
10-701/15-781, Machine Learning: Homework 3
Eric Xing, Tom Mitchell, Aarti Singh

Carnegie Mellon University
Updated on February 7, 2010

• The assignment is due at 10:30am (beginning of class) on Mon, Feb 22, 2010.

• Separate you answers into three parts, one for each TA, and put them into 3 piles at the table
in front of the class. Don’t forget to put both your name and a TA’s name on each part.

• If you have question about any part, please direct your question to the respective TA who
design the part.

• Submit your code to HW3 in the blackboard http : //www.cmu.edu/blackboard

1 Linear regression, and bias-variance trade-off[20pt, Ni Lao]

In linear regression, we are given training data of the form, D = (X, y) = {(xi, yi)}, i = 1, 2, ..., n,
where xi ∈ R1×p, i.e. xi = (xi,1, · · · , xi,p)T, yi ∈ R, X ∈ Rn×p, where n is number of samples, p is
number of features. Each row i of X is xi

T, and y = (y1, · · · , yn)T.
Least square regression seeks to find β that minimizes the square-error, i.e.:

J1(β) =
∑

i

(yi − xi
Tβ)2 = (Xβ − y)T(Xβ − y).

It has an unique solution
β̂ = (XTX)−1XT y. (1)

where β̂ is called an estimator of β. An “estimator” is a statistic of your data (i.e. a function of
your data) which is intended to approximate a parameter of the underlying distribution. There
is a research field called “estimation theory”, which deals with constructing estimators that have
nice properties, like converging to the correct parameter given enough data, and giving confidence
intervals. In this problem we will explore how regularization affects the bias and variance of the
least square regression model.

Let’s assume that p < n, and XTX is invertible. Also assume that our data is generated from a
true model of the form: yi = xi

Tβ + εi (or in matrix form y = Xβ + ε), where ε1, ..., εn are IID and
sampled from a Gaussian with 0 mean and constant standard deviation, that is εi ∼ N (0, σ2) (or
ε ∼ N (0, σ2I)). Relations among these quantities can be summarized by the figure below, where
quantities with circles are random variables. Here we assume that X is ”deterministic” and fixed.

1

1.1 Least square regression [4 pt]

Show that β̂ has Gaussian distribution and write down its mean µ and covariance matrix Σ. You
will see that least square regression is unbiased E[β̂] = β

Hint: if ε ∼ N (0, I) then Aε ∼ N (0, AAT), where A is any matrix.
Hint: notation is simpler, if you do a Singular Value Decomposition (SVD) to X first.

1.2 Ridge regression [4pt]

The solution to ridge regression is

β̂ = (XTX + λI)−1XT y. (2)

Show that β̂ has Gaussian distribution and write down its mean µ and covariance matrix Σ. You
will see that ridge regression is biased E[β̂] 6= β.

1.3 The bias variance trade-off [4 pt]

Now let’s be real Bayesians, and believe that the true parameter β itself is a random variable. Let’s
assume that β ∼ N (0, α2I). Apart from our training data D = (X, y), we also generate a set of
testing data D∗ = (X, y∗). It has exactly the same x values X as training data, but the y values
are regenerated independently. Again we can decompose them as y∗ = Xβ + ε∗. Relations among
these quantities can be summarized by the figure below.

Now we want see how should we choose the regularization parameter λ so that the risk of ridge
regression on test data D∗ is minimized.

As a first step, let’s express e(λ) = ŷ∗ − y∗, the test errors of ridge regression on D∗, in terms
of β, ε, and ε∗. You will see three terms: one grows as λ grows corresponding to the bias of our
estimation, one diminishes as λ grows corresponding to the variance of our estimation, and one
that is independent of λ corresponding to the irreducible error.

1.4 [4 pt]

Express the risk of ridge regression R(λ) = E[e(λ)T e(λ)] =
∑

i E[e2
i (λ)] in terms of α, σ, and λ.

Hint: if a ∼ N (0, ASAT), where A is unitary, S is diagonal, then E[aT a] =
∑

i Si,i = tr(S).
Hint: if a and b are independent random vectors with zero means, then E[(a + b)T (a + b)] =

E[aT a] + E[bT b]

1.5 [4 pt]

Find the optimal regularization parameter λ, that minimizes the risk of ridge regression on test
data D∗. You will see that the larger the magnitude of data noise ε (controlled by σ) and the

2

smaller the magnitude of the true parameter β (controlled by α) the larger regularization is needed
to achieve the minimum risk.

Hint: for simplicity, you can assume that the number of features p = 1. The result should still
hold for p > 1.

Hint: the result is an expression of σ and α.

2 Neural Networks: Learning and Representation [30 pt, Amr]

As we discussed in class, one important question we need to ask when learning about a new classifier
is what kind of decision boundaries can this classifier learn. We have explored this question in HW1
for the case of 1-KNN and decision trees, and showed that both of them can vary their decision
boundary either on a data-driven way for 1-KNN or based on the size of the tree for decision trees.
In this question we will explore these issues for the case of a 2-layer Neural Network (NN). Recall
from class that the input aj for a node j is given by:

aj =
∑

i

wjioi

Where, wji is the weight from unit i to unit j, and oi is the activatoin/output of unit i. The
activation of unit i is the output of a logistic function in this problem (although any differentiable
function is allowed):

oi = σ(ai) =
1

1 + exp(−ai)

2.1 Decision Boundary

Consider the classification task shown in figure 1 where ’+’ and ’o’ denotes positive and negative
classes, respectively. This data is available in the file data.mat, also please read NN readme.txt
which contains a simple code to draw the figure below. For this part of the problem, you
might want to write really a few lines of matlab code to evaluate the network and get the necessary
plots. Consider the 2-layer network in Figure 1. This network has 9 weights and a logistic activation
function for both the hidden and output layers.

(1) [2 points] For each of the following classifiers, state with a one-line explanation whether or
not they can learn the decision boundary illustrated in Figure 1: 1-KNN, decision tree, Naive
Bayes, and logistic regression.

(2) [1 point] Express o1 and o2 in terms of x1, x2, w10, w11, w12, w20, w21, w22.

(3) [1 point] Write down the decision rule for this 2-layer NN classifier.

(4) Consider the following set of weights: w10 = −0.8;w11 = 0.8;w12 = 0.1;w20 = 0.3;w21 =
0.3;w22 = −0.4;w31 = 1.0;w32 = −1.0;w30 = 0.2;

(a) [2 points] Draw the representation of the data after the hidden layer, i.e. your di-
mensions will be o1 and o2, and you should label each point with its ground-truth label.
State your observation.

(b) [2 points] Draw the classification result for this 2-layer NN, i.e. re-draw the scatter
plot in Figure 1 but label each point as classified by the 2-layer NN. Compare to the
ground-truth and state your observations.

3

(a) (b)

Figure 1: (a) 2-layer NN with logistic activation functions at both the hidden and output layers.
(b) A 2-class dataset: ’+’ and ’o’ marks positive and negative labels respectively.

(c) [2 points] Overlay the decision boundary explicitly over the curve your drew in part
(a) in terms of o1 and o2. State your observations.

(e) Lets assume that we removed the logistic function form the hidden layer ONLY and
instead used an identity function, i.e o1 = a1 and o2 = a2, while maintaining the same
weight values.

(i) [2 points] repeat (a) and (b) and state your observations.
(ii) [2 points] Can you tweak the weights in this case to learn the correct decision

boundary? If yes, then find such weights and repeat (i), if NO, then re-express the
network in this case using a simpler network (or classifier) and argue why it can not
learn this decision boundary.

2.2 Backpropagation

In class we discussed that in order to train a NN we need to define an error function E[W] (such as
the squared error) that can be minimized using the backpropagation algorithm to find the network
weights. We also discussed that this error function can be driven using the M(C)LE principle based
on a signal plus noise interpretation in the context of a regression setting. Consider a classification
task with Data D = (X, t) = {(xi, ti)}, i = 1, 2, ..., N,. For example, xi might be a face image, and
ti is a binary label equals 0 if the face is for a male and 1 if the face is for a female. Now consider
a 2-layer NN based on logistic threshold units at both the hidden and output layers. If we let y
denote the real-valued final output of the network, where y ∈ [0, 1], then we might naturally wish
to interpret this output as the probability that the boolean class label t takes on the value t = 1;
that is, y = P (t = 1|x;W). In this case, as we have done in logistic regression, it is natural to find
the NN weights W using the M(C)LE principle as follows:

WMLE = arg max
w

N∏
i=1

p(ti|xi;w) (3)

4

(1) [2 points] Show that maximizing (3) is equivalent to minimizing the cross-entropy error
function given by:

E[W] = −
N∑

i=1

[
ti ln yi + (1− ti)ln(1− yi)

]
where, yi is the output of the network corresponding to example i.

Now we will drive the weight update rule using a stochastic gradient decent using a random
example n at each step, thus we will add n to the error function, En to make this dependency
explicit. The generic update rule for a weight wji coming from unit (or input i) to unit j is given
by:

wnew
ji = wold

ji − η
∂En

∂wold
ji

where η is the learning rate. Lets denote the output unit as k, therefore, ok = y. For this part of
the problem, assume there are no bias terms.

(2) [2 points] Define δj = ∂En
∂aj

. Show that ∂En
∂wji

= δjoi

(3) [4 points] Show that for the output unit δk = y − t, where t is the correct label, and
ok = y ∈ [0, 1] is the network prediction.

(4) [2 points] Write down the update rule for a weight between the output unit k and a hidden
unit j.

(5) [4 points] For a hidden unit j, use the chain rule to show that, δj = ∂En
∂aj

= σ(aj)(1 −
σ(aj))(y − t)wkj . [Hint: ∂En

∂aj
= ∂En

∂ak

∂ak
∂aj

, where k is the output unit.]

(6) [2 points] Write down the update rule for a weight between the hidden unit j and input xi.

3 Clustering [50 pt, Field Cady]

Clustering means partitioning your data into “natural” groups, usually because you suspect points
in a cluster have something in common. The EM algorithm and k-means are two common algorithms
(there are many others). This problem will have you implement these algorithms, and explore their
limitations.

The datasets for you to use are available online, along with a Matlab script for loading them.
Ask me if you’re having any trouble with it. Instructions for submitting code will be posted later.

You can use any language for your implementations, but you may not use libraries which
already implement these algorithms (you can, however, use fancy built-in mathematical functions,
like Matlab or Mathematica provide).

3.1 K-means : implementation [15 pt]

In k-means clustering, the goal is to pick your clusters such that you minimize the sum, over all
points x, of |x − cx|2, where cx is the mean of the cluster containing x; this should remind you of

5

least-squares line fitting. K-means clustering is NP-hard, but in practice Lloyd’s algorithm, also
called the “k-means algorithm”, works extremely well.

Implement Lloyd’s algorithm, and apply it to the datasets provided. Plot each dataset, indi-
cating for each point which cluster is was placed in.

3.2 K-means : evaluation [5 pt]

How well do you think k-means did for each dataset? Explain, intuitively, what (if anything) went
badly and why.

3.3 EM Algorithm : implementation [25 pt]

A disadvantage of k-means is that the clusters cannot overlap at all. Expectation maximization
deals with this by only probabilistically assigning points to clusters.

The thing to understand about the EM algorithm is that it’s a special case of MLE; you have
some data, you assume a parameterized form for the probability distribution (a mixture of Gaussians
is, after all, an exotic parameterized probability distribution), and then you pick the parameters
to maximize the probability of your data. But the usual MLE approach, solving ∂P (X|θ)

∂θ = 0, isn’t
tractable, so we use the iterative EM algorithm to find θ. The EM algorithm is guaranteed to
converge to a local optimum (I’m resisting the temptation to make you prove this :)).

Implement the EM algorithm, and apply it to the datasets provided. Assume that the data is
a mixture of two Gaussians; you can assume equal mixing ratios. What parameters do you get for
each dataset? Plot each dataset, indicating for each point which cluster it was placed in.

3.4 EM Algorithm : evaluation [5 pt]

Modeling dataset 2 as a mixture of gaussians is unrealistic, but the EM algorithm still gives an
answer. Is there anything “fishy” about your answers which suggests something is wrong?

We usually do the EM algorithm with mixed Gaussians, but you can use any distributions; a
Gaussian and a Laplacian, three exponentials, etc. Write down the formula for a parameterized
probability density suitable for modeling “ring-shaped” clusters in 2D; don’t let the density be 0
anywhere. You don’t need to work out the EM calculations for this density, but you would if this
came up in your research.

3.5 Extra Credit [5 pt]

With high-dimensional data we cannot perform visual checks, and problems can go unnoticed if we
assume nice round, filled clusters. Describe in words a clustering algorithm which works even for
weirdly-shaped clusters with unknown mixing ration. However, you can assume that the clsuters
do not overlap at all, and that you have a LOT of training data. Discuss the weaknesses of your
algorithm. Don’t work out the details for this problem; just convince me that you know the basic
idea and understand its limitations. Please keep your answers concise.

Hint : Nothing we’ve covered so far in class will help you here; think about graphs...

6

