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Computational Learning Theory

What general laws constrain inductive learning?
We seek theory to relate:

e Probability of successful learning

e Number of training examples

e Complexity of hypothesis space

e Accuracy to which target function is
approximated

e Manner in which training examples presented




What it means

[Haussler, 1988]: probability that the version space is not e-exhausted
after m training examples is at most |H|e™ ™
Pr((3h € H)s.t.(errorirqin(h) = 0)A(erroryye(h) > €)] < |H|e™™

!

Suppose we want this probability to be at most 6

1. How many training examples suffice?
1
m > =(In|H| 4 In(1/6))
€
2. If erroryyqin(h) = 0 then with probability at least (1-9):

errorue(h) < %(m \H| + 1n(1/6))

Agnostic Learning

Result we proved: probability, after m training examples, that H
contains a hypothesis h with zero training error, but true error
greater than ¢ is bounded

Pr[(3h € H)s.t.(erroryqin(h) = 0)A(errorigrye(h) > €)] < |Hle ™

Agnostic case: don’t know whether H contains a perfect hypothesis

Pr[(3h € H)s.t.(erroryue(h) > € + erroryan(h))] < |Hle 2™
*

overfitting




General Hoeffding Bounds

* When estimating the mean 6 inside [a,b] from m examples

—2me2
P10 — E[f]] > €) < 2e(-0)?

* When estimating a probability 6 is inside [0,1], so

P10 — E[0]] > ¢) < 2¢72me”

* And if we're interested in only one-sided error, then

P((E[0] — 0) > €) < e=2m’

PAC Learning

Consider a class C of possible target concepts
defined over a set of instances X of length n, and a
learner L using hypothesis space H.

Definition: C' is PAC-learnable by L using
H if for all ¢ € C, distributions D over X, €
such that 0 < e < 1/2, and § such that
0<d<1/2,

learner L will with probability at least (1 — J)
output a hypothesis h € H such that
errorp(h) < e, in time that is polynomial in
1/e, 1/6, n and size(c).




PAC Learning

Consider a class C' of possible target concepts
defined over a set of instances X of length n, and a
learner L using hypothesis space H.

Definition: C is PAC-learnable by L using  Sufficient condition:
H if for all ¢ € C, distributions D over X, € Holds if L requires

such that 0 < e < 1/2, and § such that only a polynomial
0<d<1/2, number of training
learner L will with probability at least (1 4~ 4) examples, and

. processing per
output a hypothesis h € H such that example is polynomial

errorp(h) < e, in time that is polynomial in
1/e, 1/4, n and size(c).

Sample Complexity based on VC dimension

How many randomly drawn examples suffice to e-exhaust
VS, p with probability at least (1-8)?

ie., to guarantee that any hypothesis that perfectly fits the
training data is probably (1-8) approximately (g) correct

m > 2(41095(2/5) + 8VC(H) 1095(13/6))

Compare to our earlier results based on |H|:

m > %(In(l/cS) + In|HJ)




The Vapnik-Chervonenkis Dimen-
sion

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space H
defined over instance space X is the size of
the largest finite subset of X shattered by H.
If arbitrarily large finite sets of X can be
shattered by H, then VC(H) = .

Instance space X

VC(H)=3

VC dimension: examples

What is VC dimension of lines in a plane?
© Hy={((wy+wix; +Wyx,)>0 2 y=1) }




VC dimension: examples

What is VC dimension of
o Hy={((wy+wWx; +W,x,)>0 2> y=1)}
- VC(H,)=3

» For H, = linear separating hyperplanes in n dimensions,
VC(H,)=n+1

Can you give an upper bound on VC(H) in
terms of |H|, for any hypothesis space H?
(hint: yes)




More VC Dimension Examples to Think About

* Logistic regression over n continuous features
— Over n boolean features?

* Linear SVM over n continuous features

» Decision trees defined over n boolean features
Fi<X,, .. X>>Y

» Decision trees of depth 2 defined over n features

* How about 1-nearest neighbor?

Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the
training data perfectly is probably (1-8) approximately (&) correct?

m > 2(41092(2/8) + 8VC(H) 109>(13/6))

How tight is this bound?




Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the
training data perfectly is probably (1-0) approximately (¢) correct?

m > L(4109(2/6) + 8V C(H) 1095(13/¢))
€
How tight is this bound?

Lower bound on sample complexity (Ehrenfeucht et al., 1989):

Consider any class C of concepts such that VC(C) > 1, any learner L,
any 0 <€ < 1/8,and any 0 < § <0.01. Then there exists a distribution D
and a target concept in C, such that if L observes fewer examples than
ve(e) -1

1
max |—log(1/6),
; a(1/é) 3¢

Then with probability at least 8, L outputs a hypothesis with errorp(h) > €

Agnostic Learning: VC Bounds

[Schélkopf and Smola, 2002]

With probability at least (1-0) every h € H satisfies

VOH)(In &8y + 1 +1ng
errorirye(h) < errortmm(h)ﬁ—\j VC(H) )

m
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Structural Risk Minimization  [Vapnik]

Which hypothesis space should we choose?
+ Bias / variance tradeoff

o H3

SRM: choose H to minimize bound on true error!

\J VCO(H)(In 320 +1) +1n §

m

ETTOTtryue ( h) < erTOTirain ( h) +

* unfortunately a somewhat loose bound...

Mistake Bounds

So far: how many examples needed to learn?
What about: how many mistakes before
convergence?
Let’s consider similar setting to PAC learning:
e Instances drawn at random from X according to
distribution D
e Learner must classify each instance before

receiving correct classification from teacher

e Can we bound the number of mistakes learner
makes before converging?




Mistake Bounds: Find-S

Consider Find-S when H = conjunction of boolean
literals

FIND-S:

e Initialize h to the most specific hypothesis
LA-LALASL.. 1, A=,
e For each positive training instance x

—Remove from h any literal that is not
satisfied by x

e Output hypothesis h.

How many mistakes before converging to correct h?

Mistake Bounds: Halving Algorithm

1. Initialize VS < H

2. For each training eb(ample,

* remove from VS every
hypothesis that

e Learn concept using version space misclassifies this example

Consider the Halving Algorithm:

CANDIDATE-ELIMINATION algorithm

e Classify new instances by majority vote of
version space members

How many mistakes before converging to correct h?
e ... in worst case?

e ... in best case?




Optimal Mistake Bounds

Let M4(C) be the max number of mistakes made
by algorithm A to learn concepts in C'. (maximum
over all possible ¢ € C, and all possible training
sequences)

My(C) = max Ma(c)

Definition: Let C' be an arbitrary non-empty
concept class. The optimal mistake bound for
C, denoted Opt(C), is the minimum over all
possible learning algorithms A of M4(C).
Opt(C) = M4(C)

= min
A€learning algorithms

VC(C) S Opt(C) S MHaIL'in_q(C) S lng('C')

Weighted Majority Algorithm

a; denotes the i'* prediction algorithm in the pool A
of algorithms. w; denotes the weight associated with
Q;.

—For all 7 initialize w; < 1

—For each training example (z, ¢(z))

* Initialize ¢y and ¢; to 0 when [i:O,
o . ) equivalent to
* For each prediction algorithm a; the Halving
-If a;i(x) = 0 then gy < qo + w; algorithm ..

If a;(z) = 1 then ¢ + ¢ + w;
* If q; > qo then predict ¢(z) =1
If gy > ¢; then predict ¢(z) =0

If ¢1 = qo then predict 0 or 1 at random for

c(z)
* For each prediction algorithm a; in A do
If ai(z) # ¢(z) then w; + pw;
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Weighted Majority

Even algorithms
that learn or

change over time...

[Relative mistake bound for
WEIGHTED-MAJORITY] Let D be-dny sequence of
training examples, let A be any set of n prediction
algorithms, and let & be the minimum number of
mistakes made by any algorithm in A for the
training sequence D. Then the number of mistakes
over D made by the WEIGHTED-MAJORITY
algorithm using 3 = % is at most

2.4(k +log, n)
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What You Should Know

Sample complexity varies with the learning setting
— Learner actively queries trainer
— Examples provided at random

Within the PAC learning setting, we can bound the probability that
learner will output hypothesis with given error

— For ANY consistent learner (case where ¢ € H)
— For ANY “best fit” hypothesis (agnostic learning, where perhaps c not in H)
VC dimension as measure of complexity of H

Mistake bounds

Conference on Learning Theory: http://www.learningtheory.org

Extra slides
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Training

Input: a labeled training set {((x1.y1). . ... (Xm0 . U ) )
number of epochs 7’
Output: a list of weighted perceptrons {((vi.c1).....(ve.cr))

e Initialize: £k := 0, vy := 0, ¢y := 0.

e Repeat 7" times: Voted Perceptron

_ Fori — 1..... m [Freund & Shapire, 1999]
# Compute prediction: y := sign(vg - X;)
# Ify =—ythency = ¢ + 1.
else vie 1 1= v + X
Crqr = 13
k= k—+ 1.
Prediction
Given: the list of weighted perceptrons: {((vi.c1),. ... (Ve.cr))

an unlabeled instance: x
compute a predicted label ¢ as follows:

k
s = Zv,— sign(v; - X): y = sign(s) .
i=1

*hereyis+1 or-1

Voted Perceptron  iFreund & shapire, 1999]

Training

Input: a labeled training set { (X1, 41}, . ... (Xps Y )
number of epochs 7'

Output: a list of weighted perceptrons ((vq, ¢}, ..., (Vi ck))

e Initialize: k :=0,vy; := 0, ¢ := 0.

e Repeat 7" times:

*  Compute prediction: y := sign(vy - X;)
* Ify=wythencg :=cp + 1.
else Vi1 i= Vi + ¥iX;;
Cry1 = [;
k=k+ 1.
*yis+lor-1
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Mistake Bounds for Voted Perceptron

When data is linearly separable:

THEOREM 1 (BLOCK, NOVIKOFF) Let ((X1,41),-- ., (Xm, ym)) be a sequence oflabeled
examples with ||x;|| < R. Suppose that there exists a vector u such that ||u|| = 1 and
yi(w - x;) > ~ for all examples in the sequence. Then the number of mistakes made by the
online perceptron algorithm on this sequence is at most (R/~)?.

15



Mistake Bounds for Voted Perceptron

When data is linearly separable:

THEOREM 1 (BLOCK, NOVIKOFF) Let{((X1,y1),-. -, (Xm, ym)) be a sequence of labeled
examples with ||x;|| < R. Suppose that there exists a vector u such that ||u|| = 1 and
yi(u - X;) > v for all examples in the sequence. Then the number of mistakes made by the
online perceptron algorithm on this sequence is at most ( R/~)>.

When not linearly separable:

THEOREM 2 Let ((X1,41), - - -, (Xm, ¥m)) be a sequence of labeled examples with ||x;|| <
R. Let u be any vector with ||u|| = 1 and let v > 0. Define the deviation of each example
as

di = max{0,y —yi(u-x;)},

and define D = /""", d?. Then the number of mistakes of the online perceptron algo-
rithm on this sequence is bounded by

<H+/))"’
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