10-701/15-781, Machine Learning: Homework 2
 Eric Xing, Tom Mitchell, Aarti Singh
 Carnegie Mellon University
 Updated on January 12, 2010

1 Multiclass Classification[40pt, Ni Lao]

1. KNN $[10 \mathrm{pt}]$
2. Conditional Gaussian Estimation [5 pt]

Hint: These two identities might be useful

$$
\begin{align*}
\frac{\partial x^{\prime} A x}{\partial A} & =x x^{\prime} \tag{1}\\
\frac{\partial \log |A|}{\partial A^{-1}} & =-A^{\prime} \tag{2}
\end{align*}
$$

Solution: Assume there are n training samples, and define $n_{y}=\sum_{l: y^{l}=y} 1$. To model $P(y)$, we have objective function

$$
\begin{align*}
L_{0}(\pi) & =\sum_{l} \log P\left(y^{l} ; \pi\right) \tag{3}\\
& =\sum_{y} n_{y} \log \pi_{y} \tag{4}
\end{align*}
$$

with constraint

$$
\begin{equation*}
\sum_{y} \pi_{y}=\mathbf{1}^{\prime} \pi=1 \tag{5}
\end{equation*}
$$

where π is an column vector of π_{y}. Use the Lagrangian multiplier method

$$
\begin{align*}
\frac{\partial L_{0}}{\partial \pi}-\lambda \frac{\partial \mathbf{1}^{\prime} \boldsymbol{\pi}-1}{\partial \pi} & =0 \tag{6}\\
\mathbf{1}^{\prime} \pi & =1 \tag{7}
\end{align*}
$$

, then we have $\pi_{y}=n_{y} / n$.
To model $P(\mathrm{x} \mid y)$, we have objective function

$$
\begin{align*}
L_{y}\left(\Sigma_{y}, \mu_{y}\right) & =\sum_{l: y^{l}=y} \log P\left(\mathrm{x}^{l} \mid y^{l} ; \Sigma_{y}, \mu_{y}\right) \tag{8}\\
& =\sum_{l: y^{l}=y}\left\{-\frac{1}{2} \log \left|\Sigma_{y}\right|-\left(\mathrm{x}^{l}-\mu_{y}\right)^{\prime} \Sigma^{-1}\left(\mathrm{x}^{l}-\mu_{y}\right) / 2\right\}+C, \tag{9}
\end{align*}
$$

where C is a constant. Set its gradients to zeros

$$
\begin{align*}
\frac{\partial L_{y}}{\partial \mu_{y}} & =2 \sum_{l: y^{l}=y}\left\{\Sigma^{-1} x^{l}-\Sigma^{-1} \mu_{y}\right\}=0 \tag{10}\\
\frac{\partial L_{y}}{\partial \Sigma^{-1}} & =\frac{1}{2} \sum_{l: y^{l}=y}\left\{\Sigma^{\prime}-\left(x^{l}-\mu_{y}\right)\left(\mathrm{x}^{l}-\mu_{y}\right)^{T}\right\}=0 \tag{11}
\end{align*}
$$

then we have

$$
\begin{align*}
\mu_{y} & =\frac{1}{n_{y}} \sum_{l: y^{l}=y} \mathrm{x}^{l} \tag{12}\\
\Sigma_{y} & =\frac{1}{n_{y}} \sum_{l: y^{l}=y}\left(\mathrm{x}^{l}-\mu_{y}\right)\left(\mathrm{x}^{l}-\mu_{y}\right)^{T} \tag{13}
\end{align*}
$$

3. Gaussian Naive Bayes Model [5 pt]

$$
\begin{equation*}
\Sigma_{y, i, i}=\frac{1}{n_{y}} \sum_{l: y^{l}=y}\left(\mathrm{x}_{i}^{l}-\mu_{y, i}\right)^{2} \tag{14}
\end{equation*}
$$

4. Multinomial Logistic Regression [5 pt]

For multinomial logistic regression

$$
\begin{equation*}
P(y \mid x ; \theta)=\frac{\exp \left(\theta_{y}^{T} \mathrm{x}\right)}{\sum_{i=1 . . K} \exp \left(\theta_{i}^{T} \mathrm{x}\right)} \tag{15}
\end{equation*}
$$

where θ_{y} is the weight vector of the y-th class, and θ is a concatenation of all $\theta_{y} \mathrm{~s}$. We assume that θ_{K} is a zero vector (made up of 0 s), and x is already augmented by a bias feature, which always has value 1.0. Define $p^{l}=P\left(y^{l} \mid x^{l} ; \theta\right)$. Then we have

$$
\begin{align*}
L(\theta) & =\sum_{l} \log p^{l}-\lambda|\theta|_{2} / 2 \tag{16}\\
& =\sum_{l}\left\{\theta_{y^{l}}^{T} \mathrm{x}^{l}-\log \sum_{i=1 . . K} \exp \left(\theta_{i}^{T} \mathrm{x}^{l}\right)\right\}-\lambda \theta^{T} \theta / 2 \tag{17}\\
\frac{d L(\theta)}{d \theta_{y}} & =\sum_{l}\left(\delta\left(y^{l}=y\right)-p^{l}\right) \mathrm{x}^{l}-\lambda \theta_{y} \tag{18}
\end{align*}
$$

5. Gradient Ascent [5 pt]
6. Overfitting and Regularization [5 pt]
7. $[5 \mathbf{p t}]$
