
10-701/15-781, Machine Learning: Homework 3 Solu-
tion

1 Learning Theory [25pt, Ni Lao]

1.1 Gaussian Bayes Model [15 pt]

ID a b c d e f
No. features 1 1 2 2 2 2
Shared Covariance Matrix? Y N Y Y N N
Naive Bayes? - - Y N Y N
No. parameters 1*2+1 1*2+1*2 2*2+2 2*2+3 2*2+2*2 2*2+3*2

+1=4 +1=5 +1=7 +1=8 +1=9 +1=11
VC dimension 2 3 3 3 >=5 >=6

The decision boundary of a two class Gaussian model is

log |π1| − log |Σ1| − (x− µ1)′Σ−1
1 (x− µ1) = log |π2| − log |Σ2| − (x− µ2)′Σ−1

2 (x− µ2) (1)

It can be rearranged as

α + β′x + x′(Σ−1
1 − Σ−1

2 )x = 0 (2)

When the covariance matrix is shared (Σ1 = Σ2), we get a linear boundary, which can shatter 2
points in 1 dimensional space and 3 points in 2 dimensional space.

When the covariance matrix is not shared, the boundary is an ellipsoid. If the model is naive
Bayes then the axis of ellipsoid must be parallel to the basis of the space. As demonstrated below,
we can separate out any 2 points out of 5. Separating out any single point is trivial. If the model

has no naive Bayes assumption, we can shatter 6 points. As demonstrated on the left below, we
can separate out any 2 points, and on the right below, we can separate out any 3 points.

Alternative solution (provided by Chi Song)
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For case f, Eq.(2) has 6 parameters, but actually only 5 of them are free (there is a family of
parameter settings that produces the same curve). Therefore, we can always fit the curve to any
arbitrary 5 points.

Suppose we have 6 data points x1, . . . x6. We can always fit the curve to x′1, . . . x
′
5, the slight

perturbation of x1, . . . x5, so that x1, . . . x5 are correctly classified. If x6 is already correctly clas-
sified, then we are done. If not, we can reverse the sign of the quadratic form and do a further
perturbation to x1, . . . x5, thus force them to be classified correctly. Therefore V C ≥ 6.

For case e, the quadratic form has one less number of freedom. Therefore V C ≥ 5.

1.2 VC dimension and Effective Number of Hypothesis [3 pt]

When m ≤ V C(H), maxD Neff (H,D) = 2m.
When m > V C(H), maxD Neff (H,D) < 2m.

1.3 [2 pt]

log2 Neff (H,D)

1.4 Linear Regression Model [3 pt]

R(λ)/n =
p

n
σ2 + σ2, (3)

1.5 [2 pt]

We need p samples, which is the VC dimension of a linear model minus 1.
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