
Software Verification using 
Predicate Abstraction and 
Iterative Refinement

© 2006 Carnegie Mellon University

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA  15213

Sagar Chaki

March 16, 2011



This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally 
funded research and development center. The Government of the United States has a royalty-free 
government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any 
manner, and to have or permit others to do so, for government purposes pursuant to the copyright 
license under the clause at 252.227-7013.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in 
written or electronic form without requesting formal permission. Permission is required for any other 
use. Requests for permission should be directed to the Software Engineering Institute at 

2
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

use. Requests for permission should be directed to the Software Engineering Institute at 
permission@sei.cmu.edu. 

NO WARRANTY 

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING 
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO 
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER 
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR 
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. 
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH 
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.



Outline

Overview of Model Checking

Creating Models from C Code: Predicate Abstraction

Eliminating spurious behaviors from the model: Abstraction Refinement

3
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

Eliminating spurious behaviors from the model: Abstraction Refinement

Concluding remarks : research directions, tools etc.



Model Checking

Algorithm for answering queries about behaviors of state machines

• Given a state machine M and a query φ does M � φ ?

Standard formulation:

• M is a Kripke structure

• φ is a temporal logic formula

Computational Tree Logic (CTL)

4
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

— Computational Tree Logic (CTL)

— Linear Temporal Logic (LTL)

• We’ll use (slight) variants

Discovered independently by Clarke & Emerson and Queille & Sifakis
in the early 1980’s



Models: Doubly Labeled State Machines

p p,q

a b
e

q,r

5
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

a c
d

M

Σ(M) = { a,b,c,d,e,f }     AP = { p,q,r }

alphabet propositions



Query 1: State-Event LTL Formulas

Whenever p holds, e happens some time in the future: G ( p⇒ F e )

p p,q

a b
e

q,r

6
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

p p,q

a c
d

q,r

YES!



Query 2: State-Event LTL Formulas

p and r are never true at the same time: G( ¬ p Ç ¬ r )

p p,q

a b
e

q,r

7
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

p p,q

a c
d

q,r

YES!



Query 3: State-Event LTL Formulas

Whenever p holds, a happens some time in the future: G ( p⇒ F a )

p p,q

a b
e

q,r

8
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

p p,q

a c
d

q,r



Query 3: State-Event LTL Formulas

Whenever p holds, a happens some time in the future: G ( p⇒ F a )

p p,q

e

q,r

9
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

p p,q

a c
d

q,r

NO!
counterexample



Scalability of Model Checking

Explicit statespace exploration: early 1980s

• Tens of thousands of states

Symbolic statespace exploration: millions of states

• Binary Decision Diagrams (BDD) : early 1990’s

10
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

• Bounded Model Checking: late 1990’s

— Based on propositional satisfiability (SAT) technology

Abstraction and compositional reasoning

• 10120 to effectively infinite statespaces (particularly for software)



Models of C Code

if (x) {

y = x;

} else {

y = x + 1;
y = x + 1

if (x)

y = x

no yes

x=1 y=0x=0 y=0

x=0 y=0 x=1 y=0

…

11
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

y = x + 1;

}

assert (y);

Program: Syntax Control Flow Graph

assert (y)

Model: Semantics

x=1 y=1x=0 y=1 …

Infinite State



Abstraction

Partition concrete statespace into abstract states

• Each abstract state S corresponds to a set of concrete states s

• We write α(s) to mean the abstract state corresponding to s

• We define γ(S) = { s | S = α(s) }

Fix the transitions existentially

• S→ S’ ⇔    ∃ s ∈ γ (S) . ∃ s’ ∈ γ (S’) . s→ s’

Strong & sometimes 
not computable

12
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

• S→ S’ ⇔    ∃ s ∈ γ (S) . ∃ s’ ∈ γ (S’) . s→ s’

• S→ S’ ⇐    ∃ s ∈ γ (S) . ∃ s’ ∈ γ (S’) . s→ s’

Abstraction is conservative

• If a State/Event-LTL property holds on the abstraction, it also holds on the 
program

• However, the converse is not true: a property that fails on the abstraction 
may still hold on the program

Weak: computable



Example

Concrete State

Abstract State

13
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

Concrete 
Transition

Abstract 
Transition

Abstractly and Concretely 
Unreachable

Abstractly 
Reachable but 

Concretely 
Unreachable



Predicate Abstraction

y = x + 1

if (x)

y = x

no yes
Partition the statespace 

based on values of a 

14
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

assert (y)

based on values of a 

finite set of predicates

on program variables



Predicate Abstraction

y = x + 1

if (x)

y = x

no yes

Actions are

unimportant

15
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

assert (y)

PPPP ≡≡≡≡ ( y == 0 )

¬¬¬¬PPPP

States where y ≠≠≠≠ 0

PPPP

States where y = 0

ERROR



Predicate Abstraction

y = x + 1

if (x)

y = x

no yes
Call SAT 
Checker

16
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

assert (y)

PPPP ≡≡≡≡ ( y == 0 )

¬¬¬¬PPPP

States where y ≠≠≠≠ 0

PPPP

States where y = 0

ERROR



Predicate Abstraction

y = x + 1

if (x)

y = x

no yes

x=0 y=1

x=0 y=1

SAT Checker Query:

y ≠≠≠≠ 0 ∧∧∧∧

x = 0 ∧∧∧∧

x’ = x ∧∧∧∧

y’ = y ∧∧∧∧

y’ ≠≠≠≠ 0

17
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

assert (y)

PPPP ≡≡≡≡ ( y == 0 )

¬¬¬¬PPPP

States where y ≠≠≠≠ 0

y’ ≠≠≠≠ 0

SAT Checker Answer:

SAT and here’s a solution

x=0, y=1, x’=0, y’=1



Predicate Abstraction

y = x + 1

if (x)

y = x

no yes

x=1 y=1

x=1 y=1

SAT Checker Query:

y ≠≠≠≠ 0 ∧∧∧∧

x ≠≠≠≠ 0 ∧∧∧∧

x’ = x ∧∧∧∧

y’ = y ∧∧∧∧

y’ ≠≠≠≠ 0

18
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

assert (y)

P P P P ≡≡≡≡ ( y == 0 )

¬¬¬¬PPPP

States where y ≠≠≠≠ 0

y’ ≠≠≠≠ 0

SAT Checker Answer:

SAT and here’s a solution

x=1, y=1, x’=1, y’=1



Predicate Abstraction

y = x + 1

if (x)

y = x

no yes

x=1 y=1

SAT Checker Query:

y ≠≠≠≠ 0 ∧∧∧∧

x’ = x ∧∧∧∧

y’ = x+1 ∧∧∧∧

19
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

assert (y)

PPPP ≡≡≡≡ ( y == 0 )

¬¬¬¬PPPP

States where y ≠≠≠≠ 0

x=1 y=2

y’ ≠≠≠≠ 0

SAT Checker Answer:

SAT and here’s a solution

x=1, y=1, x’=1, y’=2



Predicate Abstraction

y = x + 1

if (x)

y = x

no yes

x=1 y=1

SAT Checker Query:

y ≠≠≠≠ 0 ∧∧∧∧

x’ = x ∧∧∧∧

y’ = x ∧∧∧∧

20
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

assert (y)

PPPP ≡≡≡≡ ( y == 0 )

¬¬¬¬PPPP

States where y ≠≠≠≠ 0

x=1 y=1

y’ ≠≠≠≠ 0

SAT Checker Answer:

SAT and here’s a solution

x=1, y=1, x’=1, y’=1



Predicate Abstraction

y = x + 1

if (x)

y = x

no yes

No predicates 
about x

21
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

assert (y)

PPPP ≡≡≡≡ ( y == 0 )

¬¬¬¬PPPP

States where y ≠≠≠≠ 0

PPPP

States where y = 0

ERROR



Imprecision due to Predicate Abstraction

Counterexamples generated by model checking the abstract model 
may be spurious, i.e., not concretely realizable

Need to refine the abstraction iteratively by changing the set of 
predicates

22
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

Can infer new set of predicates by analyzing the spurious 
counterexample

• Lot of research in doing this effectively

• Counterexample Guided Abstraction Refinement (CEGAR)

• A.K.A. Iterative Abstraction Refinement

• A.K.A. Iterative Refinement



Model Checking

y = x + 1

if (x)

y = x

no yes

23
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

assert (y)

PPPP ≡≡≡≡ ( y == 0 )

¬¬¬¬ PPPP PPPP

ERROR

φφφφ = GGGG(¬¬¬¬ ERROR)



Model Checking

y = x + 1

if (x)

y = x

no yes

24
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

assert (y)

PPPP ≡≡≡≡ ( y == 0 )

¬¬¬¬ PPPP PPPP

ERROR

φφφφ = GGGG(¬¬¬¬ ERROR)



Model Checking

if (x)

y = x

yes

25
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

assert (y)

PPPP ≡≡≡≡ ( y == 0 )

¬¬¬¬ PPPP PPPP

ERROR



Counterexample Validation

if (x)

y = x

yes
• Simulate counterexample symbolically

• Call SAT Checker to determine if 

26
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

assert (y)

the post-condition is satisfiable

• In our case, Counterexample is spurious

• New set of predicates {x==0,y==0}



Counterexample Validation

if (x)

y = x

yes

SAT Checker Query:

x ≠≠≠≠ 0 ∧∧∧∧

y’ = x ∧∧∧∧

y’ = 0

SAT Checker Answer:

UNSAT and here’s an 

27
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

assert (y)

UNSAT and here’s an 
UNSAT core

{x ≠≠≠≠ 0 , y’ = x , y’ = 0}

• Used to derive new predicate (x=0)

• Different heuristics used in 
practice



Predicate Abstraction: 2nd Iteration

y = x + 1

if (x)

y = x

no yes

28
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

assert (y)

PPPP ≡≡≡≡ ( x == 0 )   QQQQ ≡≡≡≡ ( y == 0 )

¬¬¬¬P  P  P  P  ¬¬¬¬QQQQ

x ≠≠≠≠ 0  y ≠≠≠≠ 0

ERROR

¬¬¬¬P  Q  P  Q  P  Q  P  Q  P  P  P  P  ¬¬¬¬QQQQ P  QP  QP  QP  Q

X = 0  y = 0

ERROR



Predicate Abstraction: 2nd Iteration

y = x + 1

if (x)

y = x

no yes

29
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

assert (y)

PPPP ≡≡≡≡ ( x == 0 )   QQQQ ≡≡≡≡ ( y == 0 )
x ≠≠≠≠ 0  y ≠≠≠≠ 0

ERROR

X = 0  y = 0

ERROR

¬¬¬¬P  P  P  P  ¬¬¬¬QQQQ ¬¬¬¬P  Q  P  Q  P  Q  P  Q  P  P  P  P  ¬¬¬¬QQQQ P  QP  QP  QP  Q



Predicate Abstraction: 2nd Iteration

y = x + 1

if (x)

y = x

no yes

30
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

assert (y)

PPPP ≡≡≡≡ ( x == 0 )   QQQQ ≡≡≡≡ ( y == 0 )
x ≠≠≠≠ 0  y ≠≠≠≠ 0

ERROR

X = 0  y = 0

ERROR

¬¬¬¬P  P  P  P  ¬¬¬¬QQQQ ¬¬¬¬P  Q  P  Q  P  Q  P  Q  P  P  P  P  ¬¬¬¬QQQQ P  QP  QP  QP  Q



Predicate Abstraction: 2nd Iteration

y = x + 1

if (x)

y = x

no yes

31
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

assert (y)

x ≠≠≠≠ 0  y ≠≠≠≠ 0

ERROR

X = 0  y = 0

ERROR

PPPP ≡≡≡≡ ( x == 0 )   QQQQ ≡≡≡≡ ( y == 0 )

¬¬¬¬P  P  P  P  ¬¬¬¬QQQQ ¬¬¬¬P  Q  P  Q  P  Q  P  Q  P  P  P  P  ¬¬¬¬QQQQ P  QP  QP  QP  Q



Predicate Abstraction: 2nd Iteration

y = x + 1

if (x)

y = x

no yes

32
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

assert (y) ERRORERROR

x ≠≠≠≠ 0  y ≠≠≠≠ 0

X = 0  y = 0PPPP ≡≡≡≡ ( x == 0 )   QQQQ ≡≡≡≡ ( y == 0 )

¬¬¬¬P  P  P  P  ¬¬¬¬QQQQ ¬¬¬¬P  Q  P  Q  P  Q  P  Q  P  P  P  P  ¬¬¬¬QQQQ P  QP  QP  QP  Q



Model Checking: 2nd Iteration

y = x + 1

if (x)

y = x

no yes

33
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

assert (y) ERRORERROR

φφφφ = GGGG(¬¬¬¬ ERROR)

SUCCESS

PPPP ≡≡≡≡ ( x == 0 )   QQQQ ≡≡≡≡ ( y == 0 )

¬¬¬¬P  P  P  P  ¬¬¬¬QQQQ ¬¬¬¬P  Q  P  Q  P  Q  P  Q  P  P  P  P  ¬¬¬¬QQQQ P  QP  QP  QP  Q



Iterative Refinement: Summary

Choose an initial set of predicate, and proceed iteratively as follows:

1. Abstraction: Construct an abstract model M of the program using 

the predicate abstraction

2. Verification: Model check M. If model checking succeeds, exit with 
success. Otherwise, get counterexample CE.

34
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

success. Otherwise, get counterexample CE.

3. Validation: Check CE for validity. If CE is valid, exit with failure.

4. Refinement: Otherwise, update the set of predicates and repeat 
from Step 1.



Iterative Refinement

Counterexample-

guided Abstraction 

Refinement for 

Localization 

Reduction, Kurshan, 

Bell Labs
Predicate 

Abstraction
Model Checking

Abstract 
ModelProgram

Initial 
Predicates

No

Yes

System 
OK

35
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

Software Model 

Checking, SLAM 

Project, Microsoft, Ball 

& Rajamani

Refinement for 

Symbolic Model 

Checking, Clarke et al., 

CMU

Predicate 
Refinement

Counterexample 
Valid?

Candidate 
Counter-
example

Better 
Predicates

No Yes

Problem 
Found

SAT Checker



Predicate Abstraction: Optimizations

1. Construct transitions on-the-fly

2. Different set of predicates at different control locations

if (x)

no yes

PPPP ≡≡≡≡ ( x == 0 )

36
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

3. Avoid exponential number of theorem-prover calls

y = x + 1 y = x

no yes

assert (y)

PPPP ≡≡≡≡ ( x == 0 )PPPP ≡≡≡≡ ( x == 0 )

QQQQ ≡≡≡≡ ( y == 0 )



Research Areas

Finding “good” predicates

• Technically as hard as finding “good” loop invariants

• Complexity is linear in LOC but exponential in number of predicates

Combining with static analysis

37
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

• Alias analysis, invariant detection, constant propagation

• Inexpensive, and may make subsequent model checking more efficient

Bounded model checking



Software Model Checking Tools

Iterative Refinement

• SLAM, BLAST, MAGIC, Copper, …

Bounded Model Checking

• CBMC, …

38
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

Others

• Engines: MOPED, BEBOP, BOPPO, …

• Java: Java PathFiner, Bandera, BOGOR, …

• C: CMC, …



Bibliography

Predicate Abstraction: Construction of abstract state graphs with 
PVS, S. Graf, H. Saidi, Proceedings of Computer Aided Verification 
(CAV), 1997

Abstraction Refinement for C: Automatically Validating Temporal 
Safety Properties of Interfaces, T. Ball, S. Rajamani, Proceedings of 

39
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

Safety Properties of Interfaces, T. Ball, S. Rajamani, Proceedings of 
the SPIN Workshop, 2001

Software Model Checking Technology Transfer: SLAM and Static 
Driver Verifier: Technology Transfer of Formal Methods inside 
Microsoft, T. Ball, B. Cook, V. Levin, S. Rajamani, Proceedings of 
Intergrated Formal Methods, 2004




