

What it means

[Haussler, 1988]: probability that the version space is not ϵ -exhausted after *m* training examples is at most $|H|e^{-\epsilon m}$

 $\Pr[(\exists h \in H) s.t.(error_{train}(h) = 0) \land (error_{true}(h) > \epsilon)] \leq |H|e^{-\epsilon m}$

Suppose we want this probability to be at most $\boldsymbol{\delta}$

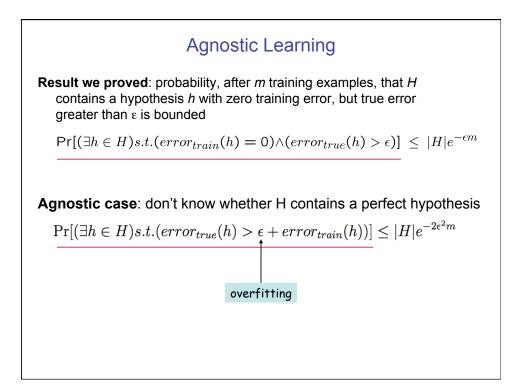
1. How many training examples suffice?

1

$$m \geq \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$$

2. If $error_{train}(h) = 0$ then with probability at least (1- δ):

$$error_{true}(h) \leq rac{1}{m}(\ln|H| + \ln(1/\delta))$$



General Hoeffding Bounds

• When estimating the mean θ inside [a,b] from *m* examples

$$P(|\hat{\theta} - E[\hat{\theta}]| > \epsilon) \le 2e^{\frac{-2m\epsilon^2}{(b-a)^2}}$$

• When estimating a probability θ is inside [0,1], so

$$P(|\hat{\theta} - E[\hat{\theta}]| > \epsilon) \le 2e^{-2m\epsilon^2}$$

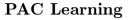
· And if we're interested in only one-sided error, then

$$P((E[\hat{\theta}] - \hat{\theta}) > \epsilon) \le e^{-2m\epsilon^2}$$

PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$, learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c).



Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$,

learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c). Sufficient condition:

Holds if L requires only a polynomial number of training examples, and processing per example is polynomial

Sample Complexity based on VC dimension

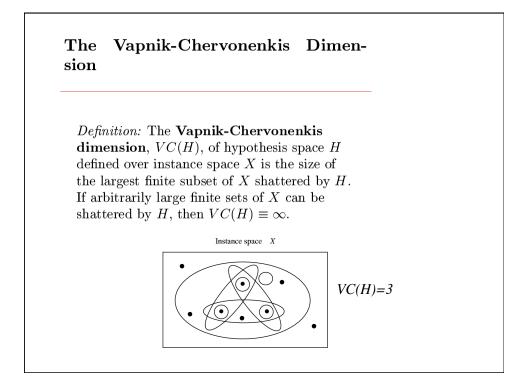
How many randomly drawn examples suffice to ϵ -exhaust VS_{H,D} with probability at least (1- δ)?

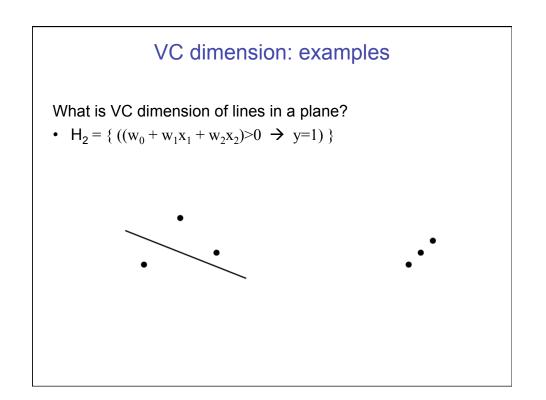
ie., to guarantee that any hypothesis that perfectly fits the training data is probably $(1-\delta)$ approximately (ϵ) correct

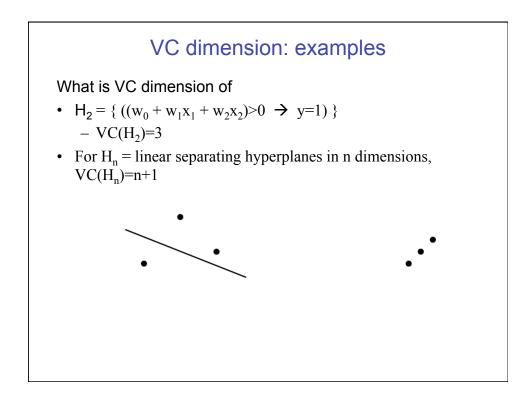
$$m \geq rac{1}{\epsilon} (4 \log_2(2/\delta) + 8VC(H) \log_2(13/\epsilon))$$

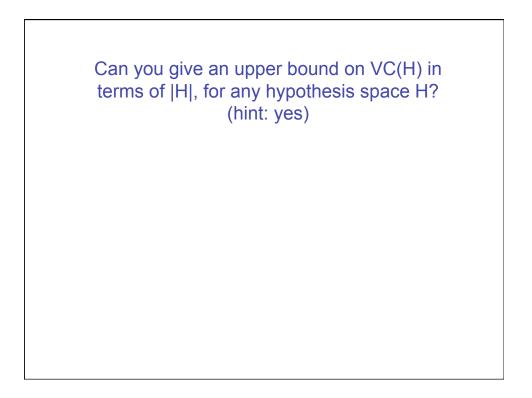
Compare to our earlier results based on |H|:

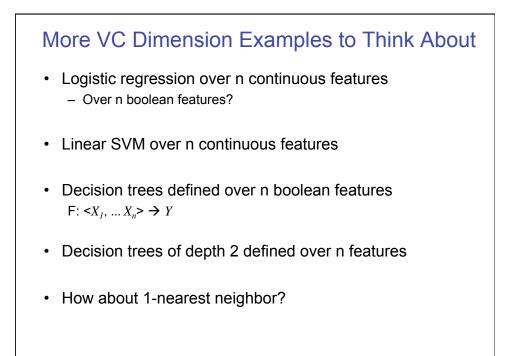
$$m \ge rac{1}{\epsilon} (\ln(1/\delta) + \ln|H|)$$











How many examples *m* suffice to assure that any hypothesis that fits the training data perfectly is probably $(1-\delta)$ approximately (ε) correct?

$$m \geq \frac{1}{\epsilon} (4\log_2(2/\delta) + 8VC(H)\log_2(13/\epsilon))$$

How tight is this bound?

Tightness of Bounds on Sample Complexity

How many examples *m* suffice to assure that any hypothesis that fits the training data perfectly is probably $(1-\delta)$ approximately (ε) correct?

$$m \geq rac{1}{\epsilon} (4 \log_2(2/\delta) + 8VC(H) \log_2(13/\epsilon))$$

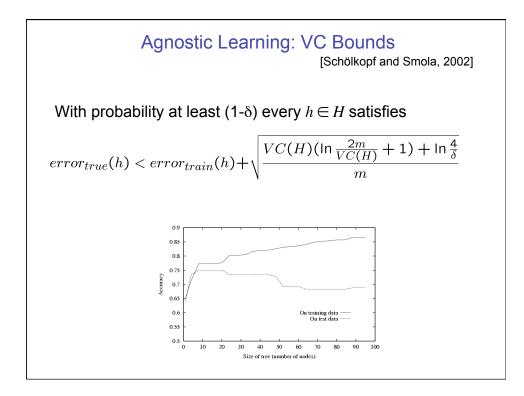
How tight is this bound?

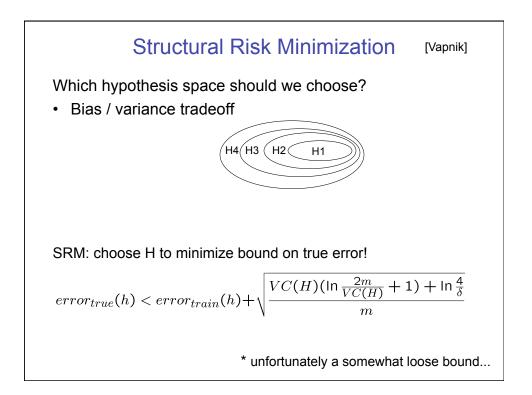
Lower bound on sample complexity (Ehrenfeucht et al., 1989):

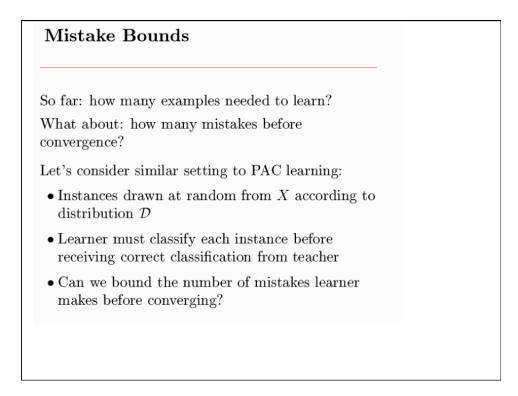
Consider any class C of concepts such that VC(C) > 1, any learner L, any $0 < \varepsilon < 1/8$, and any $0 < \delta < 0.01$. Then there exists a distribution \mathcal{D} and a target concept in C, such that if L observes fewer examples than

$$\max\left[\frac{1}{\epsilon}\log(1/\delta),\frac{VC(C)-1}{32\epsilon}\right]$$

Then with probability at least δ , L outputs a hypothesis with $error_{\mathcal{D}}(h) > \epsilon$







Mistake Bounds: Find-S

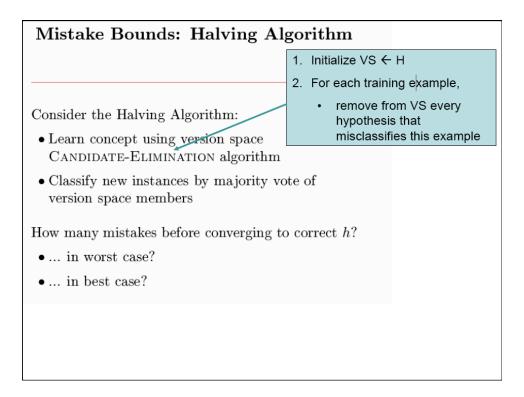
Consider Find-S when H = conjunction of boolean literals

FIND-S:

- Initialize h to the most specific hypothesis $l_1 \wedge \neg l_1 \wedge l_2 \wedge \neg l_2 \dots l_n \wedge \neg l_n$
- For each positive training instance x

 Remove from h any literal that is not satisfied by x
- Output hypothesis h.

How many mistakes before converging to correct h?



Optimal Mistake Bounds

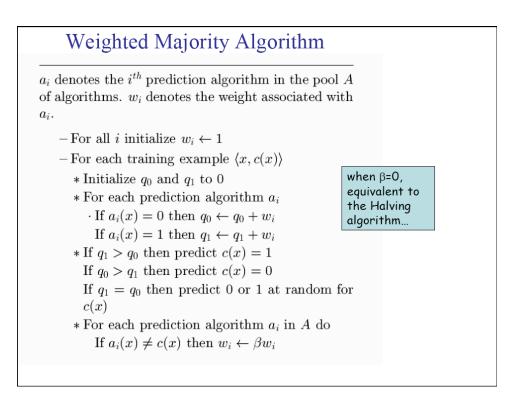
Let $M_A(C)$ be the max number of mistakes made by algorithm A to learn concepts in C. (maximum over all possible $c \in C$, and all possible training sequences)

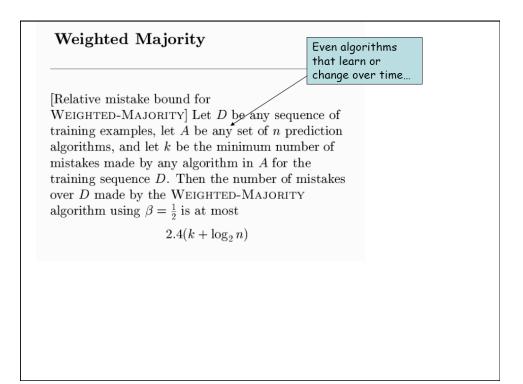
 $M_A(C) \equiv \max_{c \in C} M_A(c)$

Definition: Let C be an arbitrary non-empty concept class. The **optimal mistake bound** for C, denoted Opt(C), is the minimum over all possible learning algorithms A of $M_A(C)$.

$$Opt(C) \equiv \min_{A \in learning algorithms} M_A(C)$$

 $VC(C) \leq Opt(C) \leq M_{Halving}(C) \leq log_2(|C|).$



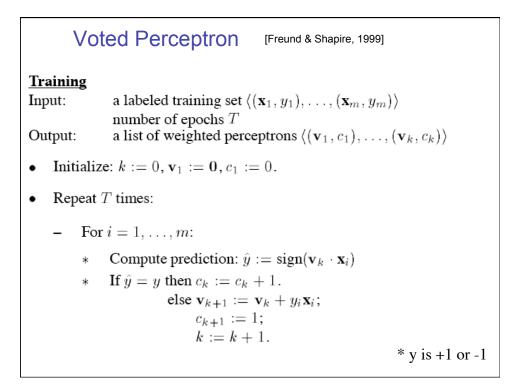


What You Should Know

- · Sample complexity varies with the learning setting
 - Learner actively queries trainer
 - Examples provided at random
- Within the PAC learning setting, we can bound the probability that learner will output hypothesis with given error
 - For ANY consistent learner (case where $c \in H$)
 - For ANY "best fit" hypothesis (agnostic learning, where perhaps c not in H)
- VC dimension as measure of complexity of H
- Mistake bounds
- Conference on Learning Theory: <u>http://www.learningtheory.org</u>

Extra slides

Training Input: a labeled training set $\langle (\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_m, y_m) \rangle$ number of epochs Ta list of weighted perceptrons $\langle (\mathbf{v}_1, c_1), \ldots, (\mathbf{v}_k, c_k) \rangle$ Output: Initialize: k := 0, $v_1 := 0$, $c_1 := 0$. • Voted Perceptron Repeat T times: [Freund & Shapire, 1999] For i = 1, ..., m: Compute prediction: $\hat{y} := \operatorname{sign}(\mathbf{v}_k \cdot \mathbf{x}_i)$ If $\hat{y} = y$ then $c_k := c_k + 1$. else $\mathbf{v}_{k+1} := \mathbf{v}_k + y_i \mathbf{x}_i$; $c_{k+1} := 1;$ k := k + 1.**Prediction** Given: the list of weighted perceptrons: $\langle (\mathbf{v}_1, c_1), \ldots, (\mathbf{v}_k, c_k) \rangle$ an unlabeled instance: x compute a predicted label \hat{y} as follows: $s = \sum_{i=1}^{\kappa} c_i \operatorname{sign}(\mathbf{v}_i \cdot \mathbf{x}); \quad \hat{y} = \operatorname{sign}(s) .$ * here y is +1 or -1



Mistake Bounds for Voted Perceptron

When data is linearly separable:

THEOREM 1 (BLOCK, NOVIKOFF) Let $\langle (\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_m, y_m) \rangle$ be a sequence of labeled examples with $||\mathbf{x}_i|| \leq R$. Suppose that there exists a vector \mathbf{u} such that $||\mathbf{u}|| = 1$ and $y_i(\mathbf{u} \cdot \mathbf{x}_i) \geq \gamma$ for all examples in the sequence. Then the number of mistakes made by the online perceptron algorithm on this sequence is at most $(R/\gamma)^2$.

Mistake Bounds for Voted Perceptron

When data is linearly separable:

THEOREM 1 (BLOCK, NOVIKOFF) Let $\langle (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m) \rangle$ be a sequence of labeled examples with $||\mathbf{x}_i|| \leq R$. Suppose that there exists a vector \mathbf{u} such that $||\mathbf{u}|| = 1$ and $y_i(\mathbf{u} \cdot \mathbf{x}_i) \geq \gamma$ for all examples in the sequence. Then the number of mistakes made by the online perceptron algorithm on this sequence is at most $(R/\gamma)^2$.

When not linearly separable:

THEOREM 2 Let $\langle (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m) \rangle$ be a sequence of labeled examples with $||\mathbf{x}_i|| \leq R$. Let \mathbf{u} be any vector with $||\mathbf{u}|| = 1$ and let $\gamma > 0$. Define the deviation of each example as

$$d_i = \max\{0, \gamma - y_i(\mathbf{u} \cdot \mathbf{x}_i)\},\$$

and define $D = \sqrt{\sum_{i=1}^{m} d_i^2}$. Then the number of mistakes of the online perceptron algorithm on this sequence is bounded by

$$\left(\frac{R+D}{\gamma}\right)^2.$$