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Reinforcement Learning
[Sutton and Barto 1981; Samuel 1957; ...]
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Reinforcement Learning: Backgammon

[Tessauro, 1995]

Learning task:
+ chose move at arbitrary board states

Training signal:
+ final win or loss

Training:
+ played 300,000 games against itself

Algorithm:
+ reinforcement learning + neural network

Result:
» World-class Backgammon player
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Outline

* Learning control strategies
— Credit assignment and delayed reward
— Discounted rewards

Markov Decision Processes
— Solving a known MDP

* Online learning of control strategies
— When next-state function is known: value function V*(s)

— When next-state function unknown: learning Q’(s,a)

* Role in modeling reward learning in animals
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Reinforcement Learning Problem
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Goal: Learn to choose actions that maximize
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Markov Decision Process = Reinforcement Learning Setting

+ Set of states S

« Set of actions A

» At each time, agent observes state s, € S, then chooses action a, € A
» Then receives reward r,, and state changes to s,,,

* Markov assumption: P(s,,; | S;, 8, Siqs @1y «--) = P(Steq | Sp @)

* Also assume reward Markov: P(r;| s, @, Si.q, @u1»---) = P(r | S @)

+ The task: learn a policy n: S > A for choosing actions that maximizes
Elry +ri41 + 727”t+2 +..] o0<~y<1

for every possible starting state s,
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HMM, Markov Process, Markov Decision Process

HiMM

& & &

HMM, Markov Process, Markov Decision Process
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Reinforcement Learning Task for Autonomous Agent

Execute actions in environment, observe results, and

« Learn control policy nt: S>A that maximizesi A B[]
from every state s € S t=0

Note:

» Function to be learned is : S>A

+ But training examples are not of the form <s, a>
» They are instead of the form < <s,a>, r >
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Reinforcement Learning Task for Autonomous Agent

Execute actions in environment, observe results, and

» Learn control policy «r: S2>A that maximizesi A E[r]
from every state s€ S t=0

Example: Robot grid world, deterministic reward r(s,a)

BN
MEaEs

(immediate reward)
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Value Function for each Policy -y

Given a policy w : S 2 A, define

0

VT(s) = E[Y. '

t=0

assuming action sequence chosen
according to x, starting at state s

Then we want the policy =" where
7 = arg max VT (s), (Vs)

For any MDP, such a policy exists!
We’'ll abbreviate V™ ’(s) as V*(s)

Note if we have V*(s) and P(s.,4|s.,a), we can compute
m*(s)
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Value Function — what are the V7(s) values?
VT(s) = E[Y v'ri]

o0

t=0
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r(s,a) (immediate reward)
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Value Function — what are the V*(s) values?
VT(s) = E[Y_ 7'

t=0
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r(s,a) (immediate reward)

Value Function — what are the V*(s) values?

V(s) = B[S Al
t=0
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r(s,a) (immediate reward)




ol L 9 Immediate rewards r(s,a)
s (9 State values V*(s)

- - G 90 :: 100 _>o (é)
A A | A A
| Ty Y 1
T - 81 :: 90 :: 100
One optimal policy V*(s) values

Recursive definition for V*(S)

00 . .

N . ' assuming actions are

V*(s) = E[ Z v chosen according to the
t=0 optimal policy, *

V*(s1) = Elr(s1,a1)]+E[vr(s2, a2)l+E[v?r(s3,a3)]+. . ]

V*(s1) = Elr(s1,a1)] + 7Esys; 0, [V (52)]

V*(s) = Elr(s, 7 (s))] 4+ ¥Byq po(s) [V ()]

ML
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Value lteration for learning V* : assumes P(S,,4|S;, A) known

Initialize V(s) arbitrarily
Loop until policy good enough
Loop forsin S
Loop forain A
. Q(s,a) —r(s,a) +7 Y P(s's,a)V(s)
s'es
V(s) — maxQ(s, a)

End loop 0

0 100 Iy
End loop ;l (@
0 0
V(s) converges to V*(s) 0 0 100

0

Dynamic programming :‘: ﬁl:

Value lteration

Interestingly, value iteration works even if we randomly
traverse the environment instead of looping through
each state and action methodically

* but we must still visit each state infinitely often on an
infinite run

* For details: [Bertsekas 1989]

* Implications: online learning as agent randomly roams

If max (over states) difference between two successive
value function estimates is less than ¢, then the value of
the greedy policy differs from the optimal policy by no

more than 26,),/(1 _ 7)
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So far: learning optimal policy when we
know P(s; | S..1, @)

What if we don’t?
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Q learning

Define new function, closely related to V*
V*(S) - E[T(S, W*(S))] + ’YE,S/|,5’7T*(5) [V*(S/)]

Q(s,a) = E[r(s,a)] + 7E8/|S,G[V*(s/)]

If agent knows Q(s,a), it can choose optimal action
without knowing P(s,,4|s.a) !

m*(s) = arg max Q(s,a) V*(s) = max Q(s, a)

And, it can learn Q without knowing P(s,4|s.,a)

Tom Mitchell, April 2010
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. Consider first the deterministic
@ Function case. P(s’| s,a) deterministic,
denoted §(s,a)

Define new function very similar to V*

Q(s,a) =r(s,a) +yYV*(i(s,a))

If agent learns @, it can choose optimal action even
without knowing !

w(s) = arginax[r(s, a) +yV*((s,a))]

*(s) = argmax Q(s,a)

Q is the evaluation function the agent will learn

Tom Mitchell, April 2010

Immediate rewards r(s,a) i c{)
Ao Ao A
State values V*(s) AN IEA S
ol ol
State-action values Q*(s,a) T T
V*(s) = E[r(s,7"(s))] + WEsf\s,w*(s)[V*(s/)] r(s,a) (immediate reward) values
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Training Rule to Learn Q

Note @ and V* closely related:
V*(s) = max Q(s,a)

Which allows us to write @) recursively as

Q(s1,a1) = r(st,a) + vV (6(s1,a1)))
= 7(sr,a) + 7Y max Q(st41,a")

Nice! Let Q denote learner’s current approximation
to Q. Consider training rule

Q(s,a) « r+ymaxQ(s',d)

where s’ is the state resulting from applying action
a in state s
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Q Learning for Deterministic Worlds

For each s, a initialize table entry Q(s,a) + 0
Observe current state s
Do forever:

e Select an action a and execute it

e Receive immediate reward r

e Observe the new state s’

e Update the table entry for Q(s,a) as follows:

Q(s,a) 7 +ymaxQ(s', )

o5+ s
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Updating Q

R 2, 1000, O R 1000,
- -
|51 |81
\J = \J
arighr
initial state: S, next state: S,

Q(s1, arigns) 4 7 +ymax Q(sz, ')
« 0+0.9 max{63,81,100}
<+~ 90

notice if rewards non-negative, then

(VS, a, n) Qn+1(87 a) Z QA”(87 a)

and A
(Vs,a,n) 0< Qu(s,a) <Q(s,a)
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Q converges to (). Consider case of deterministic
world where see each (s, a) visited infinitely often.

Proof: Define a full interval to be an interval during
which each (s,a) is visited. During each full
interval the largest error in @ table is reduced by

factor of v

Let Q,, be table after n updates, and A, be the
maximum error in @Q,; that is

For any table entry Q,l(s, a) updated on iteration
n+ 1, the error in the revised estimate Q,41(s,a) is

|Qn+1(37 a)

|Qn+1(37 a)

An = H}%‘X |Qn(57 (l) - Q(sv a)l

—Q(s,a)| = |(r + ymaxQ, (s, d)) Use general fact:
= 7maxQu (s, a) — max Q(s',a')| "
< ymax |Qu (s, ') — Q(s', a)|
< ymax|Qu(s",a') — Q(s",d))|

- Q(s,a)] < 7A,

Tom Mitchell, April 2010
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Nondeterministic Case

(@ learning generalizes to nondeterministic worlds
Alter training rule to
Q'n (s,a) < (1_071)6271—1(37 a)+ay, ["""'_m&}'x Qn—l (Slv a,)]

where
1

1+ visits,(s,a)

a‘ll

Can still prove convergence of Q to @ [Watkins and
Dayan, 1992]

.......... Tom Mitchell, April 2010

Temporal Difference Learning

@ learning: reduce discrepancy between successive
() estimates

One step time difference:
QW (s, ar) =1+ max Q(3t+1>a)
Why not two steps?
QP (sy,ar) =11+ yreg1 + 2 m(gx@(sprg, a)
Orn?

Q(n)(St,at) = ryrat '+7("_1)rt+n_1+7" mﬂaxQ(an, a)

Blend all of these:
A = (1— 1) 2) 20)(3)
ML Q" (st,a1) = (1-N) [Q (st,a1) + AQ (s, ar) + N°Q" (¢, ay)




Temporal Difference Learning

Q*(st,ar) = (1-X) [Q(l)(st, ar) + AQ¥ (s, ) + N2Q¥) (54, ay)

Equivalent expression:
QNsryar) =7+ (1=X) max Q(s1, az)
+A QN(8141, ar41)]
TD()) algorithm uses above training rule
e Sometimes converges faster than ) learning

e converges for learning V* for any 0 < A <1
(Dayan, 1992)

e Tesauro’s TD-Gammon uses this algorithm
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MDPs and Reinforcement Learning: Further Issues

» What strategy for choosing actions will optimize
— learning rate? (explore uninvestigated states)
— obtained reward? (exploit what you know so far)

Can we bound sample complexity?
— R-Max learns with §, € bounds in polynomial number of actions

Partially observable Markov Decision Processes
— state is not fully observable
— must maintain probability distribution over possible state you’re in

Convergence guarantee with function approximators?

Correspondence to human learning?

Tom Mitchell, April 2010

15



Dopamine As Reward Signal

No prediction
Reward occurs

[Schultz et al.,
Science, 1997]

e 31 Tom Mitchell, April 2010

Dopamine As Reward Signal

No prediction
Reward occurs

[Schultz et al.,
Science, 1997]

Reward predicted
Reward occurs

32 Tom Mitchell, April 2010
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Dopamine As Reward Signal

No prediction
Reward occurs

g e my
Iy ]

&t
[Schultz et al.,
Science, 1997]

Reward predicted
Reward occurs

error = 1, +vy V(s,,,) - V(s,)

Reward predicted
No reward occurs

-1 0

RL Models for Human Learning
[Seymore et al., Nature 2004]

b Temporal difference value ¢ Temporal difference
prediction error

a Experimental design

Trial type 1 High
@ . @1%) CueA—>CueB— o
Trialtype2 . _ P L
I I @1%) Cue Co=p-Cue D—p
Trial type 3 N High
©%) Cue C—pCue B —p pain
0 3.6 7.2
[
Time (s)
Trial type 4 ~ Low / \
© %) CueA—»Cue D —» .-

«--.Before leamning  «oeeeee Mid-earning m— |_ate learning

Figure 1 Experimental design and temporal difference model. a, The experimental design  during learning the prediction error is transferred to earlier cues as they acquire the
expressed as a Markov chain, giving four separate trial types. b, Temporal difference ability to make predictions. In trial types 3 and 4, the substantial change in prediction
value. As learning proceeds, earlier cues learn to make accurate value predictions (thatis,  elicitsalarge positive or negative prediction error. (For clarity, before and mid-learning are

weighted averages of the final expected pain). ¢, Temporal difference prediction error; shown only for trial type 1.)

ML
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Figure 2 Temporal difference prediction error (statistical parametric maps). Areas

coloured yellow/orange show significant correlation with the temporal difference oril 2010

One Theory of RL in the Brain

from [Nieuwenhuis et al.]

» Basal ganglia monitor events, predict future rewards

» When prediction revised upward (downward), causes
increase (decrease) in activity of midbrain dopaminergic
neurons, influencing ACC

» This dopamine-based activation
somehow results in revising the
reward prediction function.
Possibly through direct
influence on Basal ganglia, and

Frontal il
cortex o

e
Striatum 4

Accumbens .-

via prefrontal cortex
Amygdala il \\ \,
\\
?’e%'?%rgr',m Substantia
ML area nigra
e 36 Tom Mitchell, April 2010
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Summary: Temporal Difference ML Model
Predicts Dopaminergic Neuron Acitivity during Learning

» Evidence now of neural reward signals from
— Direct neural recordings in monkeys
— fMRI in humans (1 mm spatial resolution)
— EEG in humans (1-10 msec temporal resolution)

» Dopaminergic responses encode Bellman error

+ Some differences, and efforts to refine the model
— How/where is the value function encoded in the brain?
— Study timing (e.g., basal ganglia learns faster than PFC ?)
— Role of prior knowledge, rehearsal of experience, multi-task learning?
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