
1 Neural Networks: Learning and Representation [30 pt, Amr]

As we discussed in class, one important question we need to ask when learning about a new classifier
is what kind of decision boundaries can this classifier learn. We have explored this question in HW1
for the case of 1-KNN and decision trees, and showed that both of them can vary their decision
boundary either on a data-driven way for 1-KNN or based on the size of the tree for decision trees.
In this question we will explore these issues for the case of a 2-layer Neural Network (NN). Recall
from class that the input aj for a node j is given by:

aj =
∑
i

wjioi

Where, wji is the weight from unit i to unit j, and oi is the activation/output of unit i. The
activation of unit i is the output of a logistic function in this problem (although any differentiable
function is allowed):

oi = σ(ai) =
1

1 + exp(−ai)

1.1 Decision Boundary

Consider the classification task shown in figure 1 where ’+’ and ’o’ denotes positive and negative
classes, respectively. This data is available in the file data.mat, also please read NN readme.txt

which contains a simple code to draw the figure below. For this part of the problem, you
might want to write really a few lines of matlab code to evaluate the network and get the necessary
plots. Consider the 2-layer network in Figure 1. This network has 9 weights and a logistic activation
function for both the hidden and output layers.

(a) (b)

Figure 1: (a) 2-layer NN with logistic activation functions at both the hidden and output layers.
(b) A 2-class dataset: ’+’ and ’o’ marks positive and negative labels respectively.

(1) [2 points] For each of the following classifiers, state with a one-line explanation whether or
not they can learn the decision boundary illustrated in Figure 1: 1-KNN, decision tree, Naive

1

Bayes, and logistic regression.

Solution: NB and LR can only learn linear decision boundaries thus they can not learn
the decision boundary in Figure 1. 1-KNN can learn that boundary. For decision trees, you
can argue either way, if you consider the approach we discussed in HW1, then if you don’t
constrain the depth of the tree, then definitely DT can learn that boundary with a very large
tree (which is not practical), thus you can argue that using a bounded-size tree, the decision
boundary in Figure 1 can not be learned.

(2) [1 point] Express o1 and o2 in terms of x1, x2, w10, w11, w12, w20, w21, w22.

Solution: o1 = σ(w10 + w11x1 + w12x2) o2 = σ(w20 + w21x1 + w22x2)

(3) [1 point] Write down the decision rule for this 2-layer NN classifier.

Solution: If o3 >= .5 then predict class one otherwise predict class 0;

(4) Consider the following set of weights: w10 = −.8;w11 = .8;w12 = .1;w20 = .3;w21 = .3;w22 =
−.4;w31 = 1;w32 = −1;w30 = .2;

(a) [2 points] Draw the representation of the data after the hidden layer, i.e. your di-
mensions will be o1 and o2, and you should label each point with its ground-truth label.
State your observation.

Figure 2:

The data becomes linearly separable in this space.

(b) [2 points] Draw the classification result for this 2-layer NN, i.e. re-draw the scatter
plot in Figure 1 but label each point as classified by the 2-layer NN. Compare to the
ground-truth and state your observations.

Solution: same as in Figure 1.b. Since the final layer is just a logistic regression classi-
fier whose input is (o1, o2), the correct classifier can be learned. The boundary in terms

2

of the input space (x1, x2) is non-linear though.

(c) [2 points] Overlay the decision boundary explicitly over the curve your drew in part
(a) in terms of o1 and o2. State your observations.

Solution: Note that the last layer is a logistic regression classifier over the input (o1, o2),
thus the decision rule is: w31o1 + w32o2 + w30 = 0. Which you can easily draw as in
Figure 2.

(e) Lets assume that we removed the logistic function form the hidden layer ONLY and
instead used an identity function, i.e o1 = a1 and o2 = a2, while maintaining the same
weight values.

(i) [2 points] repeat (a) and (b) and state your observations.

(a) (b)

Figure 3: (a) After first layer. (b) prediction made by the modified NN

Solution:
See figure 3. The data is not linearly separable in terms of (o1, o2) thus the final lo-
gistic unit can not learn the correct decision boundary. In terms of the input space
(x1, x2), as shown in figure 3, we got the wrong decision boundary. In fact, this
network, as we will show in the next part, can only learn a linear decision bound-
ary over (x1, x2) and as shown in figure 3.b, the network learned a liner decision
boundary (which is not correct). Note that this is not the best linear boundary that
this network can learn, in other words, you can optimize the weights to get a better
linear decision boundary, but the network can not still learn the correct decision
boundary, nor learn a linear decision boundary that does a good job on this dataset
(in terms of classification accuracy)

(ii) [2 points] Can you tweak the weights in this case to learn the correct decision
boundary? If yes, then find such weights and repeat (i), if NO, then re-express the
network in this case using a simpler network (or classifier) and argue why it can not
learn this decision boundary.

3

Solution: The answer is NO, since you can simplify the 2-layer NN into a single-
layer NN with a logistic unit (i.e. a logistic regression classifier) which can only a
linear decision boundary over (x1, x2). To see this:

o3 = σ(w30 + w31o1 + w32o2)

= σ

(
w30 + w31(w10 + w11x1 + w12x2) + w32(w20 + w21x1 + w22x2)

)

= σ

(
w30 + w31w10 + w32w20 + (w31w11 + w32w21)x1 + (w31w12 + w32w22)x2

)

Which is just a logistic regression classifier that can learn ONLY a linear decision
boundary over the space (x1, x2)

1.2 Backpropagation

In class we discussed that in order to train a NN we need to define an error function E[W] (such as
the squared error) that can be minimized using the backpropagation algorithm to find the network
weights. We also discussed that this error function can be driven using the M(C)LE principle based
on a signal plus noise interpretation in the context of a regression setting. Consider a classification
task with Data D = (X, t) = {(xi, ti)}, i = 1, 2, ..., N,. For example, xi might be a face image, and
ti is a binary label equals 0 if the face is for a male and 1 if the face is for a female. Now consider
a 2-layer NN based on logistic threshold units at both the hidden and output layers. If we let y
denote the real-valued final output of the network, where y ∈ [0, 1], then we might naturally wish
to interpret this output as the probability that the boolean class label t takes on the value t = 1;
that is, y = P (t = 1|x;W). In this case, as we have done in logistic regression, it is natural to find
the NN weights W using the M(C)LE principle as follows:

WMLE = arg max
w

N∏
i=1

p(ti|xi;w) (1)

(1) [2 points] Show that maximizing (1) is equivalent to minimizing the cross-entropy error
function given by:

E[W] = −

[
N∑
i=1

ti ln yi + (1− ti)ln(1− yi)

]

where, yi is the output of the network corresponding to example i.

4

Solution:

WMLE = arg max
w

N∏
i=1

p(ti|xi;w)

= arg max
w

log
N∏
i=1

p(ti|xi;w)

= arg max
w

log
N∏
i=1

yi
ti

(1− yi)(1−ti) (2)

= arg max
w

N∑
i=1

tilogyi + (1− ti)log(1− yi)

= arg min
w
−

[
N∑
i=1

tilogyi + (1− ti)log(1− yi)

]

To see why (2) is correct, note that p(ti = 1|xi;w) = yi and p(ti = 0|xi;w) = 1 − yi, which
you can double check that (2) will satisfy.

Now we will drive the weight update rule using a stochastic gradient decent using a random
example n at each step, thus we will add n to the error function, En to make this dependency
explicit. The generic update rule for a weight wji coming from unit (or input i) to unit j is given
by:

wnew
ji = wold

ji − η
∂En

∂wold
ji

where η is the learning rate. Lets denote the output unit as k, therefore, ok = y. For this part of
the problem, assume there are no bias terms.

(2) [2 points] Define δj = ∂En
∂aj

. Show that ∂En
∂wji

= δjoi

Solution:

∂En

∂wji
=

∂En

∂aj

∂aj
∂wji

= δj
∂

∂wji

∑
i

wjioi

= δjoi

(3) [4 points] Show that for the output unit δk = y − t, where t is the correct label, and
ok = y ∈ [0, 1] is the network prediction.

5

Solution:

δk =
∂En

∂ak
=

∂

∂ak
− (tlogy + (1− t)log(1− y))

= −

(
t

y

∂

∂ak
y +

(1− t)
(1− y)

∂

∂ak
(1− y)

)
(3)

= −

(
t

σ(ak)
σ(ak)(1− σ(ak)) +

(1− t)
(1− σ(ak))

(−1)σ(ak)(1− σ(ak))

)

= −

(
t(1− σ(ak))− (1− t)σ(ak)

)

= −

(
tk − tσ(ak))− σ(ak) + σ(ak)t)

)
= −(t− σ(ak)) (4)

= y − t

Note that in (3) we substituted y = σ(ak) and used the fact that the derivative of σ(.) is
σ(.)(1− σ(.)). In (4) we substituted σ(ak) = y.

(4) [2 points] Write down the update rule for a weight between the output unit k and a hidden
unit j.

Solution:

wnew
kj = wold

kj − η
∂En

∂wold
kj

= wold
kj − ηδkoj

= wold
kj − η(y − t)oj

(5) [4 points] For a hidden unit j, use the chain rule to show that, δj = ∂En
∂aj

= σ(aj)(1 −
σ(aj))(y − t)wkj . [Hint: ∂En

∂aj
= ∂En

∂ak
∂ak
∂aj

, where k is the output unit.]

Solution:

δj =
∂En

∂aj
=

∂En

∂ak

∂ak
∂aj

= δk
∂ak
∂aj

= δk
∂

∂aj
(
∑
j

wkjoj)

= δk
∂

∂aj
(
∑
j

wkjσ(aj))

= δkwkj
∂

∂aj
σ(aj)

= δkwkjσ(aj)(1− σ(aj))

= (y − t)wkjσ(aj)(1− σ(aj))

6

(6) [2 points] Write down the update rule for a weight between the hidden unit j and input xi.

Solution:

wnew
ji = wold

ji − η
∂En

∂wold
ji

= wold
ji − ηδjxi

= wold
ji − η

[
(y − t)wkjσ(aj)(1− σ(aj))

]
xi

(5)

7

