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Readings:   

•  Mitchell, chapter 13 

•  Kaelbling, et al., Reinforcement Learning: A Survey, JAIR, 1996 

•  for much more: Reinforcement Learning, an Introduction, Sutton & Barto 
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Reinforcement Learning 
[Sutton and Barto 1981; Samuel 1957; ...] 
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Reinforcement Learning: Backgammon 
[Tessauro, 1995] 

Learning task:  
•  chose move at arbitrary board states 

Training signal:  
•  final win or loss 

Training: 
•  played 300,000 games against itself 

Algorithm: 
•  reinforcement learning + neural network 

Result: 
•  World-class Backgammon player 
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Outline 

•  Learning control strategies 
–  Credit assignment and delayed reward 
–  Discounted rewards 

•  Markov Decision Processes 
–  Solving a known MDP 

•  Online learning of control strategies 
–  When next-state function is known: value function V*(s) 
–  When next-state function unknown: learning Q*(s,a) 

•  Role in modeling reward learning in animals 
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Markov Decision Process = Reinforcement Learning Setting 

•  Set of states S 
•  Set of actions A 
•  At each time, agent observes state st ∈ S, then chooses action at ∈ A 
•  Then receives reward rt , and state changes to st+1 
•  Markov assumption: P(st+1 | st, at, st-1, at-1, ...) = P(st+1 | st, at) 
•  Also assume reward Markov:   P(rt | st, at, st-1, at-1,...) = P(rt | st, at) 

•  The task: learn a policy π: S  A for choosing actions that maximizes 

for every possible starting state s0 
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HMM, Markov Process, Markov Decision Process 
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HMM, Markov Process, Markov Decision Process 
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Reinforcement Learning Task for Autonomous Agent 

Execute actions in environment, observe results, and 
•  Learn control policy π: SA that maximizes                

from every state s ∈ S 

Note: 
•  Function to be learned is π: SA  
•  But training examples are not of the form <s, a> 
•  They are instead of the form < <s,a>, r > 
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Reinforcement Learning Task for Autonomous Agent 

Execute actions in environment, observe results, and 
•  Learn control policy π: SA that maximizes                

from every state s ∈ S 

Example: Robot grid world, deterministic reward r(s,a) 
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Value Function for each Policy 

•  Given a policy π : S  A, define  

•  Then we want the policy π* where 

•  For any MDP, such a policy exists! 
•  We’ll abbreviate Vπ *(s) as V*(s) 
•  Note if we have V*(s) and P(st+1|st,a), we can compute 
π*(s)     

assuming action sequence chosen 
according to π, starting at state s
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Value Function – what are the Vπ(s) values? 
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Value Function – what are the Vπ(s) values? 
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Value Function – what are the V*(s) values? 
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Immediate rewards r(s,a) 

State values V*(s) 
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Recursive definition for V*(S) 

assuming actions are 
chosen according to the 
optimal policy, π*
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Value Iteration for learning V* : assumes P(St+1|St, A) known 

Initialize V(s) arbitrarily 

Loop until policy good enough 

   Loop for s in S 

Loop for a in A 

•     

   End loop 

End loop 

V(s) converges to V*(s) 

Dynamic programming 
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Value Iteration 

Interestingly, value iteration works even if we randomly 
traverse the environment instead of looping through 
each state and action methodically  

•  but we must still visit each state infinitely often on an 
infinite run 

•  For details: [Bertsekas 1989] 
•  Implications: online learning as agent randomly roams 

If max (over states) difference between two successive 
value function estimates is less than ε, then the value of 
the greedy policy differs from the optimal policy by no 
more than  
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So far: learning optimal policy when we 
know P(st | st-1, at-1) 

What if we don’t? 
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Q learning 
Define new function, closely related to V* 

If agent knows Q(s,a), it can choose optimal action 
without knowing P(st+1|st,a)  ! 

And, it can learn Q without knowing P(st+1|st,a) 
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Consider first the deterministic 
case. P(s’| s,a) deterministic, 
denoted δ(s,a) 
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Immediate rewards r(s,a) 

State values V*(s) 

State-action values Q*(s,a) 

Bellman equation.   
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Tom Mitchell, April 2010 
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Use general fact: 
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MDPs and Reinforcement Learning: Further Issues 
•  What strategy for choosing actions will optimize 

–  learning rate? (explore uninvestigated states) 
–  obtained reward?  (exploit what you know so far) 

•  Can we bound sample complexity? 
–  R-Max learns with δ, ε bounds in polynomial number of actions 

•  Partially observable Markov Decision Processes 
–  state is not fully observable 
–  must maintain probability distribution over possible state you’re in 

•  Convergence guarantee with function approximators? 

•  Correspondence to human learning? 
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Dopamine As Reward Signal 

[Schultz et al., 
Science, 1997] 

t 
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Dopamine As Reward Signal 

[Schultz et al., 
Science, 1997] 
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Dopamine As Reward Signal 

[Schultz et al., 
Science, 1997] 
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RL Models for Human Learning 
[Seymore et al., Nature 2004] 
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[Seymore et al., Nature 2004] 
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One Theory of RL in the Brain 

•  Basal ganglia monitor events, predict future rewards 
•  When prediction revised upward (downward), causes 

increase (decrease) in activity of midbrain dopaminergic 
neurons, influencing ACC 

•  This dopamine-based activation 
somehow results in revising the 
reward prediction function.  
Possibly through direct 
influence on Basal ganglia, and 
via prefrontal cortex 

from [Nieuwenhuis et al.] 
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Summary: Temporal Difference ML Model  
Predicts Dopaminergic Neuron Acitivity during Learning 

•  Evidence now of neural reward signals from  
–  Direct neural recordings in monkeys 
–  fMRI in humans (1 mm spatial resolution) 
–  EEG in humans  (1-10 msec temporal resolution) 

•  Dopaminergic responses encode Bellman error 

•  Some differences, and efforts to refine the model 
–  How/where is the value function encoded in the brain? 
–  Study timing (e.g., basal ganglia learns faster than PFC ?) 
–  Role of prior knowledge, rehearsal of experience, multi-task learning? 


