
10-701/15-781, Machine Learning: Homework 5
Eric Xing, Tom Mitchell, Aarti Singh

Carnegie Mellon University
Updated on March 24, 2010

• The assignment is due at 10:30am (beginning of class) on Mon, April 26, 2010.

• Separate you answers into three parts, one for each TA, and put them into 3 piles at the table
in front of the class. Don’t forget to put both your name and a TA’s name on each part.

1 SVMs [Amr, 30 + 10 extra credits points]

1.1 Kernels and Feature Maps

Given the following dataset in 1-d space (Figure 1), which consists of 3 positive data points {−1, 0, 1}
and 3 negative data points {−3,−2, 2}.

Figure 1: Dataset

(1) (3 pts) Find a feature map({R1 → R2}), which will map the data in the ordinal 1-d input
space (x) to a 2-d feature space (y1, y2) so that the data becomes linearly-separable. Plot the
dataset after mapping in 2-d space.

(2) (5 pts) Write down the decision boundary w2y2+w1y1+w0 given by hard-margin linear SVM
in the feature space. Draw this decision boundary on your plot and mark the corresponding
support vector(s).

(3) (5 pts) What is the equivalent decision boundary in the original input space? Draw this
decision boundary over the points in Figure 1.

(4) (3 pts) For the feature map you choose, what is the corresponding kernel K(x1, x2)?

(5) (4 pts) What is the maximum number of points in the input space that can be shattered by
an SVM classifier using the kernel in (4)? Explain in one or two sentences.

1.2 SVM and other Classifiers

(1) The idea of mapping the data from the input space to another feature-space in which the
data becomes linearly separable was used earlier in the class by another classifier.

(a) (2 pts) What is the name of this classifier?

(b) (3 pts) List one difference between the way this idea was used by SVM and this classifier.
Discuss the implication of this difference on both classifiers (with regard to training
and/or testing, etc.).

1

(2) The final decision rule of an SVM classifer using kernel K is given by:

y ∗ (z) = sign
(∑

i∈SV

αiyiK(xi, z) + b
)

(1)

In this case K can be interpreted as a similarity metric.

(a) (2 pts) We have studied one classifier whose decision rule looks similar to (1), what is
the name of this classifier?

(b) (3 pts) List one difference between the classifier in (a) and SVM with regard to their
decision rules and discuss the implication of this difference on both classifiers (again with
regard to training and/or testing, etc).

1.3 EXTRA CREDIT: Dimension of Transformed Feature Space

One popular choice for the kernel, K, in SVM is the dth degree polynomial:

K(x, z) = (1 + 〈x, z〉)d

The 2nd degree polynomial kernel corresponds to the inner product of a transformed feature space.
If x and z are both 2-dimensional vectors in the input space , then the dimension of the transformed
feature space is 6:

k(x, z) = (1 + 〈x, z〉)2

= (1 + x1z1 + x2z2)2

= 1 + 2x1z1 + 2x2z2 + x2
1z

2
1 + 2x1z1x2z2 + x2

2z
2
2

= 〈[1
√

2x1

√
2x2 x2

1

√
2x1x2 x2

2], [1
√

2z1

√
2z2 z2

1

√
2z1z2 z2

2]〉
= 〈φ(x), φ(z)〉

(1) (5 pts) Let’s generalize this example. Assume x and z are p-dimensional, what is the
dimension of the transformed feature space for the dth degree polynomial kernel? Note: you
don’t have to explicitly list the form of each dimension as in the example above, I am just
looking for the dimensionality. (Hint: This is a combination with replacement problem —
brush up on your combinatorics background)

(2) (5 pts) According to (1), calculate the dimension of the transformed feature space for a 15-
dimensional x using the 3rd degree polynomial kernel. Also for this specific setting, compute
the ratio between the number of multiplications required to evaluate the kernel in the input
space vs. evaluating the dot-product in the feature space.

2 PCA Tutorial [25 pts, Field Cady]

Principal Component Analysis (PCA) is one of the most popular dimensionality reduction tech-
niques, partly because it is very simple to understand and implement.

Geometrically, if your data lies “mostly” on a certain hyperplane, PCA just projects your data
onto this hyperplane. If your data does indeed lie mostly on a hyperplane, this technique preserves
most of the variation between your points; in applications where a single data point contains more
numbers than you have data points, your data will lie exactly on a hyperplane. If your data is not

2

very hyperplanar, there may still be good dimensionality reduction available, but the techniques
are more complicated, and much less common.

Computationally, the principal components of a dataset end up being just the eigenvectors
of the covariance matrix of your data. The associated eigenvalues measures how much the data
varies along a direction. If most of the variation is in only a few eigenvalues, than your data lies
almost completely on the hyperplane spanned by their eigenvectors. Because covariance matrices
are positive semi-definite, all eigenvalues are non-negative.

This problem walks you through a simple application of PCA to an interesting dataset. I’m
providing patchy sample code for a bare-bones analysis - feel free to make it better. I will give
extra credit, at my discretion, for cool improvements. No need to submit your actual code for this
homework.

2.1 Loading the data

The data we use are pictures of a hand holding a rice bowl and rotating it. They are available at
http://vasc.ri.cmu.edu/idb/images/motion/hand/. Though the images are very large and intricate,
there is only one underlying degree of freedom; the orientation of the hand.

Download the images and, since there’s a lot of data, take a sparse subsample of them to use
as your data.

disp(’loading data’);
n=481; % number of images
subsample=8; %use every 8th pixel in a row/column
fx = 1:subsample:512;
fy = 1:subsample:480;
px=length(fx); %new image sizes
py=length(fy);
data=zeros(py,px,n); % cube to store all your data
for i = 1:n

img = imread(sprintf(’hand.seq%d.png’,i));
data(:,:,i)=img(fy,fx);

end

In order to take eigenvectors we need to make our individual data points into vectors, rather than
2d matrices. We also need to subtract out the mean.

disp(’vectorizing and centering data’);
X = zeros(py*px,n); % each column will be a data point
for i = 1:n

X(:,i) = reshape(data(:,:,i),py*px,1);
end
averageVec = mean(X,2); % each element is the mean of a row of X
for i = 1:n

X(:,i) = X(:,i)-averageVec;
end

2.2 Basic PCA [9 pts]

Now construct the covariance matrix of the data.

3

disp(’finding eigenvalues and eigenvectors’);
Cov = X * X’;
[evecs,D] = eig(Cov);
evals = diag(D); % make it a vector

Our data has only one underlying degree of freedom, but how flat is the data? Plot the
eigenvalues of the covariance matrix and discuss your conclusions.

plot(evals);

If appropriate, provide a plot of a subset of the eigenvalues to make your results more clear.

2.3 Basic application [8 pts]

We said before that our data has one inherent degree of freedom; and since the hand in the pictures
turns almsot all the way around, you would think the data should actually form a closed loop,
writhing around in a very high dimensional space. Using PCA to reduce the data to 2 dimensions
corresponds to projecting this loop onto the plane that makes it look “flattest”. Do this, and
comment on your results.

disp(’doing dimensionality reduction’);
principalComps = evecs’;
reducedX = principalComps * X;
scatter(reducedX(3840,:),reducedX(3839,:));

2.4 Reconstructing Your Data [8 pts]

We can use the principal component to visualize not just the shape of our dataset, but the ways
in which the individual points vary. Recall that we only processed a subsample of each image in
the original dataset; display the first of these subsampled images. Display the average subsampled
image and the principal eigenImage. Now reconstruct the first subsampled image from the average
image and the first three eigenimages. How well did our reconstruction work?

image1 = reshape(averageVec+X(:,1),py,px);
averageImage = reshape(averageVec,py,px);
eigenImage3840 = reshape(evecs(:,3840),py,px);
eigenImage3839 = reshape(evecs(:,3839),py,px);
eigenImage3838 = reshape(evecs(:,3838),py,px);
reconstructed = averageImage + ...

reducedX(3840,1)*eigenImage3840 + ...
reducedX(3839,1)*eigenImage3839 + ...
reducedX(3838,1)*eigenImage3838;

imagesc(image1);
imagesc(eigenImage3840);
imagesc(reconstructed);

2.5 Extra Credit [8 pts]

Do some type of additional analysis on the data using PCA. Present your results as a figure with
a brief description of what I’m looking at.

4

3 AdaBoost [Ni, 30 pt]

Given N examples (xi, yi), where yi is the label and yi = +1 or yi = −1. Let I(·) be the indicator
function, which is 1 if the condition in () is true and 0 otherwise. In this exercise, we use the
following version for AdaBoost algorithm:

1. Initialize w1
i = 1/N (i = 1, ..., N)

2. For t = 1, ..., T ,

a. Learn a weak classifier ht(x) by minimizing the weighed error function Jt, where Jt =∑N
i=1 wt

iI(ht(xi) 6= yi);

b. Compute the error rate for the learnt weak classifier ht(x): εt =
∑N

i=1 wt
iI(ht(xi) 6= yi);

c. Compute the weight for ht(x): αt = 1
2 ln1−εt

εt
;

d. Update the weight for each example: wt+1
i = wt

i exp{−αtyiht(xi)}
Zt

, where Zt is the normal-
ization factor for wt+1

i : Zt =
∑N

i=1 wt
i exp{−αtyiht(xi)}.

3. Output the final classifier: H(x) = sign(fT (x)), where fT (x) is a linear combination of the
weak classifiers, i.e., ft(x) =

∑t
m=1 αmhm(x).

3.1 Sequential Optimization [5 pts]

In class, we learnt that AdaBoost tries to minimize the negative exponential loss: E =
∑N

i=1 exp{−yifT (xi)}
sequentially. That is to say, at the tth (1 ≤ t ≤ T)iteration, we want to choose appropriate weight
αt and the corresponding weak classifier ht(x) so that the overall loss E (accumulated up to tth

iteration) is minimized. It was proved that this strategy leads to the update rule: in the tth

iteration, αt = 1
2 ln1−εt

εt
.

Now, if we change the objective function to square loss E =
∑N

i=1(yi − fT (xi))2 and we still
want to optimize it sequentially. What is the new update rule for αt?

3.2 [5 pts]

As shown in the figure below, we have five training samples with label 0.0 or 1.0.

Now let’s assume that the base functions ht(x) are linear classifiers. Will the boosting algorithm
(with square loss) always get zero training error after sufficient iterations? What is the minimum
number of iterations before it can reach zero training error?

3.3 About Margin[5 pts]

Draw the objective functions of SVM, logistic regression, and Adaboost together. Assume we have
a single training sample and a single feature.

hints: for AdaBoost assume that ht(x) is given, and the parameter is αt.

5

3.4 [5 pts]

What does “margin” mean? Do logistic regression and Adaboost have margins?

3.5 Overfitting [5 pts]

There is an interesting applet written by Yoav Freund (http://cseweb.ucsd.edu/~yfreund/
adaboost/). With it, you can create your own data set and train AdaBoost models.

Please design a dataset showing that AdaBoost does overfit. You can print a screen shot which
includes both data points and error curves.

3.6 [5 pts]

Can you think of a strategy to prevent Boosting from overfitting?

6

