10-701/15-781, Machine Learning: Homework 3
 Eric Xing, Tom Mitchell, Aarti Singh
 Carnegie Mellon University
 Updated on February 3, 2010

1 Linear regression, and bias-variance trade-off[20pt, Ni Lao]

1.1 Least square regression [4 pt]

Using SVD we can decompose X as $X=U D V^{T}$, where D is a $p \times p$ diagonal matrix, V is a $p \times p$ unitary matrix, U is a $n \times p$ matrix, which is the first p columns of a unitary matrix. Here we assume that $n \geq p$.

$$
\begin{align*}
\hat{\beta} & =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} y \tag{1}\\
& =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}(\mathbf{X} \beta+\epsilon) \tag{2}\\
& =\beta+V D^{-1} U^{T} \epsilon \tag{3}
\end{align*}
$$

Therefore, $\hat{\beta} \sim \mathcal{N}\left(\beta, V D^{-2} V^{T} \sigma^{2}\right) \sim \mathcal{N}\left(\beta,\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \sigma^{2}\right)$.

1.2 Ridge regression [4 pt]

$$
\begin{align*}
\hat{\beta} & =\left(\mathbf{X}^{T} \mathbf{X}+\lambda I\right)^{-1} \mathbf{X}^{T} y \tag{4}\\
& =\left(\mathbf{X}^{T} \mathbf{X}+\lambda I\right)^{-1} \mathbf{X}^{T}(\mathbf{X} \beta+\epsilon) \tag{5}\\
& =\beta+\left(\mathbf{X}^{T} \mathbf{X}+\lambda I\right)^{-1}\left(-\lambda \beta+\mathbf{X}^{T} \epsilon\right) \tag{6}\\
& =\beta-\lambda V\left(D^{2}+\lambda I\right)^{-1} V^{T} \beta+V D\left(D^{2}+\lambda I\right)^{-1} U^{T} \epsilon \tag{7}
\end{align*}
$$

Therefore, $\hat{\beta} \sim \mathcal{N}\left(\beta-\lambda V\left(D^{2}+\lambda I\right)^{-1} V^{T} \beta, V D^{2}\left(D^{2}+\lambda I\right)^{-2} V^{T} \sigma^{2}\right)$.

1.3 The bias-variance trade-off [4 pt]

$$
\begin{align*}
e(\lambda) & =\hat{Y}^{*}-Y^{*} \tag{8}\\
& =\mathbf{X} \hat{\beta}-\left(\mathbf{X} \beta+\epsilon^{*}\right) \tag{9}\\
& =-\lambda U D\left(D^{2}+\lambda I\right)^{-1} V^{T} \beta+U D^{2}\left(D^{2}+\lambda I\right)^{-1} U^{T} \epsilon-\epsilon^{*} \tag{10}
\end{align*}
$$

1.4 [4 pt]

Since

$$
\begin{equation*}
e(\lambda) \sim \mathcal{N}\left(0, U\left(\frac{\lambda D}{D^{2}+\lambda I}\right)^{2} U^{T} \alpha^{2}+U\left(\frac{D^{2}}{D^{2}+\lambda I}\right)^{2} U^{T} \sigma^{2}+\sigma^{2} I\right) \tag{11}
\end{equation*}
$$

we have

$$
\begin{align*}
R(\lambda) & =E\left[e(\lambda)^{T} e(\lambda)\right] \tag{12}\\
& =\sum_{i=1 . . p}\left[\left(\frac{\lambda d_{i}}{d_{i}^{2}+\lambda}\right)^{2} \alpha^{2}+\left(\frac{d_{i}^{2}}{d_{i}^{2}+\lambda}\right)^{2} \sigma^{2}\right]+\sum_{i=1 . . n} \sigma^{2}, \tag{13}
\end{align*}
$$

where we define $d_{i}=D_{i, i}$.

$1.5 \quad[4 \mathrm{pt}]$

$$
\begin{equation*}
\frac{\partial R(\lambda)}{\partial \lambda}=2 \sum_{i=1 . . p} \frac{\alpha^{2} \lambda d_{i}^{4}-\sigma^{2} d_{i}^{4}}{\left(d_{i}^{2}+\lambda\right)^{3}} \tag{14}
\end{equation*}
$$

It is zero when $\lambda=\sigma^{2} / \alpha^{2}$

