \cap-continuous, since S finite). Then:
- If $X \subseteq \mu \mathrm{Q} . \mathrm{\tau}(\mathrm{Q})$ then $\mu \mathrm{Q} . \tau(\mathrm{Q})=\mathrm{U}_{\mathrm{i}} \mathrm{T}^{\prime}(\mathrm{X})$
- If $Y \supseteq v Q . \tau(Q)$ then $v Q . \tau(Q)=\cap_{i} \tau^{i}(Y)$
- "we can iterate from any approximation known to be below (above) the fixpoint"
- In particular
$\tau($ False $) \subseteq \ldots \subseteq \tau^{\mathrm{j}}($ False $) \subseteq \ldots \subseteq \mathrm{U}_{\mathrm{i}} \mathrm{\tau}^{\mathrm{i}}($ False $)=\mu \mathrm{Q} . \tau(\mathrm{Q})$

Emerson and Lei's algorithm

- Lemma: Let $\mathrm{\tau}: 2^{\mathrm{S}} \rightarrow 2^{\mathrm{S}}$ be monotonic (thus U - and \cap-continuous, since S finite). Then:
- If $X \subseteq \mu \mathrm{Q} . \mathrm{\tau}(\mathrm{Q})$ then $\mu \mathrm{Q} . \tau(\mathrm{Q})=\mathrm{U}_{\mathrm{i}} \mathrm{T}^{\prime}(\mathrm{X})$
- If $Y \supseteq v Q . \tau(Q)$ then $v Q . \tau(Q)=\cap_{i} \tau^{i}(Y)$
- "we can iterate from any approximation known to be below (above) the fixpoint"
- In particular

$$
\tau(\text { False }) \subseteq \ldots \subseteq \subseteq \tau^{\mathrm{j}}(\text { False }) \subseteq \ldots \subseteq U_{i} \mathrm{\tau}^{\mathrm{i}}(\text { False })=\mu \mathrm{Q} . \tau(\mathrm{Q})
$$

Emerson and Lei's algorithm

- Example: $\mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y}) \quad$ (τ is monotonic)
- Let $\zeta(X)=\mu Y . \tau(X, Y)$ so $\mu X . \mu Y . \tau(X, Y)=\mu X . \zeta(X)$

Emerson and Lei's algorithm

- Example: $\mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y})$
(τ is monotonic)
- Let $\zeta(X)=\mu Y$. $\tau(X, Y)$ so $\mu X . \mu Y . \tau(X, Y)=\mu X . \zeta(X)$
- The naïve algorithm:
- Iterate $\zeta\left(\right.$ False) until $\zeta^{i}($ False $)=\zeta^{i+1}($ False $)$

$$
\zeta^{i+1}(\text { False })=\mu Y . \tau\left(\zeta^{i}(\text { False }), Y\right)
$$

- Iterate $\tau\left(\zeta^{i}(\right.$ False $\left.), F a l s e\right)$ until

$$
\tau^{j}\left(\zeta^{i}(\text { False }), \text { False }\right)=\tau^{j+1}\left(\zeta^{i}(\text { False }), \text { False }\right)
$$

- Need $\mathrm{O}\left(|S|^{2}\right)$ iterations of τ

Emerson and Lei's algorithm

- Example: $\mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y}) \quad$ (τ is monotonic)
- $\zeta(X)=\mu Y . \tau(X, Y) \quad \mu X . \mu Y . \tau(X, Y)=\mu X . \zeta(X)$

Emerson and Lei's algorithm

- Example: $\mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y}) \quad$ (τ is monotonic)
- $\zeta(X)=\mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y}) \quad \mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y})=\mu \mathrm{X} . \zeta(\mathrm{X})$
- Note that $\zeta^{i-1}($ False $) \subseteq \zeta^{i}($ False $)$ and $\tau \cup$-continuous

Emerson and Lei's algorithm

- Example: $\mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y}) \quad$ (τ is monotonic)
- $\zeta(X)=\mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y}) \quad \mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y})=\mu \mathrm{X} . \zeta(\mathrm{X})$
- Note that $\zeta^{i-1}($ False $) \subseteq \zeta^{i}($ False $)$ and $\tau \cup$-continuous

$$
\mu \mathrm{Y} . \tau\left(\zeta^{i-1}(\text { False }), \mathrm{Y}\right) \subseteq \mu \mathrm{Y} . \tau\left(\zeta^{i}(\text { False }), \mathrm{Y}\right) \quad\left(^{*}\right)
$$

Emerson and Lei's algorithm

- Example: $\mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y}) \quad$ (τ is monotonic)
- $\zeta(X)=\mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y}) \quad \mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y})=\mu \mathrm{X} . \zeta(\mathrm{X})$
- Note that $\zeta^{-1}($ False $) \subseteq \zeta^{i}($ False $)$ and $\tau \cup$-continuous

$$
\mu \mathrm{Y} . \tau\left(\zeta^{-1}(\text { False }), \mathrm{Y}\right) \subseteq \mu \mathrm{Y} . \tau\left(\zeta^{i}(\text { False }), \mathrm{Y}\right) \quad\left({ }^{*}\right)
$$

$\zeta^{i+1}($ False $)=\mu \mathrm{Y} . \tau\left(\zeta^{\zeta}(\right.$ False $\left.), \mathrm{Y}\right)$

Emerson and Lei's algorithm

- Example: $\mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y}) \quad$ (τ is monotonic)
- $\zeta(X)=\mu Y . \tau(X, Y) \quad \mu X . \mu Y . \tau(X, Y)=\mu X . \zeta(X)$
- Note that $\zeta^{i-1}($ False $) \subseteq \zeta^{i}($ False $)$ and $\tau \cup$-continuous

$$
\mu \mathrm{Y} . \tau\left(\zeta^{i-1}(\text { False }), \mathrm{Y}\right) \subseteq \mu \mathrm{Y} . \tau\left(\zeta^{i}(\text { False }), \mathrm{Y}\right) \quad\left({ }^{*}\right)
$$

$\zeta^{i+1}($ False $)=\mu \mathrm{Y} . \tau\left(\zeta^{\zeta}(\right.$ False $\left.), \mathrm{Y}\right)=\bigcup_{j} \tau^{\mathrm{j}} \zeta^{\top}($ False $)$, False $)$

Emerson and Lei's algorithm

- Example: $\mu \mathrm{X} . \mu \mathrm{Y} . \tau(X, Y) \quad$ (τ is monotonic)
- $\zeta(X)=\mu Y . \tau(X, Y) \quad \mu X . \mu Y . \tau(X, Y)=\mu X . \zeta(X)$
- Note that $\zeta^{i-1}($ False $) \subseteq \zeta^{i}($ False $)$ and $\tau \cup$-continuous
$\mu \mathrm{Y} . \tau\left(\zeta^{i-1}(\right.$ False $\left.), \mathrm{Y}\right) \subseteq \mu \mathrm{Y} . \tau\left(\zeta^{i}(\right.$ False $\left.), \mathrm{Y}\right) \quad(*)$
$\zeta^{i+1}($ False $)=\mu \mathrm{Y} . \tau\left(\zeta^{i}(\right.$ False $\left.), Y\right)=\bigcup_{j} \tau^{\mathrm{j}}\left(\zeta^{i}(\right.$ False $)$, False $)$

Emerson and Lei's algorithm

- Example: $\mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y}) \quad$ (τ is monotonic)
- $\zeta(X)=\mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y}) \quad \mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y})=\mu \mathrm{X} . \zeta(\mathrm{X})$
- Note that $\zeta^{-1}($ False $) \subseteq \zeta^{i}($ False $)$ and $\tau \cup$-continuous

$$
\mu \mathrm{Y} . \tau\left(\zeta^{i-1}(\text { False }), \mathrm{Y}\right) \subseteq \mu \mathrm{Y} . \tau\left(\zeta^{i}(\text { False }), \mathrm{Y}\right) \quad\left({ }^{*}\right)
$$

$$
\zeta^{i+1}(\text { False })=\frac{\left.\mu \mathrm{Y} . \tau\left(\zeta^{i}(\text { False }), \mathrm{Y}\right)\right)}{\text { by }\left(^{*}\right) \text { and Lemma }}=U_{\mathrm{j}}^{\mathrm{\tau}^{\mathrm{j}}\left(\zeta^{\mathrm{L}}(\text { False }), \text { False }\right)}
$$

Emerson and Lei's algorithm

- Example: $\mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y})$
(τ is monotonic)
- $\zeta(X)=\mu Y . \tau(X, Y)$
$\mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y})=\mu \mathrm{X} . \zeta(\mathrm{X})$
- Note that $\zeta^{i-1}($ False $) \subseteq \zeta^{i}($ False $)$ and $\tau \cup$-continuous

$$
\mu \mathrm{Y} . \tau\left(\zeta^{i-1}(\text { False }), \mathrm{Y}\right) \subseteq \mu \mathrm{Y} . \tau\left(\zeta^{\mathrm{i}}(\text { False }), \mathrm{Y}\right) \quad\left({ }^{*}\right)
$$

$$
\begin{aligned}
& \zeta^{i+1}(\text { False })=\left.\begin{array}{l}
\mu \mathrm{Y} . \tau\left(\zeta^{\mathrm{i}}(\text { False }), \mathrm{Y}\right)
\end{array}\right)=U_{\mathrm{j}} \mathrm{\tau}^{\mathrm{j}}\left(\zeta^{\mathrm{i}}(\text { False }), \text { False }\right) \\
& \text { by }\left(^{*}\right) \text { and } \underline{\text { Lemma }} \\
&\left.=U_{\mathrm{j}}^{\mathrm{T}} \mathrm{\tau}^{\mathrm{j}}(\text { False }), \mu \mathrm{Y} . \tau\left(\zeta^{\mathrm{i}-1}(\text { False }), \mathrm{Y}\right)\right)
\end{aligned}
$$

Emerson and Lei's algorithm

- Example: $\mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y})$
(τ is monotonic)
- $\zeta(X)=\mu Y . \tau(X, Y)$
$\mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y})=\mu \mathrm{X} . \zeta(\mathrm{X})$
- Note that $\zeta^{-1-1}($ False $) \subseteq \zeta^{i}($ False $)$ and $\tau \cup$-continuous
$\mu \mathrm{Y} . \tau\left(\zeta^{i-1}(\right.$ False $\left.), \mathrm{Y}\right) \subseteq \mu \mathrm{Y} . \tau\left(\zeta^{i}(\right.$ False $\left.), \mathrm{Y}\right)$

(*)

$\zeta^{i+1}($ False $)=\mu \mathrm{Y} . \tau\left(\zeta^{i}(\right.$ False $\left.), \mathrm{Y}\right)=U_{j} \tau^{\mathrm{j}} \zeta^{i}($ False $)$, False $)$ by $\left(^{*}\right)$ and Lemma
$=U_{j} \tau^{\mathrm{j}} \zeta^{\mathrm{i}}($ False $), \mu \mathrm{Y} \cdot \tau\left(\zeta^{i-1}(\right.$ False $\left.\left.), \mathrm{Y}\right)\right)$

Emerson and Lei's algorithm

- Example: $\mu \mathrm{X} . \mu \mathrm{Y} . \tau(\mathrm{X}, \mathrm{Y})$
(τ is monotonic)
- $\zeta(X)=\mu Y . \tau(X, Y)$
$\mu X . \mu Y . \tau(X, Y)=\mu X . \zeta(X)$
- Note that $\zeta^{i-1}($ False $) \subseteq \zeta^{i}($ False $)$ and $\tau \cup$-continuous
$\mu \mathrm{Y} . \tau\left(\zeta^{i-1}(\right.$ False $\left.), \mathrm{Y}\right) \subseteq \mu \mathrm{Y} . \tau\left(\zeta^{\mathrm{i}}(\right.$ False $\left.), \mathrm{Y}\right)$

(*)

$\zeta^{i+1}($ False $)=\mu \mathrm{Y} . \tau\left(\zeta^{i}(\right.$ False $\left.), Y\right)=U_{j} \tau^{j}\left(\zeta^{i}(\right.$ False $)$, False $)$ by $\left(^{*}\right)$ and Lemma
$=U_{j} \tau^{j}\left(\zeta^{i}(\right.$ False $), \mu \mathrm{Y} . \tau\left(\zeta^{i-1}(\right.$ False $\left.\left.), Y\right)\right)$
No need to use $Y=$ False! Only $O(\|S\|)$ iterations of τ.

Emerson and Lei's algorithm

function $\operatorname{eval}(f, e)$

```
if f=p then return {s|p\inL(s)};
if f=Q then return }e(Q)\mathrm{ ;
if f=\mp@subsup{g}{1}{}\wedge\mp@subsup{g}{2}{}}\mathrm{ then return eval (g},\mp@code{,})\cap\operatorname{eval}(\mp@subsup{g}{2}{},e)\mathrm{ ;
if f=\mp@subsup{g}{1}{}\vee\mp@subsup{g}{2}{}}\mathrm{ then return eval (g},e)\cup\operatorname{eval}(\mp@subsup{g}{2}{},e)
if f=\langlea\rangleg then return {s|\existst[(s,t)\ina and t\in\operatorname{eval}(g,e)]};
if f=[a]g}\mathrm{ then return {s|}\forallt[(s,t)\ina implies t\in\operatorname{eval}(g,e)]}
if f=\mu Qi.g(\mp@subsup{Q}{i}{}) then
    forall top-level greatest fixpoint subformulas }\nu\mp@subsup{Q}{j}{}.\mp@subsup{g}{}{\prime}(\mp@subsup{Q}{j}{})\mathrm{ of }
        do }A[j]:=\mathrm{ True;
    repeat
        Qold := A[i];
        A[i]:= eval(g,e[Q [Q \leftarrowA[i]]);
    until }A[i]=\mp@subsup{Q}{\mathrm{ old }}{}\mathrm{ ;
    return A[i];
end if;
```

end function

Emerson and Lei's algorithm

function $\operatorname{eval}(f, e)$

if $f=\mu Q_{i} . g\left(Q_{i}\right)$ then
forall top-level greatest fixpoint subformulas $\nu Q_{j} . g^{\prime}\left(Q_{j}\right)$ of g do $A[j]:=$ True;
repeat
$Q_{\text {old }}:=A[i] ;$
$A[i]:=\operatorname{eval}\left(g, e\left[Q_{i} \leftarrow A[i]\right]\right) ;$
until $A[i]=Q_{\text {old }}$;
return $A[i]$;
end if;
end function

Complexity

- Let $\mathrm{d}=\mathrm{AD}(f)$
- Since we need to start from False (True) only when μ and v alternates, the complexity is $\left.\mathrm{O}(||f| \cdot| S \mid)^{d}\right)$

Complexity

- Let $\mathrm{d}=\mathrm{AD}(f)$
- Since we need to start from False (True) only when μ and v alternates, the complexity is O((|f|•|S|) $\left.{ }^{d}\right)$
- Clarke et al. (CAV 1994) presented an algorithm with complexity $\mathrm{O}\left((|\mathrm{f}| \cdot|\mathrm{S}|)^{\mathrm{d} / 2+1}\right)$
- The Model Checking problem for the μ-calculus is in NP \cap co-NP

Other fixpoint theorems

Brouwer fixpoint theorem (one-dimensional case)

Every continuous $f:[a, b] \longrightarrow[a, b]$ has a fixpoint

Other fixpoint theorems

Brouwer fixpoint theorem (one-dimensional case)
Every continuous $f:[a, b] \longrightarrow[a, b]$ has a fixpoint

Other fixpoint theorems

Brouwer fixpoint theorem (one-dimensional case)
Every continuous $f:[a, b] \longrightarrow[a, b]$ has a fixpoint Proof:
Define $g(x)=f(x)-x$. Then $g(a) \geqslant 0$ and $g(b) \leqslant 0$. By the intermediate value theorem, there is a point ξ in
[a,b] such that $g(\xi)=0=f(\xi)-\xi$.
Thus ξ is a fixpoint for f.

Other fixpoint theorems

Brouwer fixpoint theorem (generalizations)

- Every continuous function from a closed disk to itself has a fixpoint

Other fixpoint theorems

Brouwer fixpoint theorem (generalizations)

- Every continuous function from a closed ball of an Euclidean space to itself has a fixpoint

Other fixpoint theorems

Brouwer fixpoint theorem (generalizations)

- Every continuous function from a closed ball of an Euclidean space to itself has a fixpoint
- Every continuous function from a convex compact subset K of an Euclidean space to K itself has a fixpoint

Other fixpoint theorems

Banach Contraction Principle

Say $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ and $d(x, y)=\|x-y\|$ for $x, y \in \mathbb{R}^{n}$.
Suppose $\exists \alpha<1$ such that $\mathrm{d}(\mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{y})) \leqslant \alpha \cdot \mathrm{d}(\mathrm{x}, \mathrm{y})$ for all $x, y \in \mathbb{R}^{n}$ (f is said to be a contraction). Then:

- f has a unique fixpoint u, and
- $\lim _{i \rightarrow \infty} f^{i}(y)=u$ for each $y \in \mathbb{R}^{n}$.

