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Computational Learning Theory

What general laws constrain inductive learning?
We seek theory to relate:

e Probability of successful learning

e Number of training examples

e Complexity of hypothesis space

e Accuracy to which target function is
approximated

e Manner in which training examples presented




Sample Complexity ek o et ](.i

How many training examples are sufficient to learn
the target concept?

1. If learner proposes instances, as queries to
teacher

e Learner proposes instance z, teacher provides
c(z)
2. If teacher (who knows ¢) provides training
examples

e teacher provides sequence of examples of form
(z,c(2))
@If some random process (e.g., nature) proposes

instances P va

e instance x generated randomly, teacher
provides ¢(z)

Sample Complexity: 3

Given:
e set of instances X
e set of hypotheses H
e set of possible target concepts C c: X = o, 15

Ce
e training instances generated by a fixed, unknown
probability distribution D over X =P (< >
‘_/\\___ =

Learner observes a sequence D of training examples
of form (z, ¢(z)), for some target concept ¢ € C

e instances z are drawn from distribution D
e teacher provides target value c¢(x) for each
Learner must output a hypothesis h estimating ¢

e h is evaluated by its performance on subsequent
instances drawn according to D

Note: randomly drawn instances, noise-free
classifications




True Error of a Hypothesis

Instance space X P(X)=D

Where ¢
and h disagree

Definition: The true error (denoted
errorp(h)) of hypothesis h with respect to
target concept ¢ and distribution D is the
probability that h will misclassify an instance
drawn at random according to D.

errorp(h) = }Z%[C(.’If) # h(z)]

Two Notions of Error

Training error of hypothesis h with respect to
target concept ¢

e How often h(z) # ¢(z) over training instances D

YgeD 8(c(@) # h(z))

errorp(h) = xEE)[C(w) #* h(z)] =

R
training
True error of hypothesis h with respect to ¢ examples
e How often h(z) # c¢(x) over future instances
drawn at random from D
) — Probability
errorp(h) = JIG)IZS[C(I) # h(z)] distribution
P(x)




Two Notions of Error

Training error of hypothesis h with respect to

target concept ¢

e How often h(x) # ¢(z) over training instances D

errorp(h) = xFe’E)[c(x) #* h(x)] =
\

True error of hypothesis h with respect to ¢

e How often h(z) # c(x) over future
drawn at random from D

errorp(h) = llZg[c(:c) # h(z)]

Can we bound
errorp(h)

in terms of
errorp(h)

2?

XgeD 8(c(x) # h(z))

Dl

training
examples

instances

Probability
distribution
P(x)

YzeD 8(c(z) # h(z))

errorp(h) = IEE)[C(%) %+ h(x)] =
\

D

training
examples

errorp(h) = 112%[6(3:) # h(z)]

Probability
distribution
P(x)

Can we bound
errorp(h)

in terms of
errorp(h)

?2?

if D was a set of examples drawn from P and independent of h,
then we could use standard statistical confidence intervals to

determine that with 95% probability, errorp(h) lies in the interval:

errorp(h) (1 — errorp(h))

errorp(h) +1.96

but D is the training data for h ....

n




Version Spaces
Target concept is

the (usually
unknown) boolean

A hypothesis h is consistent with a set fn 1o be learned

training examples D of target concept c if and ¢ X > {0,1}
only if h(z) = ¢(z) for each training example
(z,e(x)) in D.

Consistent(h,D) = (Y{x,c(x)) € D) h(z) = ¢(x)

The version space, V Sy p, with respect to
hypothesis space H and training examples D,
is the subset of hypotheses from H consistent
with all training examples in D.

VSup = {h € H|Consistent(h,D)}

Exhausting the Version Space

Hypothesis space H

(r = training error, error = true error)

Definition: The version space V Sy p is said
to be e-exhausted with respect to ¢ and D, if
every hypothesis h in V' Sy p has true error less
than e with respect to ¢ and D.

(Vh € VSy p) errorp(h) < €




How many examples will e-exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a
sequence of m > 1 independent random
examples of some target concept ¢, then for
any 0 < € < 1, the probability that the
version space with respect to H and D is not
e-exhausted (with respect to ¢) is less than

|H|e—€771

How many examples will e-exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a
sequence of m > 1 independent random
examples of some target concept ¢, then for
any 0 < e <1, the probability that the
version space with respect to H and D is not
e-exhausted (with respect to c) is less than

|H|e—€"l

Interesting! This bounds the probability that any
consistent learner will output a hypothesis h with
error(h) > €

Any(!) learner
that outputs

a hypothesis
consistent
with all
training
examples (i.e.,
an h
contained in
VSyp)
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What it means

[Haussler, 1988]: probability that the version space is not e-exhausted
after m training examples is at most |Hle™ ™

Pr{(3h € H)s.t.(erroryqin(h) = 0)A(errorirye(h) > €)] < |H|e™ ™

!

Suppose we want this probability to be at most 6

1. How many training examples suffice?
1
m > =(In|H| + In(1/6))
€
2. If erroryyqin(h) = 0O then with probability at least (1-9):

errorirye(h) < %(In |H| 4+ In(1/6))




Example: H is Conjunction of Boolean Literals
(ln |H|+1n(1/9))
Consider classification problem f:X->Y:
* instances: <X, X, X; X,> where each X; is boolean

+ learned hypotheses are rules of the form:
- IF <X, X, X; X,> =<0,2,1,>>, THEN Y=1, ELSE Y=0
— i.e., rules constrain any subset of the X;

How many training examples m suffice to assure that with probability
at least 0.9, any consistent learner will output a hypothesis with true
error at most 0.057?

Example: H is Decision Tree

> %(m |H| +In(1/6))

Consider classification problem f:X->Y:
* instances: <X, ... X, where each X; is boolean

» learned hypotheses are decision trees of depth 2, usmg
only two variables X (,\/> i -

[-7,%70. vy fabefs CNN/)/ £
How many training examples m suffice to assure that with probability
at leas any consistent learner will output a hypothesis with true
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PAC Learning

Consider a class C' of possible target concepts
defined over a set of instances X of length n, and a
learner L using hypothesis space H.

Definition: C' is PAC-learnable by L using
H if for all ¢ € C, distributions D over X, €
such that 0 < € < 1/2, and ¢ such that
0<d<1/2,

learner L will with probability at least (1 — 4)
output a hypothesis h € H such that
errorp(h) < e, in time that is polynomial in
1/e, 1/4, n and size(c).

PAC Learning

Consider a class C of possible target concepts
defined over a set of instances X of length n, and a
learner L using hypothesis space H.

Definition: C is PAC-learnable by L using  Sufficient condition:
H if for all ¢ € C, distributions D over X, € Holds if L requires

such that 0 < e < 1/2, and § such that only a polynomial
0<d<1/2, number of training
learner L will with probability at least (1 /£ d) LTI, Gl

. processing per
output a hypothesis h € H such that example is polynomial

errorp(h) < e, in time that is polynomial in
1/e, 1/6, n and size(c).




Agnostic Learning

So far, assumed ¢ € H
Agnostic learning setting: don’t assume ¢ € H
e What do we want then?
— The hypothesis h that makes fewest errors on

. training data
note ¢ here is

the difference e What is sample complexity in this case?

between the \

training error 1

and true error m 2 @(hﬂfﬂ +1n(1/4))
derived from Hoeffding bounds:

Prlerrorp(h) > errorp(h) + €] < g~ 2me’

/ /N

true error  fraining error degree of overfitting

Additive Hoeffding Bounds — Agnostic Learning

* Given mindependent coin flips of coin with Pr(heads) = 6
bound the error in the maximum likelihood estimate 4

Pri0 > 0 4 €] < e2me’

* Relevance to agnostic learning: for any single hypothesis h

2
Prlerrortrue(h) > erroryqin(h) + €] < e2™M¢

» But we must consider all hypotheses in H

Pr((3h € H)erroryye(h) > errorirqin(h)+e] < |H|e_2m62

* So, with probability at least (1-8) every h satisfies

In|H|+Ini
eT'TOT‘true(h,) S erTOTtT‘ain(h) + @
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General Hoeffding Bounds

When estimating the mean 6 inside [a,b] from m examples

—2me2
P10 — E[f]] > €) < 2e(-0)?

When estimating a probability 6 is inside [0,1], so

P10 — E[0]] > ¢) < 2¢72me”

And if we’re interested in only one-sided error, then

P((E[0] — 0) > €) < e=2m’

What if H 1s not finite?

Can’t use our result for finite H

Need some other measure of complexity for H
— Vapnik-Chervonenkis (VC) dimension!

11
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Shattering a Set of Instances

Definition: a dichotomy of a set S is a
partition of S into two disjoint subsets.

Definition: a set of instances S is shattered
by hypothesis space H if and only if for every

_» dichotomy of S there exists some hypothesis
in H consistent with this dichotomy.

Instance space X

The Vapnik-Chervonenkis Dimen-
sion

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space H
defined over instance space X is the size of
the largest finite subset of X shattered by H.
If arbitrarily large finite sets of X can be
shattered by H, then VC(H) = cc.

Instance space X

VC(H)=3

12



Sample Complexity based on VC dimension

How many randomly drawn examples suffice to e-exhaust
VS, p with probability at least (1-5)?

ie., to guarantee that any hypothesis that perfectly fits the
training data is probably (1-8) approximately (g) correct

m > %(4 1002(2/8) + 8VC(H) 10g2(13/¢))

Compare to our earlier results based on |H]|:

m > %(In(l/é) +In|H])

VC dimension: examples

Consider X = <, want to learn c:X->{0,1}
What is VC dimension of N

A, ~ l

+ Open intervals:f,mmhf : .

[HI{ if x >@%then y=1lelse y=0 VUcCK)-1— [
Q
H2: if z >@then y =1 else y =0
or, if x >@then y=0celse y =1 —>\/C(”2>:9\
=°

ey
\u g
+

* Closed intervals: o o
f H3{if@<z<®/theny=1lelsey=0 —— .

Ve(HD =2 ! o
H4: ifa<z<btheny=1else y=0

or, i fa<z<btheny=O0elsey=1

13



VC dimension: examples

Consider X = <, want to learn c:X->{0,1}

What is VC dimension of o ~ X

* Open intervals:
Hl: ifz>atheny=1¢else y=0 VC(H1)=1
H2: ifz >atheny=1else y=0 VC(H2)=2
or, ifx >atheny=0¢e¢lsey=1

* Closed intervals:
H3: ifa<z<btheny=1celse y=0 VC(H3)=2

H4: ifa<z<btheny=1else y=0 VC(H4)=3
or,ifa<zx<btheny=0elsey=1
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