EM Algorithm

Aarti Singh

Slides courtesy: Eric Xing, Carlos Guetrin

Machine Learning 10-701/15-781 Feb 17, 2010

K-means Recap ...

- Randomly initialize *k* centers $\Box \ \mu^{(0)} = \mu_1^{(0)}, \dots, \mu_k^{(0)}$
- Classify: Assign each point j∈ {1,...m} to nearest center:

 $\square \quad C^{(t)}(j) \leftarrow \arg\min_i ||\mu_i - x_j||^2$

• **Recenter**: μ_i becomes centroid of its point: $\square \quad \mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:C(j)=i} ||\mu - x_j||^2$

 \Box Equivalent to $\mu_i \leftarrow$ average of its points!

What is K-means optimizing?

Potential function F(µ,C) of centers µ and point allocations C:

$$F(\mu, C) = \sum_{j=1}^{m} ||\mu_{C(j)} - x_j||^2$$

Optimal K-means:
 □ min_µmin_c F(µ,C)

K-means algorithm

• Optimize potential function: $\min_{\mu} \min_{C} F(\mu, C) = \min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2$

• K-means algorithm:

(1) Fix µ, optimize C

000

$$\min_{C(1),C(2),\dots,C(m)} \sum_{j=1}^m \|\mu_{C(j)} - x_j\|^2$$

$$= \sum_{j=1}^{m} \min_{\substack{C(j) \\ C(j)}} \|\mu_{C(j)} - x_j\|^2$$

Exactly first step – assign each point to the nearest cluster center

K-means algorithm

- Optimize potential function: $\min_{\mu} \min_{C} F(\mu, C) = \min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2$
- K-means algorithm:

(2) Fix C, optimize μ

$$\min_{\mu_1,\mu_2,\dots\mu_K} \sum_{i=1}^K \sum_{j:C(j)=i} \|\mu_i - x_j\|^2$$
$$= \sum_{i=1}^K \min_{\substack{\mu_i \ j:C(j)=i}} \sum_{j:C(j)=i} \|\mu_i - x_j\|^2$$
Solution: average of points in cluster i Exactly second step (re-center)

K-means algorithm

- Optimize potential function: $\min_{\mu} \min_{C} F(\mu, C) = \min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2$
- K-means algorithm: (coordinate ascent on F)
 - (1) Fix μ , optimize C **Expectation step**
 - (2) Fix C, optimize µ
- **Maximization step**

Today, we will see a generalization of this approach: **EM algorithm**

K-means Decision boundaries

Generative Model:

Assume data comes from a mixture of K Gaussians distributions with same variance

Mixture of K Gaussians distributions: (Multi-modal distribution)

- There are k components
- Component *i* has an associated mean vector μ_i

Mixture of K Gaussians distributions: (Multi-modal distribution)

- There are k components
- Component *i* has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 I$

Each data point is generated according to the following recipe:

Mixture of K Gaussians distributions: (Multi-modal distribution)

- There are k components
- Component *i* has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 I$

Each data point is generated according to the following recipe:

 Pick a component at random: Choose component i with probability P(y=i)

Mixture of K Gaussians distributions: (Multi-modal distribution)

- There are k components
- Component *i* has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 I$

Each data point is generated according to the following recipe:

- Pick a component at random: Choose component i with probability P(y=i)
- 2) Datapoint $\mathbf{x} \sim \mathbf{N}(\mu_i, \sigma^2 I)$

Mixture of K Gaussians distributions: (Multi-modal distribution)

 $p(x|y=i) \sim N(\mu_i, \sigma^2 I)$

$$p(x) = \sum_{i} p(x|y=i) P(y=i)$$

$$\downarrow \qquad \downarrow$$
Mixture
Mixture
component
proport

re proportion

Mixture of K Gaussians distributions: (Multi-modal distribution)

 μ_2

 $p(x|y=i) \sim N(\mu_i, \sigma^2 I)$

Gaussian Bayes Classifier:

"Linear Decision boundary" – Recall that second-order terms cancel out

Maximum Likelihood Estimate (MLE)

 $\underset{\substack{\mu_1, \mu_2, \dots, \mu_k, \sigma^2, \\ \mathsf{P}(\mathsf{y}=1), \dots, \mathsf{P}(\mathsf{Y}=\mathsf{k})}{\operatorname{argmax}} \Pr(\mathsf{y}_i, \mathsf{x}_i)$

But we don't know y_i's!!!

Maximize marginal likelihood:

 $\begin{aligned} \operatorname{argmax} \prod_{j} \mathsf{P}(\mathsf{x}_{j}) &= \operatorname{argmax} \prod_{j} \sum_{i=1}^{K} \mathsf{P}(\mathsf{y}_{j} = \mathsf{i}, \mathsf{x}_{j}) \\ &= \operatorname{argmax} \prod_{j} \sum_{i}^{K} \mathsf{P}(\mathsf{y}_{j} = \mathsf{i}) \mathsf{p}(\mathsf{x}_{j} | \mathsf{y}_{j} = \mathsf{i}) \end{aligned}$

Maximize marginal likelihood: argmax $\prod_{j} P(x_{j}) = \operatorname{argmax} \prod_{j} \sum_{i=1}^{K} P(y_{j}=i,x_{j})$ $= \operatorname{argmax} \prod_{j} \sum_{i=1}^{K} P(y_{j}=i)p(x_{j}|y_{j}=i)$ $P(y_{j}=i,x_{j}) \propto P(y_{j}=i) \exp\left[-\frac{1}{2\sigma^{2}} ||x_{j}-\mu_{i}||^{2}\right]$

If each x_j belongs to one class C(j) (hard assignment), marginal likelihood:

$$P(y_{j}=i) = 1 \text{ or } 0 \qquad 1 \text{ if } i = C(j)$$

$$\prod_{j=1}^{m} \sum_{i=1}^{k} P(y_{j}=i, x_{j}) \propto \prod_{j=1}^{m} \exp\left[-\frac{1}{2\sigma^{2}} \left\|x_{j} - \mu_{C(j)}\right\|^{2}\right] = \sum_{j=1}^{m} -\frac{1}{2\sigma^{2}} \left\|x_{j} - \mu_{C(j)}\right\|^{2}$$

Same as K-means!!!

(One) bad case for K-means

- Clusters may not be linearly separable
- Clusters may overlap
- Some clusters may be "wider" than others

GMM – Gaussian Mixture Model (Multi-modal distribution)

- There are k components
- Component *i* has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix Σ_i

Each data point is generated according to the following recipe:

- Pick a component at random: Choose component i with probability P(y=i)
- 2) Datapoint $\mathbf{x} \sim \mathbf{N}(\mu_i, \Sigma_i)$

GMM – Gaussian Mixture Model (Multi-modal distribution)

 $p(x|y=i) \sim N(\mu_i, \Sigma_i)$ $p(x) = \sum_i p(x|y=i) P(y=i)$ $\downarrow \qquad \downarrow$ Mixture
Mixture
proportion

GMM – Gaussian Mixture Model (Multi-modal distribution)

 $p(x|y=i) \sim N(\mu_i, \Sigma_i)$ Gaussian Bayes Classifier: $\log \frac{P(y=i \mid x)}{P(y=j \mid x)}$ $= \log \frac{p(x \mid y=i)P(y=i)}{p(x \mid y=j)P(y=j)}$ $= x^T Wx + W^T x$ $\rightarrow Depend on \mu_1, \mu_2, ..., \mu_k, \Sigma_1, \Sigma_2, ..., \Sigma_k, P(y=1),..., P(Y=k)$

"Quadratic Decision boundary" – second-order terms don't cancel out

Maximize marginal likelihood:

$$\begin{aligned} \operatorname{argmax} \prod_{j} \mathsf{P}(\mathsf{x}_{j}) &= \operatorname{argmax} \prod_{j} \sum_{i=1}^{K} \mathsf{P}(\mathsf{y}_{j}=i,\mathsf{x}_{j}) \\ &= \operatorname{argmax} \prod_{j} \sum_{i=1}^{K} \mathsf{P}(\mathsf{y}_{j}=i)\mathsf{p}(\mathsf{x}_{j} \mid \mathsf{y}_{j}=i) \end{aligned}$$

Uncertain about class of each x_j (soft assignment), $P(y_j=i) = P(y=i)$

$$\prod_{j=1}^{m} \sum_{i=1}^{k} P(y_{j} = i, x_{j}) \propto \prod_{j=1}^{m} \sum_{i=1}^{k} P(y = i) \frac{1}{\sqrt{\det(\sum_{i})}} \exp\left[-\frac{1}{2}(x_{j} - \mu_{i})^{T} \sum_{i}(x_{j} - \mu_{i})\right]$$

How do we find the μ_i 's which give max. marginal likelihood?

* Set
$$\frac{\partial}{\partial \mu_i}$$
 log Prob (....) = 0 and solve for μ_i 's. Non-linear non-analytically solvable

* Use gradient descent: Often slow but doable

Expectation-Maximization (EM)

A general algorithm to deal with hidden data, but we will study it in the context of unsupervised learning (hidden labels) first

- EM is an optimization strategy for objective functions that can be interpreted as likelihoods in the presence of missing data.
- It is much simpler than gradient methods:

No need to choose step size. Enforces constraints automatically. Calls inference and fully observed learning as subroutines.

• EM is an Iterative algorithm with two linked steps:

E-step: fill-in hidden values using inference M-step: apply standard MLE/MAP method to completed data

• We will prove that this procedure monotonically improves the likelihood (or leaves it unchanged). Thus it always converges to a local optimum of the likelihood.

Expectation-Maximization (EM)

A simple case:

We have unlabeled data $\mathbf{x}_1 \, \mathbf{x}_2 \dots \mathbf{x}_m$ We know there are k classes We know P(y=1), P(y=2) P(y=3) ... P(y=K) We <u>don't</u> know $\mathbf{\mu}_1 \, \mathbf{\mu}_2 \dots \mathbf{\mu}_k$ We know common variance σ^2

We can write P(data | μ_1 μ_k)

$$= p(x_{1}...x_{m}|\mu_{1}...\mu_{k})$$
Independent data
$$= \prod_{j=1}^{m} \sum_{i=1}^{k} p(x_{j}|\mu_{i}) P(y=i)$$
Marginalize over class
$$\propto \prod_{j=1}^{m} \sum_{i=1}^{k} exp\left(-\frac{1}{2\sigma^{2}} ||x_{j} - \mu_{i}||^{2}\right) P(y=i)$$

Expectation (E) step

If we know $\mu_1,...,\mu_k \rightarrow \text{easily compute prob. point } x_j$ belongs to class y=i

$$P(y=i|x_{j},\mu_{1}...\mu_{k}) \propto exp\left(-\frac{1}{2\sigma^{2}}||x_{j}-\mu_{i}||^{2}\right)P(y=i)$$

Simply evaluate gaussian and normalize

Maximization (M) step

If we know prob. point x_j belongs to class y=i \rightarrow MLE for μ_i is weighted average

imagine multiple copies of each x_i , each with weight $P(y=i|x_i)$:

$$\mu_{i} = \frac{\sum_{j=1}^{m} P(y=i|x_{j})x_{j}}{\sum_{j=1}^{m} P(y=i|x_{j})}$$

EM for spherical, same variance GMMs

E-step

Compute "expected" classes of all datapoints for each class

$$P(y=i|x_{j},\mu_{1}...\mu_{k}) \propto exp\left(-\frac{1}{2\sigma^{2}}||x_{j}-\mu_{i}||^{2}\right)P(y=i)$$

In K-means "E-step" we do hard assignment

EM does soft assignment

M-step

Compute Max. like μ given our data's class membership distributions

$$\mu_{i} = \frac{\sum_{j=1}^{m} P(y=i|x_{j})x_{j}}{\sum_{j=1}^{m} P(y=i|x_{j})}$$

EM for axis-aligned GMMs ₂,

Iterate. On iteration t let our estimates be

 $\lambda_{t} = \{ \mu_{1}^{(t)}, \mu_{2}^{(t)} \dots \mu_{k}^{(t)}, \Sigma_{1}^{(t)}, \Sigma_{2}^{(t)} \dots \Sigma_{k}^{(t)}, p_{1}^{(t)}, p_{2}^{(t)} \dots p_{k}^{(t)} \} \qquad p_{i}^{(t)} = p^{(t)} (y=i)$

$$= \begin{pmatrix} \sigma^{2}_{i,1} & 0 & 0 & \cdots & 0 & 0 \\ 0 & \sigma^{2}_{i,2} & 0 & \cdots & 0 & 0 \\ 0 & 0 & \sigma^{2}_{i,3} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \sigma^{2}_{i,m-1} & 0 \\ 0 & 0 & 0 & \cdots & 0 & \sigma^{2}_{i,m} \end{pmatrix}$$

E-step

Compute "expected" classes of all datapoints for each class

$$\mathbf{P}(y=i|x_j,\lambda_t) \propto p_i^{(t)} \mathbf{p}(x_j|\mu_i^{(t)},\Sigma_i^{(t)})$$

Just evaluate a Gaussian at x_i

M-step

Compute Max. like μ given our data's class membership distributions

$$\mu_i^{(t+1)} = \frac{\sum_j P(y=i|x_j, \lambda_t) x_j}{\sum_j P(y=i|x_j, \lambda_t)}$$

$$p_i^{(t+1)} = \frac{\sum_j P(y=i|x_j, \lambda_t)}{m}$$

$$m = \text{#data points}$$

EM for general GMMs

M-step

Compute MLEs given our data's class membership distributions (weights)

$$\mu_i^{(t+1)} = \frac{\sum_j P(y=i|x_j,\lambda_t) x_j}{\sum_j P(y=i|x_j,\lambda_t)} \qquad \sum_i^{(t+1)} = \frac{\sum_j P(y=i|x_j,\lambda_t) (x_j - \mu_i^{(t+1)}) (x_j - \mu_i^{(t+1)})^T}{\sum_j P(y=i|x_j,\lambda_t)}$$

$$p_i^{(t+1)} = \frac{\sum_j P(y=i|x_j,\lambda_t)}{m} \qquad m = \# \text{data points}$$

EM for general GMMs: Example

After 1st iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

GMM clustering of the assay data

Resulting Density Estimator

Resulting Bayes Classifier

General EM algorithm

Marginal likelihood – **x** is observed, **z** is missing:

$$P(\mathbf{D}; \boldsymbol{\theta}) = \log \prod_{j=1}^{m} P(\mathbf{x}_j \mid \boldsymbol{\theta})$$
$$= \sum_{j=1}^{m} \log P(\mathbf{x}_j \mid \boldsymbol{\theta})$$
$$= \sum_{j=1}^{m} \log \sum_{\mathbf{z}} P(\mathbf{x}_j, \mathbf{z} \mid \boldsymbol{\theta})$$

E step

x is observed, **z** is missing

Compute probability of missing data given current choice of $\boldsymbol{\theta}$

$$Q^{(t+1)}(\mathbf{z} | \mathbf{x}_j) = P(\mathbf{z} | \mathbf{x}_j, \theta^{(t)})$$

E.g.,
$$P(y=i|x_j,\lambda_t)$$

Lower-bound on marginal likelihood

$$P(D;\theta) = \sum_{j=1}^{m} \log \sum_{\mathbf{z}} P(\mathbf{x}_{j}, \mathbf{z} \mid \theta)$$
$$= \sum_{j=1}^{m} \log \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_{j}) \frac{P(\mathbf{z}, \mathbf{x}_{j} \mid \theta)}{Q(\mathbf{z} \mid \mathbf{x}_{j})}$$
$$P(\mathbf{z}) \qquad f(\mathbf{z})$$

Jensen's inequality: $\log \sum_{z} P(z) f(z) \ge \sum_{z} P(z) \log f(z)$

log: concave function

 $\log(ax+(1-a)y) \ge a \log(x) + (1-a) \log(y)$

Lower-bound on marginal likelihood

Jensen's inequality: $\log \sum_{z} P(z) f(z) \ge \sum_{z} P(z) \log f(z)$

$$\geq \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_j) \log \frac{P(\mathbf{z}, \mathbf{x}_j \mid \theta)}{Q(\mathbf{z} \mid \mathbf{x}_j)}$$
$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \theta) + m.H(Q)$$

M step

$$\mathbf{P}(\mathbf{D}; \boldsymbol{\theta}) \geq \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \boldsymbol{\theta}) + m.H(Q)$$

Maximize lower bound on marginal likelihood

$$\theta^{(t+1)} \leftarrow \arg \max_{\theta} \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \theta)$$

Use expected counts instead of counts:

If learning requires Count(x,z), Use E_{Q(t+1)}[Count(x,z)]

 $P(D;\theta) \geq F(\theta,Q)$

M-step: Fix Q, maximize F over θ

$$\begin{split} P(\mathbf{D}; \theta) &\geq F(\theta, Q^{(t)}) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t)}(\mathbf{z} \mid \mathbf{x}_{j}) \log P(\mathbf{z}, \mathbf{x}_{j} \mid \theta) + m.H(Q^{(t)}) \\ \text{Maximizes lower bound F on marginal likelihood} \end{split}$$

E-step: Fix θ , maximize F over Q

 $P(D;\theta) \geq F(\theta,Q)$

E-step: Fix θ , maximize F over Q

$$P(\mathbf{D}; \boldsymbol{\theta}^{(t)}) \geq F(\boldsymbol{\theta}^{(t)}, Q) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_j) \log \frac{P(\mathbf{z}, \mathbf{x}_j \mid \boldsymbol{\theta}^{(t)})}{Q(\mathbf{z} \mid \mathbf{x}_j)}$$
$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_j) \log \frac{P(\mathbf{z} \mid \mathbf{x}_j, \boldsymbol{\theta}^{(t)}) P(\mathbf{x}_j \mid \boldsymbol{\theta}^{(t)})}{Q(\mathbf{z} \mid \mathbf{x}_j)}$$
$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_j) \log \frac{P(\mathbf{z} \mid \mathbf{x}_j, \boldsymbol{\theta}^{(t)})}{Q(\mathbf{z} \mid \mathbf{x}_j)} + \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{x}_j \mid \boldsymbol{\theta}^{(t)})$$
$$-KL(Q(\mathbf{z} \mid \mathbf{x}_j), P(\mathbf{z} \mid \mathbf{x}_j, \boldsymbol{\theta}^{(t)})) P(\mathbf{D}; \boldsymbol{\theta}^{(t)})$$

KL divergence between two distributions

 $P(D;\theta) \geq F(\theta,Q)$

E-step: Fix θ , maximize F over Q

$$\begin{aligned} \mathbf{P}(\mathbf{D}; \mathbf{\theta}^{(t)}) &\geq F(\mathbf{\theta}^{(t)}, Q) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_j) \log \frac{P(\mathbf{z}, \mathbf{x}_j \mid \mathbf{\theta}^{(t)})}{Q(\mathbf{z} \mid \mathbf{x}_j)} \\ &= \sum_{j=1}^{m} -KL(Q(\mathbf{z} \mid \mathbf{x}_j), P(\mathbf{z} \mid \mathbf{x}_j, \mathbf{\theta}^{(t)})) + \mathbf{P}(\mathbf{D}; \mathbf{\theta}^{(t)}) \end{aligned}$$

KL>=0, Maximized if KL divergence = 0 KL(Q,P) = 0 iif Q = P

Recall E-step: $Q^{(t+1)}(\mathbf{z} | \mathbf{x}_j) = P(\mathbf{z} | \mathbf{x}_j, \theta^{(t)})$

 $P(D;\theta) \geq F(\theta,Q)$

M-step: Fix Q, maximize F over θ

 $P(D;\theta) \geq F(\theta, Q^{(t)}) = \sum_{j=1}^{m} \sum_{z} Q^{(t)}(z \mid x_j) \log P(z, x_j \mid \theta) + m \cdot H(Q^{(t)})$ Maximizes lower bound F on marginal likelihood

E-step: Fix θ , maximize F over Q

$$\mathbf{P}(\mathbf{D};\boldsymbol{\theta}^{(t)}) \geq F(\boldsymbol{\theta}^{(t)}, Q) = \mathbf{P}(\mathbf{D};\boldsymbol{\theta}^{(t)}) - \sum_{j=1}^{m} KL\left(Q(\mathbf{z} \mid \mathbf{x}_j) || P(\mathbf{z} \mid \mathbf{x}_j, \boldsymbol{\theta}^{(t)})\right)$$

Re-aligns F with marginal likelihood

$$F(\theta^{(t)}, Q^{(t+1)}) = P(D; \theta^{(t)})$$

Monotonic convergence of EM

Sequence of EM surrogate *F*-functions

EM monotonically converges to a local maximum of likelihood !

Monotonic convergence of EM

Different sequence of EM surrogate *F*-functions depending on initialization

Use multiple, randomized initializations in practice

Summary: EM Algorithm

• A way of maximizing likelihood function for hidden variable models. Finds MLE of parameters when the original (hard) problem can be broken up into two (easy) pieces:

1.Estimate some "missing" or "unobserved" data from observed data and current parameters.

2. Using this "complete" data, find the maximum likelihood parameter estimates.

- Alternate between filling in the latent variables using the best guess (posterior) and updating the parameters based on this guess: 1. E-step: $Q^{t+1} = \arg \max_{Q} F(\theta^t, Q)$ 2. M-step: $\theta^{t+1} = \arg \max_{\theta} F(\theta, Q^{t+1})$
- In the M-step we optimize a lower bound on the likelihood. In the E-step we close the gap, making bound=likelihood.
- EM performs coordinate ascent on F, can get stuck in local minima.
- BUT Extremely popular in practice.