
10-701/15-781: Homework 1 Solutions
Eric Xing, Tom Mitchell, Aarti Singh

Carnegie Mellon University
Updated on January 12, 2010

1 KNN and Decision Trees [35 pt, Amr]

1. (10 points) For each of the following figures, we are given a few data points in 2-d space,each
of which is labeled as either positive (blue) or negative (red). Assuming that we are using
L2 distance as a distance metric, draw the decision boundary for 1-NN for each case. For
example, the decision boundary for the dataset in 1.b is given in figure 2.a.

(a) (b) (c) (d)

2. (3 points) In class we have mentioned that NN is a lazy classifier that needs to store all
training instances until test time. However, in this problem we were able to draw a decision
boundary for the 1-NN classifier. If we decided to store this decision boundary instead of
storing all training data, would that always result in an improvement in terms of storage
(memory) requirement for this classifier? [Please answer in no longer than 2-5 sentences]

solutions: In general, the answer is NO. Each data point, say a, will contribute, in the
worst case, a line that bisects the line segment between a and the nearest point to a from
the opposite class. Thus in the worst case, we get a complete Voronoi diagram which won’t
resent in any storage advantage.

3. (2 point) Decision trees are known as batch learners that require the availability of all
training data to build the tree. Thus the arrival of additional training data needs to be
handled carefully. Does KNN suffer from this problem and why?

solutions: NO since there is no training in KNN, thus we just add the new data points to old
ones. All computations are done at test time. Some of you argued that the decision boundary
will change with the arrival of a new point, while this is true, it should be noted that we do
NOT store or compute that decision boundary thus no processing is needed here.

4. (7 points) Now assume that given a dataset D you built a decision tree T . Later on, someone
handed to you an extra training data D′. Describe briefly how could you augment T to get
T2, a decision tree for both D + D′. Clearly T2 might not be as good as a decision tree built
form scratch over D + D′, however, an answer that re-builds the decision tree from scratch
would get no credit. [Please answer in 2 to 5 sentences]

solutions: Classify D′ using T which will result in storing each data point in D′ into a
leaf node of T . Now just apply your decision tree learner to the current state of the tree to
further split leave nodes until the stopping criteria is reached or until you exhaust all possible

1



attributes. Note: you should keep track of the number of positive and negative data points at
each lafe of T from D to be able to augment the tree in this way, however, I did not deduce
points if you don’t state that explicitly.

5. We would like to build a decision tree over the dataset in Figure 1.d. Each data item is
described using two continuous attributes (x, y). One way of handing continuous attributes is
discretization, here we will use binary-discretization and test if a given attribute is ≥ a given
threshold which we will take to be the midpoint. For instance, in Figure 1.d, the range of
both X and Y is [-4,4], thus the test at the first level of the tree is either x ≥ 0 or y ≥ 0. In
the next level, we might test for x ≥ 2,x ≥ −2, y ≥ 2, etc. In other words, we always consider
the current range of both attributes in the training data at a given leaf node, and formulate a
test that would divide this range into tow equal parts. For instance, if we apply this scheme
to the data in Figure 1.b, we get the decision boundary in Figure 2.b (other solutions are
possible as well).

(a) (2 points) What would you expect the training error to be if we apply the above scheme
to the data in Figure 1.d? and why?
solutions: The training error is 0%, since we can always keep splitting each dimension
until we surround each data point in the training set with its own rectangle and thus
resulting in leaves with 100% purity in terms of class labels.

(b) (7 points) To limit the size of the resulting decision tree, we will stipulate that any
single attribute is tested at most twice on any path from the root of the tree to a a leaf
node. With this restriction, draw the decision boundary of a possible decision tree over
the data in Figure 1.d. you don’t need to do any calculations, just draw the decision
boundary that corresponds to a suitable decision tree.

As the questions asked we only split attributes at mid-point. Some of you splitted an
attribute at an arbitrary position. Indeed this might result in a simpler decision tree,
however, it is more expensive to find such an optimal split as we have to test and compare
multiple splitting point.

6. (4 points) Using the intuition you gained in this problem, state one advantage of Decision
Trees over KNN and onde advantage of KNN over Decision Trees.

solutions: There are many. Here is one: it easier to apply KNN in situations where the
data changes over time, while in DT we can trade off hypothesis complexity, and thus storage
requirement, for accuracy, which in some cases, might result in better generalization.

2


