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Outline

Overview of Model Checking

Creating Models from C Code: Predicate Abstraction

Eliminating spurious behaviors from the model: Abstraction Refinement
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Eliminating spurious behaviors from the model: Abstraction Refinement

Concluding remarks : research directions, tools etc.



Model Checking

Algorithm for answering queries about behaviors of state machines

• Given a state machine M and a query φ does M � φ ?

Standard formulation:

• M is a Kripke structure

• φ is a temporal logic formula

Computational Tree Logic (CTL)
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— Computational Tree Logic (CTL)

— Linear Temporal Logic (LTL)

• We’ll use (slight) variants

Discovered independently by Clarke & Emerson and Queille & Sifakis
in the early 1980’s



Models: Doubly Labeled State Machines

p p,q

a b
e

q,r
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a c
d

M

Σ(M) = { a,b,c,d,e,f }     AP = { p,q,r }

alphabet propositions



Query 1: State-Event LTL Formulas

Whenever p holds, e happens some time in the future: G ( p⇒ F e )

p p,q

a b
e

q,r
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p p,q

a c
d

q,r

YES!



Query 2: State-Event LTL Formulas

p and r are never true at the same time: G( ¬ p Ç ¬ r )

p p,q

a b
e

q,r
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p p,q

a c
d

q,r

YES!



Query 3: State-Event LTL Formulas

Whenever p holds, a happens some time in the future: G ( p⇒ F a )

p p,q

a b
e

q,r
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p p,q

a c
d

q,r



Query 3: State-Event LTL Formulas

Whenever p holds, a happens some time in the future: G ( p⇒ F a )

p p,q

e

q,r
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p p,q

a c
d

q,r

NO!
counterexample



Scalability of Model Checking

Explicit statespace exploration: early 1980s

• Tens of thousands of states

Symbolic statespace exploration: millions of states

• Binary Decision Diagrams (BDD) : early 1990’s
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• Bounded Model Checking: late 1990’s

— Based on propositional satisfiability (SAT) technology

Abstraction and compositional reasoning

• 10120 to effectively infinite statespaces (particularly for software)



Models of C Code

if (x) {

y = x;

} else {

y = x + 1;
y = x + 1

if (x)

y = x

no yes

x=1 y=0x=0 y=0

x=0 y=0 x=1 y=0

…
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y = x + 1;

}

assert (y);

Program: Syntax Control Flow Graph

assert (y)

Model: Semantics

x=1 y=1x=0 y=1 …

Infinite State



Abstraction

Partition concrete statespace into abstract states

• Each abstract state S corresponds to a set of concrete states s

• We write α(s) to mean the abstract state corresponding to s

• We define γ(S) = { s | S = α(s) }

Fix the transitions existentially

• S→ S’ ⇔    ∃ s ∈ γ (S) . ∃ s’ ∈ γ (S’) . s→ s’

Strong & sometimes 
not computable
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• S→ S’ ⇔    ∃ s ∈ γ (S) . ∃ s’ ∈ γ (S’) . s→ s’

• S→ S’ ⇐    ∃ s ∈ γ (S) . ∃ s’ ∈ γ (S’) . s→ s’

Abstraction is conservative

• If a State/Event-LTL property holds on the abstraction, it also holds on the 
program

• However, the converse is not true: a property that fails on the abstraction 
may still hold on the program

Weak: computable



Example

Concrete State

Abstract State
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Concrete 
Transition

Abstract 
Transition

Abstractly and Concretely 
Unreachable

Abstractly 
Reachable but 

Concretely 
Unreachable



Predicate Abstraction

y = x + 1

if (x)

y = x

no yes
Partition the statespace 

based on values of a 
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assert (y)

based on values of a 

finite set of predicates

on program variables



Predicate Abstraction

y = x + 1

if (x)

y = x

no yes

Actions are

unimportant
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assert (y)

PPPP ≡≡≡≡ ( y == 0 )

¬¬¬¬PPPP

States where y ≠≠≠≠ 0

PPPP

States where y = 0

ERROR



Predicate Abstraction

y = x + 1

if (x)

y = x

no yes
Call SAT 
Checker
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assert (y)

PPPP ≡≡≡≡ ( y == 0 )

¬¬¬¬PPPP

States where y ≠≠≠≠ 0

PPPP

States where y = 0

ERROR



Predicate Abstraction

y = x + 1

if (x)

y = x

no yes

x=0 y=1

x=0 y=1

SAT Checker Query:

y ≠≠≠≠ 0 ∧∧∧∧

x = 0 ∧∧∧∧

x’ = x ∧∧∧∧

y’ = y ∧∧∧∧

y’ ≠≠≠≠ 0
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assert (y)

PPPP ≡≡≡≡ ( y == 0 )

¬¬¬¬PPPP

States where y ≠≠≠≠ 0

y’ ≠≠≠≠ 0

SAT Checker Answer:

SAT and here’s a solution

x=0, y=1, x’=0, y’=1



Predicate Abstraction

y = x + 1

if (x)

y = x

no yes

x=1 y=1

x=1 y=1

SAT Checker Query:

y ≠≠≠≠ 0 ∧∧∧∧

x ≠≠≠≠ 0 ∧∧∧∧

x’ = x ∧∧∧∧

y’ = y ∧∧∧∧

y’ ≠≠≠≠ 0

18
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

assert (y)

P P P P ≡≡≡≡ ( y == 0 )

¬¬¬¬PPPP

States where y ≠≠≠≠ 0

y’ ≠≠≠≠ 0

SAT Checker Answer:

SAT and here’s a solution

x=1, y=1, x’=1, y’=1



Predicate Abstraction

y = x + 1

if (x)

y = x

no yes

x=1 y=1

SAT Checker Query:

y ≠≠≠≠ 0 ∧∧∧∧

x’ = x ∧∧∧∧

y’ = x+1 ∧∧∧∧
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assert (y)

PPPP ≡≡≡≡ ( y == 0 )

¬¬¬¬PPPP

States where y ≠≠≠≠ 0

x=1 y=2

y’ ≠≠≠≠ 0

SAT Checker Answer:

SAT and here’s a solution

x=1, y=1, x’=1, y’=2



Predicate Abstraction

y = x + 1

if (x)

y = x

no yes

x=1 y=1

SAT Checker Query:

y ≠≠≠≠ 0 ∧∧∧∧

x’ = x ∧∧∧∧

y’ = x ∧∧∧∧
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assert (y)

PPPP ≡≡≡≡ ( y == 0 )

¬¬¬¬PPPP

States where y ≠≠≠≠ 0

x=1 y=1

y’ ≠≠≠≠ 0

SAT Checker Answer:

SAT and here’s a solution

x=1, y=1, x’=1, y’=1



Predicate Abstraction

y = x + 1

if (x)

y = x

no yes

No predicates 
about x
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assert (y)

PPPP ≡≡≡≡ ( y == 0 )

¬¬¬¬PPPP

States where y ≠≠≠≠ 0

PPPP

States where y = 0

ERROR



Imprecision due to Predicate Abstraction

Counterexamples generated by model checking the abstract model 
may be spurious, i.e., not concretely realizable

Need to refine the abstraction iteratively by changing the set of 
predicates
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Can infer new set of predicates by analyzing the spurious 
counterexample

• Lot of research in doing this effectively

• Counterexample Guided Abstraction Refinement (CEGAR)

• A.K.A. Iterative Abstraction Refinement

• A.K.A. Iterative Refinement



Model Checking

y = x + 1

if (x)

y = x

no yes
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assert (y)

PPPP ≡≡≡≡ ( y == 0 )

¬¬¬¬ PPPP PPPP

ERROR

φφφφ = GGGG(¬¬¬¬ ERROR)



Model Checking

y = x + 1

if (x)

y = x

no yes
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assert (y)

PPPP ≡≡≡≡ ( y == 0 )

¬¬¬¬ PPPP PPPP

ERROR

φφφφ = GGGG(¬¬¬¬ ERROR)



Model Checking

if (x)

y = x

yes
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assert (y)

PPPP ≡≡≡≡ ( y == 0 )

¬¬¬¬ PPPP PPPP

ERROR



Counterexample Validation

if (x)

y = x

yes
• Simulate counterexample symbolically

• Call SAT Checker to determine if 
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assert (y)

the post-condition is satisfiable

• In our case, Counterexample is spurious

• New set of predicates {x==0,y==0}



Counterexample Validation

if (x)

y = x

yes

SAT Checker Query:

x ≠≠≠≠ 0 ∧∧∧∧

y’ = x ∧∧∧∧

y’ = 0

SAT Checker Answer:

UNSAT and here’s an 
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assert (y)

UNSAT and here’s an 
UNSAT core

{x ≠≠≠≠ 0 , y’ = x , y’ = 0}

• Used to derive new predicate (x=0)

• Different heuristics used in 
practice



Predicate Abstraction: 2nd Iteration

y = x + 1

if (x)

y = x

no yes
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assert (y)

PPPP ≡≡≡≡ ( x == 0 )   QQQQ ≡≡≡≡ ( y == 0 )

¬¬¬¬P  P  P  P  ¬¬¬¬QQQQ

x ≠≠≠≠ 0  y ≠≠≠≠ 0

ERROR

¬¬¬¬P  Q  P  Q  P  Q  P  Q  P  P  P  P  ¬¬¬¬QQQQ P  QP  QP  QP  Q

X = 0  y = 0

ERROR



Predicate Abstraction: 2nd Iteration

y = x + 1

if (x)

y = x

no yes
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assert (y)

PPPP ≡≡≡≡ ( x == 0 )   QQQQ ≡≡≡≡ ( y == 0 )
x ≠≠≠≠ 0  y ≠≠≠≠ 0

ERROR

X = 0  y = 0

ERROR

¬¬¬¬P  P  P  P  ¬¬¬¬QQQQ ¬¬¬¬P  Q  P  Q  P  Q  P  Q  P  P  P  P  ¬¬¬¬QQQQ P  QP  QP  QP  Q



Predicate Abstraction: 2nd Iteration

y = x + 1

if (x)

y = x

no yes
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assert (y)

PPPP ≡≡≡≡ ( x == 0 )   QQQQ ≡≡≡≡ ( y == 0 )
x ≠≠≠≠ 0  y ≠≠≠≠ 0

ERROR

X = 0  y = 0

ERROR

¬¬¬¬P  P  P  P  ¬¬¬¬QQQQ ¬¬¬¬P  Q  P  Q  P  Q  P  Q  P  P  P  P  ¬¬¬¬QQQQ P  QP  QP  QP  Q



Predicate Abstraction: 2nd Iteration

y = x + 1

if (x)

y = x

no yes
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assert (y)

x ≠≠≠≠ 0  y ≠≠≠≠ 0

ERROR

X = 0  y = 0

ERROR

PPPP ≡≡≡≡ ( x == 0 )   QQQQ ≡≡≡≡ ( y == 0 )

¬¬¬¬P  P  P  P  ¬¬¬¬QQQQ ¬¬¬¬P  Q  P  Q  P  Q  P  Q  P  P  P  P  ¬¬¬¬QQQQ P  QP  QP  QP  Q



Predicate Abstraction: 2nd Iteration

y = x + 1

if (x)

y = x

no yes
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assert (y) ERRORERROR

x ≠≠≠≠ 0  y ≠≠≠≠ 0

X = 0  y = 0PPPP ≡≡≡≡ ( x == 0 )   QQQQ ≡≡≡≡ ( y == 0 )

¬¬¬¬P  P  P  P  ¬¬¬¬QQQQ ¬¬¬¬P  Q  P  Q  P  Q  P  Q  P  P  P  P  ¬¬¬¬QQQQ P  QP  QP  QP  Q



Model Checking: 2nd Iteration

y = x + 1

if (x)

y = x

no yes

33
Software Verification
Sagar Chaki, March 16, 2011

© 2006 Carnegie Mellon University

assert (y) ERRORERROR

φφφφ = GGGG(¬¬¬¬ ERROR)

SUCCESS

PPPP ≡≡≡≡ ( x == 0 )   QQQQ ≡≡≡≡ ( y == 0 )

¬¬¬¬P  P  P  P  ¬¬¬¬QQQQ ¬¬¬¬P  Q  P  Q  P  Q  P  Q  P  P  P  P  ¬¬¬¬QQQQ P  QP  QP  QP  Q



Iterative Refinement: Summary

Choose an initial set of predicate, and proceed iteratively as follows:

1. Abstraction: Construct an abstract model M of the program using 

the predicate abstraction

2. Verification: Model check M. If model checking succeeds, exit with 
success. Otherwise, get counterexample CE.
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success. Otherwise, get counterexample CE.

3. Validation: Check CE for validity. If CE is valid, exit with failure.

4. Refinement: Otherwise, update the set of predicates and repeat 
from Step 1.



Iterative Refinement

Counterexample-

guided Abstraction 

Refinement for 

Localization 

Reduction, Kurshan, 

Bell Labs
Predicate 

Abstraction
Model Checking

Abstract 
ModelProgram

Initial 
Predicates

No

Yes

System 
OK
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Software Model 

Checking, SLAM 

Project, Microsoft, Ball 

& Rajamani

Refinement for 

Symbolic Model 

Checking, Clarke et al., 

CMU

Predicate 
Refinement

Counterexample 
Valid?

Candidate 
Counter-
example

Better 
Predicates

No Yes

Problem 
Found

SAT Checker



Predicate Abstraction: Optimizations

1. Construct transitions on-the-fly

2. Different set of predicates at different control locations

if (x)

no yes

PPPP ≡≡≡≡ ( x == 0 )
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3. Avoid exponential number of theorem-prover calls

y = x + 1 y = x

no yes

assert (y)

PPPP ≡≡≡≡ ( x == 0 )PPPP ≡≡≡≡ ( x == 0 )

QQQQ ≡≡≡≡ ( y == 0 )



Research Areas

Finding “good” predicates

• Technically as hard as finding “good” loop invariants

• Complexity is linear in LOC but exponential in number of predicates

Combining with static analysis
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• Alias analysis, invariant detection, constant propagation

• Inexpensive, and may make subsequent model checking more efficient

Bounded model checking



Software Model Checking Tools

Iterative Refinement

• SLAM, BLAST, MAGIC, Copper, …

Bounded Model Checking

• CBMC, …
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Others

• Engines: MOPED, BEBOP, BOPPO, …

• Java: Java PathFiner, Bandera, BOGOR, …

• C: CMC, …
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