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Approximate Inference

EM: y-observed variables; x-hidden variables; θ-parameters;

E-step: q(x) = p(x|y, θt−1)
M-step: θt = arg max

θ
Eq(x) [log p(y, x|θ)]

Monte Carlo EM: if the expectation cannot be derived analytically, we
can approximate it by use of sampling methods: first draw a set of

samples xi
i.i.d∼ p(x|y, θt−1), i = 1 . . . N , then approximate the integral by

a finite sum

Eqt(x) [log p(y, x|θ)] ≈ 1

N

N∑
i=1

log p(y, xi|θ)

In M step we maximize this approximated Q-function. This technique is
called Monte Carlo EM.

Monte Carlo methods are a set of computational techniques for 1)

generating samples from a target distribution; 2) approximating the

expectations of some random quantities under this distribution.



Sampling

Sampling is Difficult
If we can write a density function P (X) in an explicit parametric form
and if we can evaluate its value at any point X = x, why is sampling
P (X) still a hard problem?

1. Correct samples from P (X) by definition tend to come from places
where P (X) is big;

2. How can we identify those places where P (X) is big without
evaluating P (X) everywhere?

A Weaker Assumption
We can evaluate P ∗(x), a function that is proportional to the density
function P (x) up to a normalizing constant, i.e., P (x) = P ∗(x)/Z).



Uniform Sampling

Suppose that our goal is to compute the expectation
E[R(x)] =

∫
R(x)dP (x) under the distribution x ∼ P (x).

1. Sample {xn : i = 1 . . . N} points i.i.d from Uni(X).

2. Evaluate P ∗(x) at those points.

3. Estimate the normalizing constant ZN =
∑N

n=1 P ∗(xn).

4. Approximate the expectation by,

EP (R(x)) ≈
N∑

n=1

R(xn)
P ∗(xn)

ZN

Typical set T : a high dimensional distribution is often concentrated in a
few small regions in its state space called “typical set”. Its volume can be
roughly estimated by ‖T ‖ ≈ 2H(X), where H(X) is the entropy of X.

Consider a distribution P (X) in a binary, D dimensional state space. A
uniform sample has a chance of 2H/2D to hit the typical set, therefore
we need roughly O(2D−H) samples for an accurate estimate of E[R(x)].



Importance Sampling

Importance sampling is a direct generalization of Uniform sampling.
Suppose there is a “proposal” density Q(X) from which we can easily
generate samples.

1. Sample {xn : i = 1 . . . N} i.i.d from Q(X).

2. Compute P ∗(x) = ZP (X) for each sample and evaluate their
importance wn = P ∗(xn)/Q(xn).

3. Compute the normalizing constant ZN =
∑N

n=1 wn.

4. Approximate the expectation by

EP (R(x)) ≈
N∑

n=1

R(xn)
wn

ZN

Importance sampling is efficient if Q(X) is close enough to P (X).



Bias-Variance Analysis

Importance sampling estimator is unbiased, i.e. the convergence to
EP (R(x)) is guaranteed. First, note that ZN is an approximation of Z,

ZN =
∑N

n=1 wn =
∑N

n=1 P ∗(xn)/Q(xn)
≈ N

∫
(P ∗(x)/Q(x))Q(X)dx

= N
∫

P ∗(x)dx = N
∫

P (x)Zdx = NZ

EP [R(x)] =
∫

R(x)P (x)dx =
∫ R(x)P (x)

Q(x) Q(x)dx

= EQ[R(x)P (x)
Q(x) ] = EQ[R(x) P∗(x)

ZQ(x) ]

≈ 1
N

∑
n R(xn) P∗(xn)

ZQ(xn)

≈
∑

n R(xn) P∗(xn)
ZN Q(xn)

=
∑N

n=1 R(xn) wn

ZN

However, the variance could be substantially large if Q(X) is not close to

P (X).



Markov Chain Monte Carlo

Direct Monte Carlo Sampling (Uniform/Importance/Rejection)
methods approximate the target density P (X) or the expectation
EP [R(X)] using the samples drawn from some proposal density
Q(X). So we face a paradox here: how can we find a simple Q(X)
that is close to the complex P (X)? Although several remedies are
available, in general these methods will fail if the dimension is high
or if P (X) is too complex.

Markov Chain Monte Carlo Sampling methods are based on a
different strategy: building a sequence of random variables Xt (a
Markov chain) whose distribution converges to P (X) as t →∞.

I Starting point, transition, convergence to P (X)

I Convergence rate



Markov Chain

A Markov chain is a sequence of discrete random variables X0, X1, . . .
(also called a stochastic process) which satisfy Markov property
{Xt; t < T}⊥{Xs; s > T}|XT , i.e., given the present state, the past and
future states are independent.

The behavior of a Markov chain is decided by its initial distribution
µ0 = p(X0), and its transition probability matrix P t. The ij-th element
pt

ij = P (Xt+1 = Si|Xt = Sj) defines the probability of X being in state
Si in t + 1 given that its previous state is Sj .

A Markov chain is called homogeneous or stationary if the transition

probability P (Xt+1|Xt) is independent with t.



Irreducible and Aperiodic

We are interesting in studying such chains:

1. they satisfy some specific properties that lead to useful results;

2. and these properties must be as general as possible to be holden in
most of real-world applications.

A Markov chain is called irreducible if for any two states Si and Sj ,
starting from any one of them, the other state is accessible by the chain
within finite many steps. Sj is accessible from Si (written as Si → Sj)
means ∃n < ∞, P (Xn = Sj |X0 = Si) > 0. We say the state Si is
self-accessible if ∃n < ∞, P (Xn = Si|X0 = Si) > 0, and n is called
return time.

We define the period of a state Si as the greatest common divisor (gcd)
of its all possible return times d(Si) = gcd{n ≥ 1 : (Pn)i,i > 0}. If
d(Si) = 1 then we say the state is aperiodic. A Markov chain is called
aperiodic if all its states are aperiodic.



Convergence of Markov Chain

An irreducible and aperiodic Markov chain converges to an unique
distribution P (Xt) → π(X), as t →∞. This distribution π(X) is called
stationary distribution, because π(Xt+1) =

∑
Xt

P (Xt, Xt+1)π(Xt), or
equally, π = Pπ.

A distribution π(X), X ∈ S = {Sk|k = 1...N} is said to be reversible for
a Markov chain {Xt, µ0, P}, if for any states Si, Sj ∈ S, the probability
mass “flowing” from Si to Sj is same as that of the inverse. That is
called the detailed balance condition,

π(Si)Pij = π(Sj)Pji

If there exists a reversible distribution for a Markov chain, then it is also
the unique stationary distribution of the chain. This is true because∑

Xt
π(Xt)P (Xt, Xt+1) =

∑
Xt

π(Xt+1)P (Xt+1, Xt)
= π(Xt+1)

∑
Xt

P (Xt+1, Xt) = π(Xt+1)



Convergence Rate

If a markov chain converges, the absolute values of all eigenvalues of the
transition probability matrix P must be less than or equal to one.

1. λ = 1: the subspace spanned by these eigenvectors contains all
stationary distributions. When the chain is aperiodic and
irreducible, there is only one stationary distribution.

2. ‖λ‖ = 1: this type of eigenvectors exists only if the Markov chain is
periodic.

3. ‖λ‖ < 1: all other eigenvectors.

Note the stationary distribution π is an eigenvector of P with eigenvalue

= 1, since Pπ = π.



The convergence rate of a Markov chain is controlled by the second
largest eigenvalue of its transition probability matrix. To see that, we can
expand the initial distribution p0 in the eigen-space of the transition
matrix:

p0 = π + λ2v2 + λ3v3 + . . .

where the eigenvalues are ordered as “1 > ‖λ2‖ ≥ ‖λ3‖ ≥ . . .”. After n
steps, the distribution becomes:

pn = Pnp0 = π + λn
2 v2 + λn

3 v3 + . . .

As n increases, pn will converge to π with the rate determined by ‖λ2‖.



Gibbs Sampling

Our goal is to sample P (X), where X = (x1, . . . , xd)
t. Suppose that

P (x) is complex, but the conditionals P (xi|{xj}j 6=i) are tractable and
easy to sample. Gibbs Sampling is a MCMC method that constructers a
Markov Chain X0, X1, . . . with P (xi|{xj}j 6=i) as its one-dimensional
transition prabability.

1. Initialize X0 = (x0
1, . . . , x

0
d).

2. Randomly choose one coordinate i ∈ [1..d] .

3. Draw a sample xt+1
i from the conditional P (xi|{xj}j 6=i) and keep

the value of all other coordinates (xt+1
j = xt

j ,∀j 6= i). Repeat steps
2 ∼ 3.



P (X) is the reversible distribution of the Markov chain X0, X1, . . .
constructed by Gibbs sampler. Suppose we select xi at time t. Let �
denote all other dimensions of X except xi:

P (xi = S1, �)P (xi = S2, �) = P (xi = S2, �)P (xi = S1, �)
⇔ P (xi = S1, �)P (xi = S2|�) = P (xi = S2, �)P (xi = S1|�)
⇔ π(S1, �)PS1,�→S2,� = π(S2, �)PS2,�→S1,�

Therefore P (X) is also the stationary distribution of the chain. In other
words, P (Xt) converges to P (X) as t →∞. Gibbs sampler is easy to
implement and there is no tuning parameters(such as step size in other
MCMC methods like Metroplis Hastings sampling).

Gibbs sampler is useful for sampling graphical models, because the
conditionals are simply specified by the distribution of a node given its
Markov blanket.

If we compute a point estimate X̂t
i that maximizes P (xi|{xj}j 6=i) at

each stage, instead of drawing samples, then we have the Iterated

Conditional Modes(ICM) algorithm.



Random Walk Behaviour

Consider a Markov chain in a integer state space, with initial state
x0 = 0 and transition probabilities,

p(xt+1 = xt) = 0.5
p(xt+1 = xt + 1) = 0.25
p(xt+1 = xt − 1) = 0.25

By symmetry the expected state at time t will also be zero E[Xt] = 0,
and E[(Xt)2] = V ar[Xt] = t/2. So after t steps, the Markov chain has
only travelled a distance that on average is proportional to the square
root of t.

This square root dependence is a typical random walk behavior.



Burn-in Time

The successive samples are usually correlated. The burn-in time is the
number of steps to obtain an independent sample as the state evolves.
Consider approximating a correlated gaussian of two variables, x1 and x2,
with a Gibbs sampler. The guassian having marginal distribution of width
L and conditional distribution of width l. The typical step size is
governed by the conditional distribution so that will be of order l. Since
the state evolves according to a random walk, the number of steps
needed to obtain independent samples is of order (L/l)2.



An illustrative example

Consider a bivariate Gaussian variable,(
x
y

)
∼ N

{(
0
0

)
,

(
1 ρ
ρ 1

)}
Recall the formula conditional Gaussian density

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2)

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21

We can construct a gibbs sampler based on the conditional densities

xt|yt ∼ N (ρyt, (1− ρ2))
yt+1|xt ∼ N (ρxt, (1− ρ2))

It can be shown(
xt

yt

)
∼ N

{(
ρ2t−1y0

ρ2ty0

)
,

(
1− ρ4t−2 ρ− ρ4t−1

ρ− ρ4t−1 1− ρ4t

)}
as t →∞, (xt, yt)T converges to the target distribution at a rate of ρ2.



Other Sampling Techniques

I Rejection Sampling

I Metropolis-Hastings Sampling

I Sequential Importance Sampling

I Hybrid Monte Carlo Sampling

I Slice Sampling

I .......


