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Computational Learning Theory

What general laws constrain inductive learning?
We seek theory to relate:

e Probability of successful learning

e Number of training examples

e Complexity of hypothesis space

e Accuracy to which target function is
approximated

e Manner in which training examples presented




What it means

[Haussler, 1988]: probability that the version space is not e-exhausted
after m training examples is at most |H|e™ ™
Pr((3h € H)s.t.(errorirqin(h) = 0)A(erroryye(h) > €)] < |H|e™™

!

Suppose we want this probability to be at most 6

1. How many training examples suffice?
1
m > =(In|H| 4 In(1/6))
€
2. If erroryyqin(h) = 0 then with probability at least (1-9):

errorue(h) < %(m \H| + 1n(1/6))

Agnostic Learning

Result we proved: probability, after m training examples, that H
contains a hypothesis h with zero training error, but true error
greater than ¢ is bounded

Pr[(3h € H)s.t.(erroryqin(h) = 0)A(errorigrye(h) > €)] < |Hle ™

Agnostic case: don’t know whether H contains a perfect hypothesis

Pr[(3h € H)s.t.(erroryue(h) > € + erroryan(h))] < |Hle 2™
*

overfitting




General Hoeffding Bounds

*  When estimating the mean 6 inside [a,b] from m examples

—2me2
P10 — E[f]] > €) < 2e(-0)?

* When estimating a probability 6 is inside [0,1], so

P10 — E[0]] > ¢) < 2¢72me”

* And if we're interested in only one-sided error, then

P((E[0] — 0) > €) < e=2m’

PAC Learning

Consider a class C of possible target concepts
defined over a set of instances X of length n, and a
learner L using hypothesis space H.

Definition: C' is PAC-learnable by L using
H if for all ¢ € C, distributions D over X, €
such that 0 < e < 1/2, and § such that
0<d<1/2,

learner L will with probability at least (1 — J)
output a hypothesis h € H such that
errorp(h) < e, in time that is polynomial in
1/e, 1/6, n and size(c).
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Definition: C is PAC-learnable by L using ~ Sufficient
H if for all ¢ € C, distributions D over X, € Holds if L fequires
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ondition:

Sample Complexity based on VC dimension

How many randomly drawn examples suffice to e-exhaust
VS, p with probability at least (1-8)?

ie., to guarantee that any hypothesis that perfectly fits the
training data is probably (1-8) approximately (g) correct

m > 2(41095(2/5) + 8VC(H) 1095(13/6))

Compare to our earlier results based on |H|:

m > %(In(l/cS) + In|HJ)




The Vapnik-Chervonenkis Dimen-
sion

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space H
defined over instance space X is the size of
the largest finite subset of X shattered by H.
If arbitrarily large finite sets of X can be
shattered by H, then VC(H) = .

Instance space X

VC(H)=3

VC dimension: examples

What is VC dimension of lines in a plane?
© Hy={((wy+wix; +Wyx,)>0 2 y=1) }

Ve (Hy) =35

o
)
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VC dimension: examples

What is VC dimension of
o Hy={((wy+wWx; +W,x,)>0 2> y=1)}
- VC(H,)=3

» For H, = linear separating hyperplanes in n dimensions,
VC(H,)=n+1

Ih{

X

Can you give an upper bound on VC(H) in
terms of |H|, for any hypothesis space H?
(hint: yes)

\/C (H) =K < shafleye ktﬂ;ﬂs‘qucs
Q‘< !Ql&‘(\zs D‘p’{‘tcﬁz
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More VC Dimension Examples to Think About

* Logistic regression over n continuous features
— Over n boolean features?

* Linear SVM over n continuous features

» Decision trees defined over n boolean features
Fi<X,, .. X>>Y

» Decision trees of depth 2 defined over n features

* How about 1-nearest neighbor?

Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the
training data perfectly is probably (1-8) approximately (&) correct?

m > 2(41092(2/8) + 8VC(H) 109>(13/6))

How tight is this bound?




Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the
training data perfectly is probably (1-0) approximately (¢) correct?

m > L(4109(2/6) + 8V C(H) 1095(13/¢))
€
How tight is this bound?

Lower bound on sample complexity (Ehrenfeucht et al., 1989):

Consider any class C of concepts such that VC(C) > 1, any learner L,
any 0 <€ < 1/8,and any 0 < § <0.01. Then there exists a distribution D
and a target concept in C, such that if L observes fewer examples than
ve(e) -1

1
max |—log(1/6),
; a(1/9) 3¢

Then with probability at least 8, L outputs a hypothesis with errorp(h) > €

Agnostic Learning: VC Bounds

[Schélkopf and Smola, 2002]

With probability at least (1-0) every h € H satisfies

0 10 20 30 40 50 6 70 8 90 100
Size of tree (number of nodes)




Structural Risk Minimization  [Vapnik]

Which hypothesis space should we choose?
+ Bias / variance tradeoff

o H3

SRM: choose H to minimize bound on true error!

\J VCO(H)(In 320 +1) +1n §

m

ETTOTtryue ( h) < erTOTirain ( h) +

* unfortunately a somewhat loose bound...

Mistake Bounds

So far: how many examples needed to learn?
What about: how many mistakes before
convergence?
Let’s consider similar setting to PAC learning:
e Instances drawn at random from X according to
distribution D
e Learner must classify each instance before

receiving correct classification from teacher

e Can we bound the number of mistakes learner
makes before converging?




Mistake Bounds: Find-S <= <x4\"- X
ZU,I } - <‘ovl‘)uuc-l’mn5 y:Q

comnstoly anX

Consider Find-S when H = conjunction of boole
literals Liteva

FIND-S:

e Initialize h to the most specific hypothesis
LA AL A= . LN, < /\@%A@szom.h
e For each positive training instance g '
—Remove from h any literal that is not
satisfied by x QF’ AXFo yot

e Output hypothesis h. o

How many mistakes before converging to correct h?

N+ |

Mistake Bounds: Halving Algorithm
1. Initialize VS < H

2. For each training eb(ample,

* remove from VS every
hypothesis that

e Learn concept using version space misclassifies this example
CANDIDATE-ELIMINATION algorithm

Consider the Halving Algorithm:

e Classify new instances by majority vote of ~ n < ) o3 C ( H[)
version space members

How many mistakes before converging to correct h?
("\-I‘\qu{()/ lVS} = )H',

e ... in worst case? <~
th*cxr § 'M'S?twkc / /g_) )
l
/a

e ... in best case?
\ N s s‘f‘akrs Z

19 C‘-\) -

U
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Optimal Mistake Bounds

Let M4(C) be the max number of mistakes made

by algorithm A to learn concepts in C'. (maximum

over all possible ¢ € C, and all possible training ”

sequences) N
My(C) = max Ma(c)

Y-,

Definition: Let C' be an arbitrary non-empty
concept class. The optimal mistake bound for
C, denoted Opt(C), is the minimum over all
possible learning algorithms A of M4(C).
Opt(C) = M4(C)

= min
A€learning algorithms

VC(C) S Opt(C) S MHaIL'ing(C) S lng('C')

+a

Weighted Majority Algorithm

Wypetheas H

g
a; denotes the i'* prediction algorithm in the pool A
of algorithms. w; denotes the weight associated with
Q;.
—For all 7 initialize w; < 1

—For each training example (z, ¢(z))

* Initialize gy and ¢; to 0 when B=0,

s : . equivalent to
* For each prediction algorithm a; e Db

“If ai(z) = 0 then gy + go + w; algorithm...

If a;(z) = 1 then ¢ + ¢ + w;
* If q; > qo then predict ¢(z) =1
If gy > ¢, then predict ¢(z) =0
If ¢ = qp then predict 0 or 1 at random for
c(z)
* For each prediction algorithm a; in A do
If ai(z) # ¢(z) then w; + pw;
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Weighted Majority

Even algorithms
that learn or
change over time...

[Relative mistake bound for
WEIGHTED-MAJORITY] Let D be-dny sequence of
training examples, let A be any set of n prediction /5 _ A
algorithms, and let| £ |be the minimum number of

mistakes made by any algorithm in A for the 4:) 15 best mejmlo{ .
training sequence D. Then the number of mistakes

1
over D made by the WEI(,HTED MAJORITY all w's '"rhq)(y =)
algorithm using = 5 1s at most
< I
Mm< 2.4(k + log, n) tles o e

@W\q«‘f (51[\.,,4/ w. 0\0 Ql C/\/ (css “”‘HMZ‘-
@ What 15 suwmq I”C-(\uulw@ p’@q/{ a- 5‘ [ef M be ® v Les

l"‘q‘Q‘ 5:‘(\”\”#\,,/{5 - ot whol- ;A q().

‘Z‘«P‘?ﬂc—/ lmrj%qu Jum péu/eflﬁ = / 48
o M wnshbe 0 3/@ "

What You Should Know

« Sample complexity varies with the learning setting
— Learner actively queries trainer
— Examples provided at random

*  Within the PAC learning setting, we can bound the probability that
learner will output hypothesis with given error
— For ANY consistent learner (case where ¢ € H)
— For ANY “best fit” hypothesis (agnostic learning, where perhaps c not in H)

» VC dimension as measure of complexity of H
+ Mistake bounds

» Conference on Learning Theory: http://www.learningtheory.org
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