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As we discussed in the class and recitation, an HMM is used to model a sequence of observed
variables as generated from a sequence of hidden states. For instance, the observed sequence might
be a sentence and the hidden sequence might be the part of speech tags for each word in the
sentence. However, HMM can be also used in modeling continuous observations. For instance, in
speech , the observed sequence is the speech signal, and the hidden sequence represents the words.
The data for this problem is available over the website data.mat.

In this problem you will implement an HMM with continuous observations. You will implement
solutions to the three basic problems in HMM: evaluation, decoding and learning.

Recall that an HMM defines a joint probability distribution over the observed and hidden se-
quences p(x1, x2, · · · , xT , y1, y2, · · · , yT ), where x and y represent the observed and hidden sequences
respectively. Each hidden state yi ∈ {1, · · · ,K}, and each observation xi ∈ R. The parameters
of this continuous-observation HMM are: the distribution over the initial state π, the transition
probability aij = P (Yt = j|Yt−1 = i), and the emission density p(xt|yt = i) = N (µi, σ

2
i ).

Our motivating application is detecting copy number variation in the genome. The human
genome is comprised of 6 billion chemical bases (or nucleotides) of DNA packaged into two sets
of 23 chromosomes, one set inherited from each parent. The DNA encodes 30,000 genes. Usually
genes are present in two copies (copy number) in a genome. A variation in this copy number
can be linked to diseases. aCGH (Array comparative genomic hybridization ) is an experimental
technique used to measure copy number in a test sequence (like a genome sequence from a patient
with cancer) relative to a normal sequence. The output of this procedure is represented in terms
of a log2 ratio between the copy number of the test sequence and the reference (normal) sequence.
For simplicity, we assume that there are three state of the copy number: 0 (normal), log2(1/2)
(missing copy) , and log2(3/2) (gain). However, the aCGH procedure is noisy and thus you might
get a noisy measurement as shown in Fig. 1. In this figure, the Y-axis gives the log2 ratio and
the X-axis represents location over the genome. Our biological knowledge tells us that the copy
number of nearby locations should be the same which suggests that an HMM model might be a
good option in recovering the correct copy number from this noisy measurements (Fig. 1 has 11
segments).

Unless otherwise stated, during this problem we take K = 3. Moreover, in this problem
we will deal only with one-sequence for simplicity, however, in practice, your EM-algorithm can be
easily changed to work with multiple sequences.

1. [2 points] Write down the forward and backward recurrences for this continuous-observation
HMM.

Answer: The forward recurrence is:

– initial: αk1 = 1√
2πσk

e
− (x1−µk)

2σ2
k πk

– iteration: αkt = 1√
2πσk

e
− (xt−µk)

2σ2
k

∑
i α

i
t−1aik
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Figure 1: Copy number variation sequence. X-axis represents location over the genome. There are
11 segments

The backward recurrence is:

– initial: βkT = 1, ∀k

– iteration: βkt =
∑

i aki
1√
2πσi

e
− (xt+1−µi)

2σ2
i βit+1

2. Implement the forward-backward algorithm. (you might want to refer to the book or recitation
slides for how to avoid underflow using re-scaling)

3. To estimate the parameters of an HMM we use the EM algorithm. We start the EM algorithm
by randomly initializing the model parameters. In the E-step we run the forward-backward
algorithm over the sequence(s) using the current estimate of the model parameters, and in the
M-step we re-estimate the model parameters using the expected sufficient statistics from the
E-step. We repeat this two steps until the log-likelihood of the observed sequence asymptotes
(i.e. converges).

i. [2 points] Using the α and β probabilities, write down the MLE estimate of πi and aij .

Answer: Let γkt = P (yt = k|x1, · · · , xT )

The MLE estimate of πi is:

πML
i = γi1 = P (yi1 = 1|x) =

αi1β
i
1∑

i α
i
1β

i
1

The MLE estimate of aij is:

aML
ij =

∑
t ξ
i,j
t∑

t γ
i
t

where

ξi,jt =
αitaijP (xt+1|yt+1 = j)βjt+1∑
i,j α

i
taijP (xt+1|yt+1 = j)βjt+1
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ii. [5 points]Using the α and β probabilities, in addition to the observed sequences, write
down the MLE estimate of µk and σ2k. (Hint: this is somehow similar in spirit to the
Gaussian Naive Bayes, i.e, it can be represented in terms of P (yt = i|x1, · · · , xT ))

Answer: The MLE estimate of µk is:

µML
k =

∑
t γ

k
t xt∑

t γ
k
t

where

γkt =
αkt β

k
t∑

k α
k
t β

k
t

The MLE estimate of σ2k is:

(σ2k)ML =

∑
t γ

k
t (xt − µk)2∑

t γ
k
t

iii. Implement the EM algorithm. Stop iterating when the relative change in log-likelihood
(LL) falls below 1e-3, where the relative change in LL = | LL at iteration r− LL at iteration (r-1)

LL at iteration (r-1) |

iv. [25 points] Run your EM algorithm over the given sequence. Initialize π and the
transition matrix randomly (make sure they are correct probability distributions), and
initialize µi by drawing it randomly from N (0, 1) and σ2i by drawing it uniformly from
[.01,1]. Repeat this experiment 5 times each of which with different random initialization.
Record the final LL of each run and write down the EM-parameters for the best and
worst LL. Also draw the trace of the LL over iterations for the runs with worst and
best final LL. What do you observe and why? (Note: if all your runs give the same
LL, try to initialize µ by drawing it from N (0, 2), in my implementation, I was able to
get different LL either way).

Answer: I ran it 5 times and the final LL’s are:

# of run final LL

1 -613.4561
2 -613.4365
3 -785.4694
4 -785.8705
5 -613.4763

So the maximum and the minimum of LL are −613.4365 and −785.8705. The parameters
generated for those two runs are:

final LL −613.4365

µ [0.0027, 0.5664, −0.9616]

σ2 [0.1011, 0.1053, 0.1029]

π [1.0000, 4.39× 10−22, 3.68× 10−104]

A

 0.9954 0.0016 0.0022
0.0145 0.9854 2.095× 10−14

0.0068 3.908× 10−23 0.9932


The LL curve is shown as follows:
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final LL −785.8705

µ [0.0597, −0.9649, −0.9548]

σ2 [0.1304, 0.1013, 0.1062]

π [1.0000, 7.60× 10−8, 2.64× 10−8]

A

 0.9974 0.0008 0.0011
0.0080 0.5178 0.4741
0.0045 0.8773 0.1181


The LL curve is shown as follows:

The 5 runs basically gave us 2 results: one with a larger LL the other with a smaller
LL. The smaller LL corresponds to the wrong parameters as we already know what we
should expect. The larger LL corresponds to the correct parameters. This is because of
the difference of initial values, and since EM algorithm guarantee to converge but not
guarantee to converge to global maximum, so its performance is sensitive to initialization.
This tells you that you should run EM with multiple initialization and chose the one
that results in the highest LL.

4. Decoding.
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i. Implement the Viterbi decoding algorithm. (perform all operations in log-space to avoid
under flow).

ii. [15 points] Using the estimated parameters by the EM-algorithm, run the Viterbi al-
gorithm to get the most-probably hidden state sequence. Choose two runs from your
5-runs in (3.iv): one that gets the correct segmentation and one that doesn’t. Overlay
the segmentation of each run over the data in Fig. 1. To do that, for each point, draw the
mean of its corresponding hidden state as recovered by Viterbi-decoding. (I am looking
here for two figures, one for each run, each of which has the data and the segmentation,
please draw the segmentation with a thicker marker, i.e ’linewidth’=5 in matlab).

The graph for the correct segmentation derived by the parameters on run #2, and the
incorrect segmentation derived by the parameters on run #4 is shown as follows:

5. [1 points] Lets assume you don’t know the correct segmentation, did the lowest and highest
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LL in 3.iv correspond to a correct and incorrect segmentation?

Answer: YES. However you should be cautious that it won’t be always the case that the
solution with the highest LL will give the correct segmentation, since here the problem is
unsupervised. In other words, we might choose a very large number of states that results in
a very large LL but most probably we will be over fitting here. However, when we fix the
number of parameters and only change the initialization, then the solution with the highest
LL is always the best one for this specific choice of K (the number of states).

6. [3 points] Would you expect that a GMM with three mixtures would recover the correct
segmentation, and why? Either argue that GMM will result in the exact segmentation or
point to areas in Fig. 1 in which GMM will fail.

Answer: No. GMM with 3 mixtures may not recover the correct segmentation because the
data is noisy, and if we look at the graph where T = 600 ∼ 800, it is very hard to distinguish
the pattern by GMM, because the variance is very high.

7. [2 points] If we don’t know the correct number of states K, suggest a scheme to select K.
You shouldn’t assume that you have a reference to the correct segmentation. Moreover, as-
sume we only have one sequence.

Answer: We can use BIC score (see lecture 8 slide 38). The idea here is to penalize complex
models. We select K as follows: k∗ = argmaxk p(x|k)−C(x), where p(x) is the marginal LL
of the observation given the number of states k, and C(k) is a complexity term that equals to
the number of parameters times logT , where T is the number of observations, and the number
of parameters for k states is: k ∗ (k − 1)︸ ︷︷ ︸

transitoin matrix

+ k − 1︸ ︷︷ ︸
initial state

+ k ∗ 2︸︷︷︸
mean and variance per state — emisson

.
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