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Q Learning for Deterministic Worlds

For each s, a initialize table entry Q(s,a) + 0
Observe current state s
Do forever:

e Select an action a and execute it

e Receive immediate reward r

e Observe the new state s’

e Update the table entry for Q(s,a) as follows:

Q(s,a) 7 +ymaxQ(s', )

o5+ s
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Q converges to Q. Consider case of deterministic
world where see each (s,a) visited infinitely often.

Proof: Define a full interval to be an interval during
which each (s, a) is visited. During each full
interval the largest error in Q table is reduced by
factor of v

Let Qn be table after n updates, and A, be the
maximum error in @,; that is

An = II}E(iiX |Qn($7 a) - Q(S, a‘)'

For any table entry Q,(s,a) updated on iteration
n+ 1, the error in the revised estimate Q,+1(s, a) is

|Qn+l(sv a) - Q(Sv a)l

[(r + 7 max Q.(s,d)) Use general fact:
—(r+7m2/1xQ(s', a))| | max f1(a) — max fo(a)| <

= 9| max Qn(sa', a) — max Q(s',d)] mglfe) = A

ymax |Qu(s',a') = Q(s', d)|

T |0,(,d) - Q)

|Qns1(s,0) = Q(s,a)| < YA,
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Nondeterministic Case

Q learning generalizes to nondeterministic worlds
Alter training rule to
Qn(s,a) — (1—ay,)Qn_1(s, a)+ay, [r+max Qn_1(s',a)]

where
1

1 + visits,(s,a)

a’ll

Can still prove convergence of Q to @ [Watkins and
Dayan, 1992]
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MDPs and Reinforcement Learning: Further Issues

+ What strategy for choosing actions will optimize
— learning rate? (explore uninvestigated states)
— obtained reward? (exploit what you know so far)

+ Can we bound sample complexity?
— R-Max learns with &, € bounds in polynomial number of actions

» Partially observable Markov Decision Processes
— state is not fully observable
— maintain probability distribution over possible states you'’re in

» Convergence guarantee with function approximators?
— our proof assumed a tabular representation for Q, V

¢ Correspondence to human learning?

Tom Mitchell, April 2010

Dopamine As Reward Signal

No prediction
Reward occurs

[Schultz et al.,
Science, 1997]
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Reward predicted
Reward occurs
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Dopamine As Reward Signal

No prediction
Reward occurs

[Schultz et al.,
Science, 1997]

Reward predicted
Reward occurs

error = 1, +y V(s,.,) - V(s,)

Reward predicted
No reward occurs




a Experimental design
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Figure 1 Experimental design and temporal difference model. a, The experimental design
expressed as a Markov chain, giving four separate trial types. b, Temporal difference
value. As learning proceeds, earlier cues learn to make accurate value predictions (that is,
weighted averages of the final expected pain). ¢, Temporal difference prediction error;
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[Seymore et al., Nature 2004]

b Temporal difference value ¢ Temporal difference

prediction error
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pain

m— |_ate learning

-« Before learning ~ weer Mid-earning

during learning the prediction error is transferred to earlier cues as they acquire the
ability to make predictions. In trial types 3 and 4, the substantial change in prediction
elicitsa large positive or negative prediction error. (For clarity, before and mid-learning are
shown only for trial type 1.)

1 1 Tom Mitchell, April 2010

a Experimental design

E=0—0
C—0—0

] 35 72
Time @)

Trelype 1 g Y
@iw)  CeATORBTS

T2 G0y im0

Trltype3 Hgh
fo%)

Cue C—n CueB—s [

Traltyped o e D —p LV
@%) CeATIOED o,

b Temporal difierence valve

© Temporal difierence
predicton error

- [Seymore et al., Nature 2004]
—/ L N
/e

Figure 2 Temporal difference prediction error (statistical parametric maps). Areas

coloured yellow/orange show significant correlation with the temporal difference oril 2010




One Theory of RL in the Brain

from [Nieuwenhuis et al.]

Basal ganglia monitor events, predict future rewards

When prediction revised upward (downward), causes
increase (decrease) in activity of midbrain dopaminergic
neurons, influencing ACC

This dopamine-based activation
somehow results in revising the
reward prediction function.
Possibly through direct
influence on Basal ganglia, and
via prefrontal cortex

Frontal
cortex
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Striatum -~

Accumbens .-
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Summary: Temporal Difference ML Model
Predicts Dopaminergic Neuron Acitivity during Learning

» Evidence now of neural reward signals from
— Direct neural recordings in monkeys
— fMRI in humans (1 mm spatial resolution)
— EEG, MEG in humans (1-10 msec temporal resolution)

+ Dopaminergic responses encode Bellman error

» Some differences, and efforts to refine the model
— How/where is the value function encoded in the brain?
— Study timing (e.g., basal ganglia learns faster than PFC ?)
— Role of prior knowledge, rehearsal of experience, multi-task learning?
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You Have Learned a Lot!

» Learning as function
approximation

* Learning as optimization

+ Classification, Regression

+ Bayes optimal classifiers

+ Discriminative vs. Generative
» Bias-variance decomposition
» Cross validation, overfitting

« VC dimension, PAC bounds
+ Conditional independence

* Bayes nets

* Unsupervised, Semi-supervised
« EM

+ Dimensionality reduction

Decision trees

K nearest neighbor
Naive Bayes

Logistic regression
Linear regression
Neural networks
Mixture of Gaussians
Hidden Markov Models
SVM’s

Boosting

PCA

Spectral clustering
Structure learning
MDPs, Reinforcement learning
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BIG PICTURE

m Improving the performance at some task though experience!!! &
before you start any learning task, remember the fundamental questions:

What is the
learning problem?

What loss function
are you optimizing?

Which learning
algorithm?

From what
experience?

With what
guarantees?

What model?

With what

optimization algorithm?

How will you
evaluate it?




What next?
- _

Machine Learning Department Seminar: http://calendar.cs.cmu.eduwml/google_seminar

Machine Learning Lunch talks: http://www.cs.cmu.edu/~learning/
Intelligence Seminars: http//www.cs.cmu.edu/~iseminar/

= Journal:
JMLR - Journal of Machine Learning Research (free, on the web)

= Conferences:
ICML: International Conference on Machine Learning
NIPS: Neural Information Processing Systems
COLT: Computational Learning Theory
UAL: Uncertainty in Al
AlStats: intersection of Statistics and Al
Also AAAI, IJCAI and others

= Some MLD courses:
10-708 Probabilistic Graphical Models (Fall)
10-705 Intermediate Statistics (Fall)
11-762 Language and Statistics Il (Fall)
10-702 Statistical Foundations of Machine Learning (Spring)
10-725 Optimization (Spring)
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What Else Next?

» Poster session, Tuesday May 4, 3-6pm, NSH Atrium

* Final project report due: Wednesday May 5, midnight,
email to 10701-instructors@cs.cmu.edu

* Final exam: Friday May 7, 5:30-8:30pm, DH 2302
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thank you for your hard work!




