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1 Linear Regression[30pt, Amr]

In linear regression, we are given training data of the form, D = (X, y) = {(xi, yi)}, i = 1, 2, ..., N,
where xi ∈ R1×M , i.e. xi = (xi,1, · · · , xi,M )T, yi ∈ R, X ∈ RN×M , where row i of X is xi

T,
and y = (y1, · · · , yN )T. Assuming a parametric model of the form: yi = xi

Tβ + εi, where εi are
noise terms from a given distribution, linear regression seeks to find the parameter vector β that
provides the best of fit of the above regression model. One criteria to measure fitness, is to find β
that minimizes a given loss function J(β). In class, we have shown that if we take the loss function
to be the square-error, i.e.:

J1(β) =
∑
i

(yi − xi
Tβ)2 = (Xβ − y)T(Xβ − y)

Then
β∗ = (XTX)−1XTy (1)

Moreover, we have also shown that if we assume that ε1, ..., εN are IID and sampled from the
same zero mean Gaussian that is, εi ∼ N (0, σ2), then the least square estimate is also the MLE
estimate for p(y|X;β).

In this problem we will explore several extensions to this basic regression model. The following
facts might be useful for some parts of problem 2.3:

• The column (row) rank of a matrix A is the maximal number of linearly independent columns
(rows) of A.

• If A is m× n then rank(A)≤ min(n,m)

• An n× n matrix A is invertible iff it is full-rank, i.e rank(A)=n.

• if A = CTC, then rank(A)=rank(C).

• if A = B + C, then rank(A) ≤ rank(B)+ rank(C)

Note: for this problem, you really need to show your work in clear steps to get full credit.

1.1 Weighted Least-square

Assume that ε1, ..., εN are independent but each εi ∼ N (0, σ2i ).

(a) [2 points] Write down the formula for calculating the MLE of β.

Solution: yi = xi
Tβ + εi, thus p(yi|xi, β) = N (xi

Tβ, σ2i ). Thus the formula for the MLE of
β is:
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βMLE = arg max
β

log
∏
i

p(yi|xi, β)

= arg max
β

∑
i

log p(yi|xi, β)

= arg max
β

∑
i

log

(
1√

2πσ2i

exp(−(yi − xi
Tβ)2

2σ2i
)

)
(2)

(b) [4 points]Calculate the MLE of β. [Show your work]

Solution: Stating form (2)

βMLE = arg max
β

∑
i

log

(
1√

2πσ2i

exp(−(yi − xi
Tβ)2

2σ2i
)

)

= arg max
β

∑
i

log
1√

2πσ2i

+ log

(
exp(−(yi − xi

Tβ)2

2σ2i
)

)

But first term does not involve β thus we can ignore it.

βMLE = arg max
β

∑
i

log

(
exp(−(yi − xi

Tβ)2

2σ2i
)

)

= arg max
β

∑
i

−(yi − xi
Tβ)2

2σ2i

= arg min
β

∑
i

(yi − xi
Tβ)2

σ2i
(3)

Note that we can remove the 2 in the denominator. Now we write the (3) in matrix notation.
If we let W be a diagonal matrix with diagonal entry wii = 1

σ2
i
, we get:

βMLE = arg min
β

(y −Xβ)TW(y −Xβ) (4)

Now we just take derivatives to get βMLE as follows:

0 =
∂

∂β

(
(y −Xβ)TW(y −Xβ)

)

=
∂

∂β

(
yTWy − yTWXβ − βTXTWy + βTXTWXβ

)

For any scalar z, z = zT , therefore,
(

(βTXT)(Wy)
)T

= yTWTXβ = yTWXβ since WT =

W as W is diagonal. Now putting this back in (5) and taking derivatives, we get:
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0 =
∂

∂β

(
yTWy − 2βTXTWy + βTXTWXβ

)
0 = −2XTWy + 2XTWXβ

Which means that βMLE = (XTWX)−1(XTWy).

(c) [2 points] Show that the MLE you just calculated is the minimizer of the weighted least
square loss function J2(β) =

∑
i ai(yi − xi

Tβ)2. Express each ai in terms of the variance of
each example.

Solution: We have already shown that in (3) and form (3) we have ai = 1
σ2
i

(d) [2 points] Explain why this weighted least-square estimator is preferred to the non-weighted
version. (hint: Consider the case when σ2i is large and when it is small).

Solution: When the variance σ2i is high, then the data point (xi, yi) might be an outlier as
the noise term εi can be arbitrarily large. In this case, we don’t want βMLE to be biased to
accommodate such outliers especially when using the squared error loss. The weighted least
square formulation in this problem achieves that by weighting the contribution of each data
point to the objective function by the inverse of the variance term. Therefore, points with
large variance won’t contribute much to the loss function and can be safely ignored or at least
being given less importance when optimizing for β.

1.2 Laplace noise-model

Assume that ε1, ..., εN are independent and identically distributed according to a Laplace distribu-
tion. That is each εi ∼ Laplace(0, b) = 1

2bexp(− |εi|b ).

(a) [3 points]Provide the loss function J3(β) whose minimization is equivalent to finding the
MLE of β under the above noise model.

Solution: yi = xi
Tβ + εi, thus p(yi|xi, β) = Laplace(xi

Tβ, b). Thus the formula for the MLE
of β is:
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βMLE = arg max
β

log
∏
i

p(yi|xi, β)

= arg max
β

∑
i

log p(yi|xi, β)

= arg max
β

∑
i

log

(
1

2b
exp(−|yi − xi

Tβ|
b

)

)

= arg max
β

∑
i

log
1

2b
+ log

(
exp(−|yi − xi

Tβ|
b

)

)

= arg max
β

∑
i

−|yi − xi
Tβ|

b

= arg min
β

∑
i

|yi − xi
Tβ|

b

=
1

b
arg min

β

∑
i

|yi − xi
Tβ|

= arg min
β

∑
i

|yi − xi
Tβ|

Thus J3(β) =
∑

i |yi − xi
Tβ|

(b) [2 points] What is the advantage of this model compared to the standard Gaussian assump-
tion? (hint: think about outliers)

Solution: If a point is an outlier then the error in predicting this point given the correct
β is much larger in the Gaussian assumption (as it is squared) than in this model (as it is
not squared). Therefore, outliers will affect the estimation of β in the Gaussian model more
than in the Laplace model. From a modeling point of view, since yi = xi

Tβ + εi, if y is an
outlier, then the model can explain that by making εi large to accommodate for the difference.
This is possible in the Laplace model, since the Laplace distribution has heavier tails than
the Gaussian distribution. To relate this to part 1 , to achieve the same effect, we assumed
that every example has a different variance. However, these variances have to be estimated
(using an EM-like algorithm) since they affect the optimization problem, while in the Laplace
model, we don’t have to do that. On the other hand, optimizing the L1 loss is harder than
optimizing J2 as the L1 function is not smooth.

1.3 Regularization: Ridge Regression

For this part assume that the noise terms are IID distributed according to N (0, σ2). Also assume
that the number of features M is much larger than the number of training instances N (i.e.,
M � N).

(a) [1 point] Explain why in this situation, we can NOT compute β according to (1).

Solutoin: In this case, rank(XTX) = rank (X) which is smaller than min(M,N) = N which
is << M thus the matrix XTX, which is M×M , is not full rank and thus can not be inverted.
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(b) [5 points] Instead of minimizing J1(β), we minimize the following loss function:

JR(β) =
∑
i

(yi − xi
Tβ)2 + λ

M∑
j=1

β2j = (Xβ − y)T(Xβ − y) + λ ‖ β ‖2 (5)

Derive the value of β∗ that minimizes (5) in closed form and show that it is given by
β∗ = (XTX + λI)−1XTy. [please, show you work in details to get full credit]

Solution:

∂

∂β
JR(β) =

∂

∂β

(
(Xβ − y)T(Xβ − y) + λβTβ

)

=
∂

∂β

(
yTy − 2βTXTy + βTXTXβ + λβTβ

)
= −2XTy + 2XTXβ + 2λβ (6)

Equating (6) with 0 and solving for β we get:

β∗ = (XTX + λI)−1XTy. Note that λβ = λIβ.

(c) [2 points] Now revisit your answer to (a) and explain the effect of adding this extra term to
the loss function.

Solution: rank(XTX + λI) ≤ rank(XTX) + rank(λI) = N +M . Thus for a proper value of
λ, (XTX+λI) is full rank and can be inverted. To see this, note that if two columns in XTX
were linearly dependent, then (λI) adds the same value (λ) but to different components of
these columns, thus they become linearly independent in (XTX + λI).

(d) We have shown in class that the minimizer of J1(β) is the same as the MLE estimate under the
IID Gaussian noise assumption. An alternative view is to consider β as a random variable and
specify a prior distribution p(β) on β that expresses our prior belief about the parameters.
Then we estimate β using the MAP (maximum a posteriori) estimate as:

βMAP = arg max
β

N∏
i=1

p(yi|xi;β) p(β) (7)

Assume that β ∼ N (0, τ2I):

(i) [4 points] Show that maximizing (7) results in the same value of β obtained by mini-
mizing (5) for some value of λ. In other words, show that you can express (7) as (5).

Solution:
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βMAP = arg max
β

log
∏
i

p(yi|xi
T, β)p(β|τ)

= arg max
β

∑
i

log p(yi|xi
T, β) + log p(β|τ)

= arg max
β

∑
i

log

(
1√

2πσ2
exp(−(yi − xi

Tβ)2

2σ2
)

)
+ log

(
1√

2πτ2
exp
(
− βTβ

2τ2
))

= arg max
β

∑
i

log
1√

2πσ2
+ log

(
exp(−(yi − xi

Tβ)2

2σ2
)

)
+ log

1√
2πτ2

+ log

(
exp
(
− βTβ

2τ2
))

= arg max
β

∑
i

(
− (yi − xi

Tβ)2

2σ2

)
− βTβ

2τ2

= arg min
β

∑
i

(
(yi − xi

Tβ)2

2σ2

)
+
βTβ

2τ2

=
1

2σ2
arg min

β

∑
i

(yi − xi
Tβ)2 +

σ2

τ2
βTβ

= arg min
β

∑
i

(yi − xi
Tβ)2 +

σ2

τ2
βTβ

Which is the same as (5).

(ii) [1 point] Express λ as a function of σ and τ .

Solution: λ = σ2

τ2
.

(iii) [2 points] If we set τ = ∞, what prior belief do we have over β, and how does this
affect the loss function?

Solution: Then this is equivalent to a uniform prior belief over all values of β. In other
words, all values β are equally likely under this prior. Equivalently, this means that
λ = 0 and the loss function is not regularized at all.
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