
10-701/15-781, Machine Learning: Homework 1
Eric Xing, Tom Mitchell, Aarti Singh

Carnegie Mellon University
Updated on January 12, 2010

• The assignment is due at 10:30am (beginning of class) on Wed, Jan 20, 2010.

• Separate you answers into three parts, one for each TA, and put them into 3 piles at the table
in front of the class. Don’t forget to put both your name and a TA’s name on each part.

• If you have question about any part, please direct your question to the respective TA who
design the part.

1 Naive Bayes Classifier [30 pt, Field Cady]

In classification problems, we often have several pieces of “evidence”. The problem is that, even if
each piece of evidence is highly informative, taken together they may be redundant.

Imagine a problem where we must classify data points as y1 or y2, based on evidence random
variables X1, X2, ..., Xd. From Bayes rule, we know that P (yi|X1, ..., Xd) ∝ P (yi)P (X1, ..., Xd|yi),
so for classification we just need to compare P (y1)P (X1, ..., Xd|y1) and P (y2)P (X1, ..., Xd|y2).

But calculating P (X1, ..., Xd|yi) requires knowing potentially complicated dependencis between
the Xi. In a Naive Bayes classifier, we simplify the problem by assuming P (X1, ..., Xd|Y ) =
P (X1|Y )× ...×P (Xd|Y ); all the pieces of evidence are conditionally independent. And P (Xi|Y ) is

easy to estimate; if we use the MLE it’s just #(Xi&Y )
#Y . This classifier is “naive” because somebody

might implement it without realizing there could be complicated dependencies, but generally people
are aware of its limitations and use it for its simplicity.

1.1 Why We Use Naive Bayes[15 pt]

A big reason we use Naive Bayes classifiers is that they require less training data than Full Bayes
Classifiers. This problem should give you a “feel” for how great the disparity really is.

Imagine that each observation is an independent instance of the multi-variate random variable
~X = X1, ..., Xd, where the Xi are i.i.d and Bernoulli(.5). To train a Full Bayes classifier, we need
to see every value of ~X “enough” times; training a Naive Bayes classifier only requires seeing both
values of Xi “enough” times. We wonder how many observations are needed until, with probability
1 − ε, we have seen every variable we need to see at least once. To train the classifier well would
require more than this, but for this problem we only require one observation.

1. We start with Full Bayes. Let ~x be a particular value of ~X. Show that after N observations,
the probability we have never seen ~x is ≤ e−N/2d .

2. Show that if more than NFB = 2d ln
(
2d

ε

)
observations have been made, then the probability

that any value of
−→
X has not been seen is ≤ ε.

3. Now on to Naive Bayes. Show that if N observations have been made, the probability that a
given Xi has not been seen as both 0 and 1 is ≤ 1

2N−1 .

4. Show that if more than NNB = 1+log2
(
ε
d

)
observations have been made, then the probability

that any Xi has not been observed in both states is ≤ ε.
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5. Let d = 2 and ε = .1. What are the values of NFB and NNB? What about d = 5? And
d = 10?

1.2 How bad is Naive Bayes?[15 pt]

Clearly Naive Bayes makes what, in many cases, are overly strong assumptions. But even if those
assumptions aren’t true, is it possible that Naive Bayes is still pretty good? This problem uses a
simple example to explore the limitations of Naive Bayes.

Let X1 and X2 be i.i.d. Bernoulli(.5) random variables, and let Y ∈ {1, 2} be some deterministic
function of the Xi ; hence Y can be represented by a 2x2 grid of 1s and 2s. Imagine that we have
trained a Naive Bayes classifier perfectly, so that P (Y |Xi) is known perfectly.

1. Find a function Y for which the Naive Bayes classifier has a 50% error rate. Given the value
of Y, how are X1 and X2 correlated?

2. Show that for every function Y, the Naive Bayes classifier will perform no worse than theone
above.

Hint: there are many Y functions, but because of symmetries in the problem you only need
to analyze a few of them.

2 Multiclass Classification[40pt, Ni Lao]

In this part, you are going to play with the ’The ORL Database of Faces’. Each image is 92 by

Figure 1: 6 sample images from two persons

112 pixels. If we treat the luminance of each pixel as a feature, each sample has 92 ∗ 112 = 10304
real value features, which can be written as a random vector X. We will treat each person as a
class Y (Y = 1...K,K = 10). We use Xi to refer the i-th feature. Given a set of training data
D = {(yl, xl)}, we will train different classification models to classify images to their person id’s.
To simplify notation, we will use P (y|x) in place of P (Y = y|X = x).

We will select our models by 10-fold cross validation: partition the data for each face into 10
mutually exclusive sets (folds). In our case, exactly one image for each fold. Then, for k=1...10,
leave out the data from fold k for all faces, train on the rest, and test on the left out data. Average
the results of these 10 tests to estimate the training accuracy of your classifier.

Beware that we are actually not evaluating the generalization errors of the classifier here. When
evaluating generalization error, we would need an independent test set that is not at all touched
during the whole developing and tuning process.

For your convenience, a piece of code “loadFaces.m” is provided to help loading images as
feature vectors.
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1. KNN [10 pt] Implement the KNN algorithm we learnt from the class. Use L2-norm as the
distance metric. Show your evaluation result here, and compare different values of K.

2. Conditional Gaussian Estimation [5 pt] For a Gaussian model we have

P (y|x) =
P (x|y)P (y)

P (x)

where

P (x|y) =
1

(2π)d/2|Σy|1/2
exp{−(x− µy)′Σ−1(x− µy)/2},

and P (y) = πy. Please write down the MLE estimation of model parameters Σy, µy, and πy.
Here we do not assume that Xi are independent given Y

3. Gaussian Naive Bayes Model [5 pt] Gaussian NB is a form of Guassian model with
assumption that Xi are independent given Y . Please implement the Gaussian NB model.
Show your evaluation result here.

4. Multinomial Logistic Regression [5 pt] From the reading material (Tom’s chapter draft)
you will see a generalization of logistic regression, which allow Y to have more than two
possible values. Write down the objective function, and the first order derivatives of the
multinomial logistic regression model (which is a binary classifier). Here we consider a L2-
norm regularized objective function (with a term λ|θ|2).

5. Gradient Ascent [5 pt] Implement the logistic regression model with gradient ascent. Show
your evaluation result here. Use regularization parameter λ = 0. Hint: The gradient ascent
method (also known as “steepest ascent”) is a first-order optimization algorithm. It optimizes
a function f(x) by

xt+1 = xt + αtf
′(xt),

where αt is called the step size, which is often picked by line search. For example, we can
initialize αt = 1.0. Then set αt = αt/2 while f(xt + αtf

′(xt)) < f(xt). The iteration stops
when the change of x or f(x) is smaller than a threshold (the optimization is converged).
Hint: if the training time of your model is too long, you can consider use just a subset of
the features (e.g. in Matlab X=X(:,1:100:d))

6. Overfitting and Regularization [5 pt] Now we test how regularization can help prevent
overfitting. During cross validation, let’s use m images from each person for training, and
the reset for testing. Report your cross-validated result with varying m = 1...9 and varying
regularization parameter λ.

7. [5 pt] Compare the above methods by training/testing time, and accuracy. Which do you
prefer?

3 Linear Regression[30pt, Amr]

In linear regression, we are given training data of the form, D = (X, y) = {(xi, yi)}, i = 1, 2, ..., N,
where xi ∈ R1×M , i.e. xi = (xi,1, · · · , xi,M )T, yi ∈ R, X ∈ RN×M , where row i of X is xi

T,
and y = (y1, · · · , yN )T. Assuming a parametric model of the form: yi = xi

Tβ + εi, where εi are
noise terms from a given distribution, linear regression seeks to find the parameter vector β that
provides the best of fit of the above regression model. One criteria to measure fitness, is to find β
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that minimizes a given loss function J(β). In class, we have shown that if we take the loss function
to be the square-error, i.e.:

J1(β) =
∑
i

(yi − xi
Tβ)2 = (Xβ − y)T(Xβ − y)

Then
β∗ = (XTX)−1XTy (1)

Moreover, we have also shown that if we assume that ε1, ..., εN are IID and sampled from the
same zero mean Gaussian that is, εi ∼ N (0, σ2), then the least square estimate is also the MLE
estimate for p(y|X;β).

In this problem we will explore several extensions to this basic regression model. The following
facts might be useful for some parts of problem 2.3:

• The column (row) rank of a matrix A is the maximal number of linearly independent columns
(rows) of A.

• If A is m× n then rank(A)≤ min(n,m)

• An n× n matrix A is invertible iff it is full-rank, i.e rank(A)=n.

• if A = CTC, then rank(A)=rank(C).

• if A = B + C, then rank(A) ≤ rank(B)+ rank(C)

Note: for this problem, you really need to show your work in clear steps to get full credit.

3.1 Weighted Least-square

Assume that ε1, ..., εN are independent but each εi ∼ N (0, σ2i ).

(a) [2 points] Write down the formula for calculating the MLE of β.

(b) [4 points]Calculate the MLE of β. [Show your work]

(c) [2 points] Show that the MLE you just calculated is the minimizer of the weighted least
square loss function J2(β) =

∑
i ai(yi − xi

Tβ)2. Express each ai in terms of the variance of
each example.

(d) [2 points] Explain why this weighted least-square estimator is preferred to the non-weighted
version. (hint: Consider the case when σ2i is large and when it is small).

3.2 Laplace noise-model

Assume that ε1, ..., εN are independent and identically distributed according to a Laplace distribu-
tion. That is each εi ∼ Laplace(0, b) = 1

2bexp(− |εi|b ).

(a) [3 points]Provide the loss function J3(β) whose minimization is equivalent to finding the
MLE of β under the above noise model.

(b) [2 points] What is the advantage of this model compared to the standard Gaussian assump-
tion? (hint: think about outliers)
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3.3 Regularization: Ridge Regression

For this part assume that the noise terms are IID distributed according to N (0, σ2). Also assume
that the number of features M is much larger than the number of training instances N (i.e.,
M � N).

(a) [1 point] Explain why in this situation, we can NOT compute β according to (1).

(b) [5 points] Instead of minimizing J1(β), we minimize the following loss function:

JR(β) =
∑
i

(yi − xi
Tβ)2 + λ

M∑
j=1

β2j = (Xβ − y)T(Xβ − y) + λ ‖ β ‖2 (2)

Derive the value of β∗ that minimizes (2) in closed form and show that it is given by
β∗ = (XTX + λI)−1XTy. [please, show you work in details to get full credit]

(c) [2 points] Now revisit your answer to (a) and explain the effect of adding this extra term to
the loss function.

(d) We have shown in class that the minimizer of J1(β) is the same as the MLE estimate under the
IID Gaussian noise assumption. An alternative view is to consider β as a random variable and
specify a prior distribution p(β) on β that expresses our prior belief about the parameters.
Then we estimate β using the MAP (maximum a posteriori) estimate as:

βMAP = arg max
β

N∏
i=1

p(yi|xi;β) p(β) (3)

Assume that β ∼ N (0, τ2I):

(i) [4 points] Show that maximizing (3) results in the same value of β obtained by mini-
mizing (2) for some value of λ. In other words, show that you can express (3) as (2).

(ii) [1 point] Express λ as a function of σ and τ .

(iii) [2 points] If we set τ = ∞, what prior belief do we have over β, and how does this
affect the loss function?
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