Model Checking for the u-calculus

Paolo Zuliani
15-817, Spring 2011

Outline

What is the u-calculus?
Semantics

Model Checking algorithms
[Other fixpoint theorems]

The u-calculus

* Alanguage for describing properties of
transition systems

* |t uses least and greatest fixpoint operators
— U (least fixpoint)
— v (greatest fixpoint)

* |t subsumes many temporal logics

— CTL* can be translated into the u-calculus

The u-calculus

* More expressive than temporal logics
— See last lecture on Data Flow Analysis, but also

— Even(p) = “p must happen every two steps (p can
happen or not in other steps)” along a given path
(Wolper, 1981)

— Even(p) cannot be expressed in temporal logics
— Even(p) can be expressed in the p-calculus (later)

 There are efficient Model Checking algorithms
 Formulae evaluate to sets of states

Semantics

* Given wrt modified Kripke structures, that is,
Kripke structures with labels on transitions

 Example:

— p atomic prop.

— a, b transitions

Semantics

A modified Kripke structure M = (S5,T,L) consists of
— a nhonempty set of states S,

— a set of transitions T, such that for each transition
a€ET,acSxS, and

— a mapping L : S = 24P that gives the set of atomic
propositions true in a state.

* VAR={Q, Q,, Q,, .. .} a set of relational variables

* Each relational variable Q € VAR can be assighed
a subset of S

Syntax

If p € AP, then p is a formula
A relational variable is a formula

If f, g formulas, then =f, f A g and fV g formulas

If fis a formula, and a € T, then [alf and (a)f are
formulas

For Q € VAR and formula f, then pQ.f and vQ.f
are formulas
— provided that fis syntactically monotone in Q, i.e., all

occurrences of Q within f fall under an even number
of negations

Syntax

 Two modalities — their informal meaning is

[a] f=“fholds in all states reachable by one
step of transition a”

(a) f = “fholds in a state reachable by one step of
transition a”

Syntax

 Two modalities — their informal meaning is

[a] f=“fholds in all states reachable by one
step of transition a”

(a) f = “fholds in a state reachable by one step of
transition a”

 Example (suppose only one transition a):
— Even(p) = vQ.(p A {a){a)Q) (along a path)

Syntax

 Two modalities — their informal meaning is

[a] f=“fholds in all states reachable by one
step of transition a”

(a) f = “fholds in a state reachable by one step of
transition a”

 Example (suppose only one transition a):
— Even(p) = vQ.(p A {a){a)Q) (along a path)
—E[p U g] =pQ.(p A (g v<{a)Q)) (over a Kripke str.)

Semantics

Given a modified Kripke structure M
VAR ={Q, Q,, Q,, . . .} a set of relational variables
An environment e : VAR = 2°

The semantics | f |,e of a formula fis the “set of
states in which fis true”

Semantics

Given a modified Kripke structure M
VAR ={Q, Q,, Q,, . . .} a set of relational variables
An environment e : VAR = 2°

The semantics | f |,e of a formula fis the “set of
states in which fis true”

We denote
— S=True (formula True holds for all states)
— @=False (formula False holds for no state)

— e[Q & W] is the environment equal to e, except that
(e[Q < W])(Q) =W

Semantics

The order on 2° is given by set inclusion
The set | f |e is defined recursively as follows:

ple ={s | p € L(s)}
Qle = e(Q)

—fle =S\|fle
fAgle=|fle N |gle
fvgle=Ifle U lgle

* o) f

* |

[al f

Semantics

e={s | 3t (s,t) Ea and t € [fle}
e={s | Vt(s,t) € a implies t € |fle}

Semantics

e [{(a)fle={s| At (s,t) €Ea and t € |fle}
e |[a]fle={s| Vt(s,t) €Ea implies t € |fle}

e |uQ.fleis the least fixpoint of the predicate
transformer t: 2°> = 2° defined by:
(W) = fl(e[Q < W])

[al f

(o) f

Semantics

e={s | 3t (s,t) Ea and t € [fle}
e={s | Vt(s,t) € a implies t € |fle}

luQ.f |e is the least fixpoint of the predicate
transformer t: 2°> = 2° defined by:
(W) = fl(e[Q < W])

lvQ.f e is the greatest fixpoint of T above

Semantics

e All logical connectives and modalities (except
negation) are monotonic

 Example: conjunction
fle C Ifle = |fAgle Clf'Agle

(ACB > ANC ¢ BNC)

Semantics

* Negations can be pushed down to atomic
propositions by De Morgan’s laws and

* -lalf=<a)-f
* -(o)f=la]-f
* - pQ.f(Q) =va.~-f(-Q)
* -vQfQ)=uQ.-f(-Q)

* Variables appear under an even number of
negations

* By applying the rules above, variables will be
negation-free

Semantics

* Therefore, in a fixpoint formula we can only
define monotonic operators

* Therefore, fixpoints exist! (Tarski)

Semantics

* Therefore, in a fixpoint formula we can only
define monotonic operators

* Therefore, fixpoints exist! (Tarski)

 Furthermore, we assume that S is finite, so we
can effectively compute the fixpoints

e Recall that

nQ.f

e = U t(False)

va.f

e = . t(True)

luQ.fle = Ifp(t) where T(W) = [fl(e[Q < WI)

Model Checking: a naive algorithm

function eval(f, e)

if f = p then return {s |p € L(s)};
if f = () then return e(Q));

if f = g1 A g then return eval(g,, e) Meval(g,,e):
if f = g1V g then return eval(g,,e) Ueval(gs,e):

e

if f = (a)g then return { s | 3t[(s,t) €a and t € eval(g, e)] }:
if f = |a|g then return { s | Vt[(s,t) € a implies £ € eval(g,e)] }:

if / = 11Q.9(Q) then
Qval := False;
repeat
Qold = Qval:
Qvar := eval(g, e [Q — Qval]):
until Qa1 = Qola:
return Qvai:
end if;

end function

Model Checking: example

* Calculate [vQ.(p v (b)Q)|e on the Kripke structure

vQ.(p v (b)Q)le is gfp of T(W) =p v (b)Ql(e[Q ¢ W])
e Start iterating t from True (the entire state space S)

™(True)=|p v (b)Q|(e[Q & True])

vQ.(p v (b)Q)le is gfp of T(W) =p v (b)Ql(e[Q ¢ W])
e Start iterating t from True (the entire state space S)

™(True)=|p v (b)Q|(e[Q & True])
= |pl(e[Q < S]) U [Kb)Ql(e[Q < S])

vQ.(p v (b)Q)le is gfp of T(W) =p v (b)Ql(e[Q ¢ W])
e Start iterating t from True (the entire state space S)

™(True)=|p v (b)Q|(e[Q & True])
= |pl(e[Q < S]) U [Kb)Ql(e[Q < S])
={s,}U{s | At (s,t) € b and t € (|Qle[Q ¢ S])}

vQ.(p v (b)Q)le is gfp of T(W) =p v (b)Ql(e[Q ¢ W])
e Start iterating t from True (the entire state space S)

™(True)=|p v (b)Q|(e[Q & True])
= |pl(e[Q < S]) U [{(b)Ql(e[Q < S])
={s,}U{s | At (s,t) € b and t € (|Qle[Q ¢ S])}
={s,}U{s | It (s,t) Eb and t € S}

vQ.(p v (b)Q)le is gfp of T(W) =p v (b)Ql(e[Q ¢ W])
e Start iterating t from True (the entire state space S)

™(True)=|p v (b)Q|(e[Q & True])
= |pl(e[Q < S]) U [Kb)Ql(e[Q < S])
={s,}U{s | At (s,t) € b and t € (|Qle[Q ¢ S])}
={s,}U{s | It (s,t) Eb and t € S}
={s,} U{sy, s} ={s1, S,, S3}

vQ.(p v (b)Q)le is gfp of T(W) =p v (b)Ql(e[Q ¢ W])
e Start iterating t from True (the entire state space S)

™(True)=|p v (b)Q|(e[Q & True])
= |pl(e[Q < S]) U [Kb)Ql(e[Q < S])
={s,}U{s | At (s,t) € b and t € (|Qle[Q ¢ S])}
={s,}U{s | It (s,t) Eb and t € S}
={s,} U{sy, s} ={s1, S,, S3}

t¥(True) = t(t(True)) = t({s;, S,, S3})

vQ.(p v (b)Q)le is gfp of T(W) =p v (b)Ql(e[Q ¢ W])
e Start iterating t from True (the entire state space S)

™(True)=|p v (b)Q|(e[Q & True])
= |pl(e[Q < S]) U [Kb)Ql(e[Q < S])
={s,}U{s | At (s,t) € b and t € (|Qle[Q ¢ S])}
={s,}U{s | It (s,t) Eb and t € S}
={s,} U{sy, s} ={s1, S,, S3}

t¥(True) = t(t(True)) = t({s;, S,, S3})
={s,} U{sy, s3} =1{s4, S,, S3}

Complexity of Model Checking

e Calculate |uX. pnY.t(X)Y)le (t is U-cont.)
e Define {(X) = nY. T (X,Y) so that
[UX. pY. T (X,Y)le = [uX. {(X)le

Complexity of Model Checking

e Calculate |uX. pnY.t(X)Y)le (t is U-cont.)

e Define {(X) = nY. T (X,Y) so that

[UX. pY. T (X,Y)le = [uX. {(X)le
* Now: iterate {(False) until T(False) = *1(False)

(*YFalse) = pY. t (((False),Y)

Complexity of Model Checking

e Calculate |uX. pnY.t(X)Y)le (t is U-cont.)
e Define {(X) = nY. T (X,Y) so that

[UX. pY. T (X,Y)le = [uX. {(X)le

* Now: iterate {(False) until T(False) = *1(False)

(*YFalse) = pY. t (((False),Y)
 |terate T({(False),False) until

U(C(False),False) = (T (False),False)

Complexity of Model Checking

Calculate |pX. pY. t(X)Y)le (t is U-cont.)
Define {(X) = Y. T (X,Y) so that
[UX. pY. T (X,Y)le = [uX. {(X)le
Now: iterate {(False) until {'(False) = T*1(False)
(*YFalse) = pY. t (((False),Y)
Iterate t(C(False),False) until
U(C(False),False) = (T (False),False)

Overall, we need O(|S|?) iterations of T

— A formula with k nested fixpoint operators needs O(|S|¥)
iterations of the innermost fixpoint transformer

Faster Model Checking

* Key idea: nested fixpoints of the same type do
not need re-initialization to False (or True)

* Need to define alternation depth of a formula

— “number of alternations of u and v operators”

Faster Model Checking

Key idea: nested fixpoints of the same type do
not need re-initialization to False (or True)

Need to define alternation depth of a formula

— “number of alternations of u and v operators”

A top-level v-subformula of f is a subformula vQ.g
of f not contained in any other v-subformula of f
Example: f=pQ.(vQ,.9, V vQ,.g,)

—vQ,.g, and vQ,.g, are v-subformulae of f

Alternation Depth

If f contains subsentences w,, ..., w, then

— AD(f) = max(AD(w,), ..., AD(w,), AD(f’)) where f”is
obtained from f by substitution new constants c,, ...,c,

forwy, ..., w,

The AD of atomic propositions or relational
variables is O

The ADof fAg,fV g, (a)f, [alf isthe maximum
AD of subformulae fand g

The AD of nQ.fis

— max (AD(f), 1 + max (AD(f,), ..., AD(f.)) where
f1, --.f, are the top-level v-subformulae of f

What is the Alternation Depth of

Q. (p VlalQ) =1

What is the Alternation Depth of
Q. (p VlalQ) =1

nQ.(vQ,.(p V (a)Q;) V [a]Q)

What is the Alternation Depth of

uQ. (p VialQ) =1

nQ.(vay.(p V (@)Q,)V [a]Q)

What is the Alternation Depth of

uQ. (p VialQ) =1

nQ.(vay.(p V (@)Q,)V [a]Q)
max (vQ,.(p V (@)Q,), nQ.(X V [a]Q),) = 1

What is the Alternation Depth of

Q. (p VlalQ) =1

nQ.(vay.(p V (@)Q,)V [a]Q)
max (vQ,.(p V (@)Q,), nQ.(X V [a]Q),) = 1

vQ.HQ, (@) (VQ,-1Q,.((a)(p A Q,) V Q) A Q) V Q)

What is the Alternation Depth of

Q. (p VlalQ) =1

nQ.(vay.(p V (@)Q,)V [a]Q)
max (vQ,.(p V (@)Q,), nQ.(X V [a]Q),) = 1

vQ.uQ, (@) (vQ,.uQ;.((a)(p A Q) V Q) A Q) V Q)

What is the Alternation Depth of

uQ. (p VialQ) =1

nQ.(vay.(p V (@)Q,)V [a]Q)
max (vQ,.(p V (@)Q,), nQ.(X V [a]Q),) = 1

vQ.uQ, (@) (vQ,.uQ;.((a)(p A Q) V Q) A Q) V Q)

max (vQ,.uQ;.((a)(p A Q,) V Q;),
va.pQ,(a)(Y A Q) V Q,) =2

Faster Model Checking

E.A. Emerson and C.-L. Lei, LICS 1986

Reset relational variables to True (False) only
when fixpoint operators alternate

Thus, need only O(|S|9) iterations of the
innermost fixpoint transformer, where d=AD(f)

Emerson and Lei’s algorithm

* lemma: Let T: 2% > 2° be monotonic (thus U- and
()-continuous, since S finite). Then:

Emerson and Lei’s algorithm

* lemma: Let T: 2% > 2° be monotonic (thus U- and
()-continuous, since S finite). Then:

—If X CcpQ.1(Q) then pQ.t(Q) = U, T'(X)

Emerson and Lei’s algorithm

* lemma: Let T: 2% > 2° be monotonic (thus U- and
()-continuous, since S finite). Then:

—If X CcpQ.1(Q) then pQ.t(Q) = U, T'(X)
—If Y2 vQ.1(Q) then vQ.T(Q) = N, T'(Y)

Emerson and Lei’s algorithm

* lemma: Let T: 25 > 2° be monotonic (thus U- and
()-continuous, since S finite). Then:

—If X pQ.t(Q) then pQ.t(Q) = U, T'(X)
—If Y2 vQ.1(Q) then vQ.T(Q) = N, T'(Y)

* “we can iterate from any approximation known to
be below (above) the fixpoint”

Emerson and Lei’s algorithm

* lemma: Let T: 25 > 2° be monotonic (thus U- and
()-continuous, since S finite). Then:

—If X pQ.t(Q) then pQ.t(Q) = U, T'(X)
—If Y2 vQ.1(Q) then vQ.T(Q) = N, T'(Y)

* “we can iterate from any approximation known to
be below (above) the fixpoint”

* |n particular
t(False)C...C U(False) C...C U. T'(False)=pQ.T(Q)

Emerson and Lei’s algorithm

* lemma: Let T: 25 > 2° be monotonic (thus U- and
()-continuous, since S finite). Then:

—If X pQ.t(Q) then pQ.t(Q) = U, T'(X)
—If Y2 vQ.1(Q) then vQ.T(Q) = N, T'(Y)

* “we can iterate from any approximation known to
be below (above) the fixpoint”

* |n particular
T(FG/SE)Q...Q[TJ(FG/SG)JQ...Q U. t'(False)=pQ.T(Q)

Emerson and Lei’s algorithm

e Example: pX.pY. T (X,Y) (Tt is monotonic)
e Let {(X) =Y. T(X)Y) so pX.uY. t(X)Y) = puX. {(X)

Emerson and Lei’s algorithm

Example: pX.uY. t(X,Y) (T is monotonic)
Let {(X) = Y. T(X)Y) so puX.uY. T (X)Y) = pX. {(X)

The naive algorithm:
Iterate {(False) until {'(False) = *1(False)
(*(False) = pY. T (C(False),Y)
Iterate T(C'(False),False) until
v(C(False),False) = ©+(T(False),False)
Need O(|S|?) iterations of T

Emerson and Lei’s algorithm

e Example: pX.pY. T (X,Y) (Tt is monotonic)
* {(X) = uY. T(X)Y) UX.HY. T (X,Y) = pX. {(X)

Emerson and Lei’s algorithm

e Example: pX.pY. T (X,Y) (Tt is monotonic)
* {(X) = uY. T(X)Y) UX.HY. T (X,Y) = pX. {(X)
* Note that {-1(False) C T(False) and t |U-continuous

Emerson and Lei’s algorithm

e Example: pX.pY. T (X,Y) (Tt is monotonic)

e {(X)=nY.T(X)Y) uX.uY. T (X,)Y) = pX. {(X)

* Note that {-1(False) C T(False) and t |U-continuous
uY. T (C-Y(False),Y) C Y.t (T(False))Y) (*)

Emerson and Lei’s algorithm

e Example: pX.pY. T (X,Y) (Tt is monotonic)

e {(X)=nY.T(X)Y) uX.uY. T (X,)Y) = pX. {(X)

* Note that {-1(False) C T(False) and t |U-continuous
uY. T (C-Y(False),Y) C Y.t (T(False))Y) (*)

(*YFalse) = pY. Tt (T(False),Y)

Emerson and Lei’s algorithm

e Example: pX.pY. T (X,Y) (Tt is monotonic)

e {(X)=nY.T(X)Y) uX.uY. T (X,)Y) = pX. {(X)

* Note that {-1(False) C T(False) and t |U-continuous
uY. T (C-Y(False),Y) C Y.t (T(False))Y) (*)

(*(False) = uY. T (C(False),Y) = U, t(C(False),False)

Emerson and Lei’s algorithm

e Example: pX.pY. T (X,Y) (T is monotonic)

e {(X)=nY.T(X)Y) uX.uY. T (X,)Y) = pX. {(X)

* Note that {-1(False) C T(False) and t |U-continuous
uY. T (TY(False),Y) C (LY.t (T(False)Y) (*)

(*Y(False) =(uY. T (T(False),Y) = U; U(T(False),False)

Emerson and Lei’s algorithm

e Example: pX.pY. T (X,Y) (T is monotonic)

e {(X)=nY.T(X)Y) uX.uY. T (X,)Y) = pX. {(X)

* Note that {-1(False) C T(False) and t |U-continuous
uY. T (TY(False),Y) C (LY.t (T(False)Y) (*)

(*Y(False) =(uY. T (T(False),Y) = U; U(T(False),False)
by (*) and Lemma

Emerson and Lei’s algorithm

e Example: pX.pY. T (X,Y) (T is monotonic)

e {(X)=nY.T(X)Y) uX.uY. T (X,)Y) = pX. {(X)

* Note that {-1(False) C T(False) and t |U-continuous
uY. T (TY(False),Y) C (LY.t (T(False)Y) (*)

(*Y(False) =(uY. T (T(False),Y) = U; U(T(False),False)
by (*) and Lemma
= U; U(C(False), uY. T (C*(False),Y))

Emerson and Lei’s algorithm

e Example: pX.pY. T (X,Y) (T is monotonic)

e {(X)=nY.T(X)Y) uX.uY. T (X,)Y) = pX. {(X)

* Note that {-1(False) C T(False) and t |U-continuous
[uY T (C-Y(False) Y)] Y. T (T(False)Y) (*)

(*Y(False) =|uY. T (T(False),Y) = U, U(C(False),False)
by (*) and Lemm

= U, v(T(False),|uY. T (T-1(False),Y))

Emerson and Lei’s algorithm

e Example: pX.pY. T (X,Y) (T is monotonic)

e {(X)=nY.T(X)Y) uX.uY. T (X,)Y) = pX. {(X)

* Note that {-1(False) C T(False) and t |U-continuous
[uY T (C-Y(False) Y)] Y. T (T(False)Y) (*)

(*Y(False) =|uY. T (T(False),Y) = U, U(C(False),False)
by (*) and Lemm

= U, v(T(False),|uY. T (T-1(False),Y))
No need to use Y=False! Only O(|S|) iterations of t.

Emerson and Lei’s algorithm

function eval(f, e)

if f = p then return {s | p e L(s)};

if f = @ then return ¢(Q):

if f = g1 A go then return eval(g,.e) Meval(go, €):
if f = g1 V g2 then return eval(g;.¢) Ueval(go, €):

if f = (a)g then return { s Hf [(s,1) € a and t € eval(g, €)] }:
if f = [a]g then return { s | Vt[(s,t) € a implies ¢ € eval(g,e)] }:

if f = pQi.g(Q:) then
forall top-level greatest fixpoint subformulas v@Q;.¢"(Q;) of g
do A[j] := True;
repeat
Qora = Alil:
Ali] := eval(g, e [Qi — Ali]]):
until Ali] = Qa;
return A[il;
end if;

end function

Emerson and Lei’s algorithm

function eval(f, e)

4)

Same as
before

. J
if f = 1Q:.9(Qs) then

forall top-level greatest fixpoint subformulas v@Q;.¢"(Q;) of g
do A[j] := True;

repeat
Qora = Alil:
Ali] := eval(g, e [Qi — Ali]]):

until Ali] = Qa;

return A[il;

end if;

end function

Complexity

e Let d=AD(f)
* Since we need to start from False (True) only
when p and v alternates, the complexity is

O((lA1-1s1)%)

Complexity

Let d=AD(f)

Since we need to start from False (True) only
when p and v alternates, the complexity is

O((lA1-1s1)%)

Clarke et al. (CAV 1994) presented an algorithm
with complexity O((|f]-|S|)9/2*1)

The Model Checking problem for the p-calculus is
in NP (] co-NP

Other fixpoint theorems

Brouwer fixpoint theorem (one-dimensional case)
Every continuous f :[a,b] — [a,b] has a fixpoint

—— identity function

\

fixpoint of f

Other fixpoint theorems

Brouwer fixpoint theorem (one-dimensional case)
Every continuous f :[a,b] — [a,b] has a fixpoint

Other fixpoint theorems

Brouwer fixpoint theorem (one-dimensional case)
Every continuous f :[a,b] — [a,b] has a fixpoint
Proof:

Define g(x)=f(x)-x. Then g(a)=0 and g(b)<0. By the

intermediate value theorem, there is a point € in
[a,b] such that g(&) =0 =f(¢) — ¢.

Thus € is a fixpoint for f.

Other fixpoint theorems

Brouwer fixpoint theorem (generalizations)

* Every continuous function from a closed disk
to itself has a fixpoint

f

Other fixpoint theorems

Brouwer fixpoint theorem (generalizations)

* Every continuous function from a closed ball of
an Euclidean space to itself has a fixpoint

Other fixpoint theorems

Brouwer fixpoint theorem (generalizations)

* Every continuous function from a closed ball of
an Euclidean space to itself has a fixpoint

* Every continuous function from a convex
compact subset K of an Euclidean space to K
itself has a fixpoint

Other fixpoint theorems

Banach Contraction Principle

Say f:R"—R" and d(x,y) = lIx-yll for x,y € R".
Suppose Ja<1 such that d(f(x),f(y)) < a-d(x,y) for
all x,y € R" (f is said to be a contraction). Then:

* f has a unique fixpoint u, and

* [im.__f(y)=u foreachyeR".

|I—00

