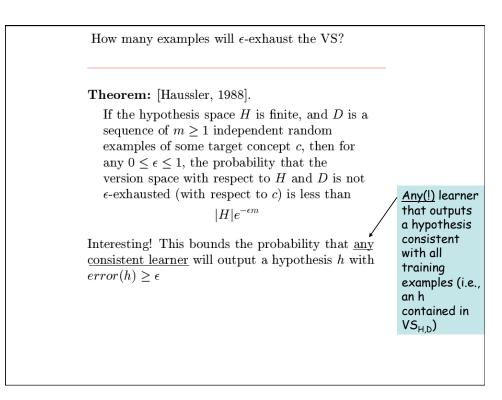


How many examples will ϵ -exhaust the VS?

Theorem: [Haussler, 1988].

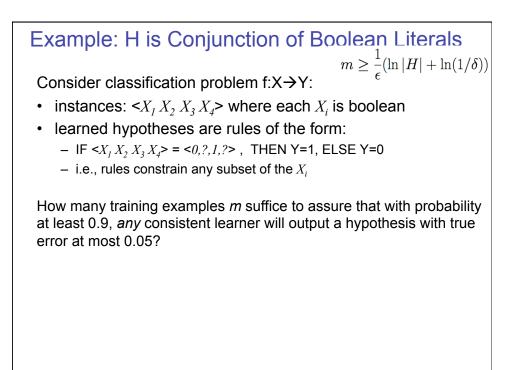
If the hypothesis space H is finite, and D is a sequence of $m \ge 1$ independent random examples of some target concept c, then for any $0 \le \epsilon \le 1$, the probability that the version space with respect to H and D is not ϵ -exhausted (with respect to c) is less than

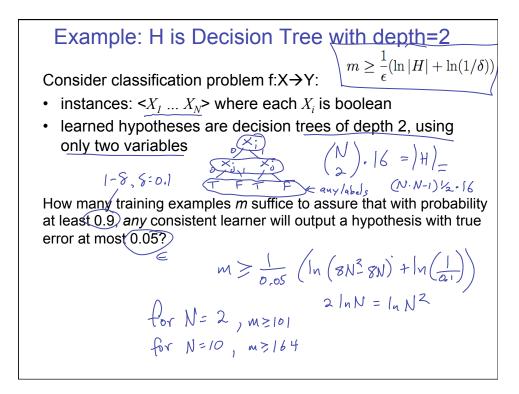
 $|H|e^{-\epsilon m}$



hyp space H, let
$$h_{1}, h_{2} \cdots h_{1c}$$
 be the byps in H with true error $\geq \epsilon$
pick h_{2}
prob h_{2} consist with one frain example $\leq 1 - \epsilon$
ii m iid train examps $(1 - \epsilon)^{m}$
Prob that at least one of $h_{1} \cdots h_{k}$ will be consist with m examps
 $\leq k(1 - \epsilon)^{m}$
prob $\leq |H|(1 - \epsilon)^{m}$
In seneral for $0 \leq \epsilon \leq 1$ then $(1 - \epsilon) \leq \epsilon^{-\epsilon}$
 $\leq |H| e^{-\epsilon m}$

What it means[Haussler, 1988]: probability that the version space is not
$$\varepsilon$$
-exhausted
after m training examples is at most $|H|e^{-\epsilon m}$ $\Pr[(\exists h \in H)s.t.(error_{train}(h) = 0) \land (error_{true}(h) > \epsilon)] \leq |H|e^{-\epsilon m}$ \uparrow Suppose we want this probability to be at most δ 1. How many training examples suffice?
 $m \geq \frac{1}{\epsilon}(\ln |H| + \ln(1/\delta))$ 2. If $error_{train}(h) = 0$ then with probability at least (1- δ):
 $error_{true}(h) \leq \frac{1}{m}(\ln |H| + \ln(1/\delta))$

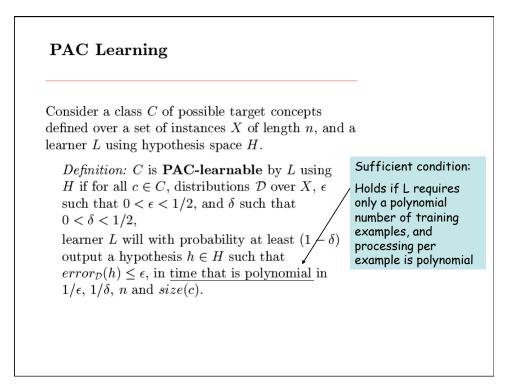


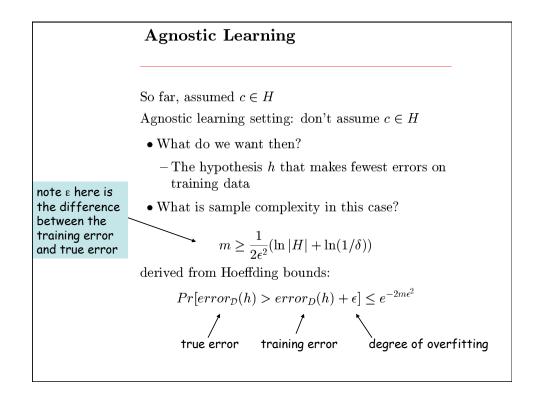


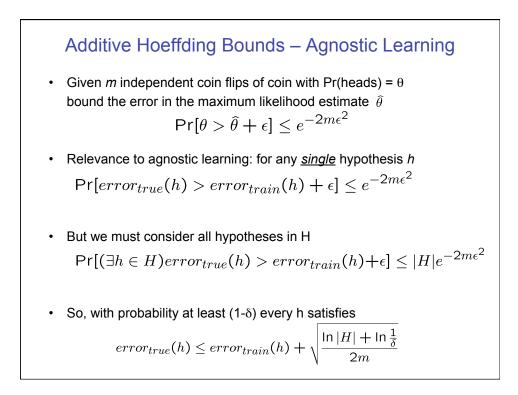
PAC Learning

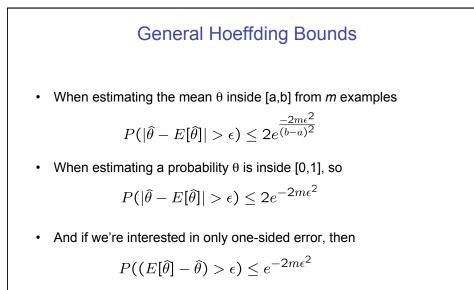
Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$, learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c).



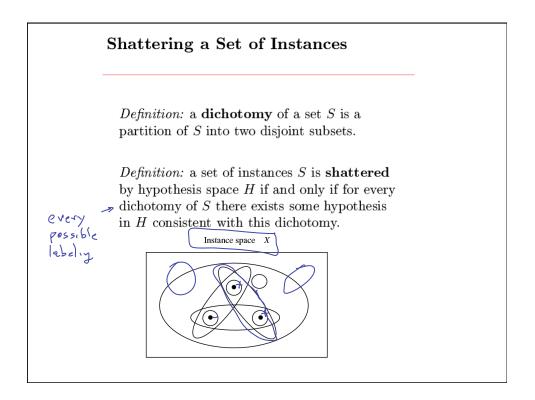


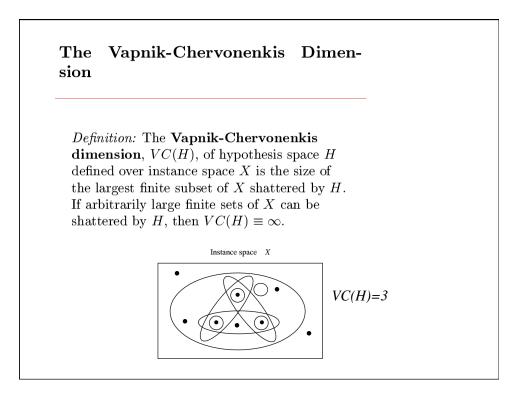




What if H is not finite?

- Can't use our result for finite H
- Need some other measure of complexity for H
 - Vapnik-Chervonenkis (VC) dimension!





Sample Complexity based on VC dimension

How many randomly drawn examples suffice to ε -exhaust VS_{HD} with probability at least (1- δ)?

ie., to guarantee that any hypothesis that perfectly fits the training data is probably $(1-\delta)$ approximately (ϵ) correct

$$m \geq rac{1}{\epsilon} (4 \log_2(2/\delta) + 8VC(H) \log_2(13/\epsilon))$$

Compare to our earlier results based on |H|:

$$m \ge \frac{1}{\epsilon} (\ln(1/\delta) + \ln|H|)$$

