EM Algorithm

Aarti Singh
Slides courtesy: Eric Xing, Carlos Guetrin

Machine Learning 10-701/15-781
Feb 17, 2010

IACHI

K-means Recap ...

@ Randomly initialize k centers
“(0) = “1(0)3“.! “k(o)

@ Classify: Assign each point je{1,...m} to nearest
center:
C’(t)(j) — arg miin || i — mj\lz

o Recenter: i, becomes centroid of its point:

y,gt'l'l) —argmin Y |jp—x]?
pooo =
7:C(j)=i

Equivalent to u; « average of its points!

What is K-means optimizing?

@ Potential function F(u,C) of centers u and point
allocations C:

T

F(p,C) =Y lluce) — =l1°
j=1

¢ Optimal K-means:
min,ming F(u,C)

K-means algorithm

¢® QOptimize potential function'

rnm mln F(p,C) = mln min Z) ng——mjuz
¢ liC()=i

@ K-means algorithm:

(1) Fix u, optimize C

m

min Z o) —
C(1).C(2).....,C(m) H’{ L i H

e

— ZIIllIl ey — 5 ||

_1\
|

Exactly f|rst step — assign each point to the
nearest cluster center

K-means algorithm

¢® QOptimize potential function'

rnm mln F(p,C) = mln min Z) ng——mjuz
C
liC()=i

@ K-means algorithm:
(2) Fix C, optimize M
111111 Z Z ||;;, z;||?

1.2, i=1 O
K
= min 3l =
i=1___ J:Cl)=i J

I
Solution: average of points in cluster i

Exactly second step (re-center)

K-means algorithm

¢ Optimize potential function:
ke

minmin F(u,C) = minmin >) ng——mjuz
pooC poooCo= =
=1 ;5:C(j)=1

@ K-means algorithm: (coordinate ascent on F)
(1) Fix p, optimize C Expectation step

(2) Fix C, optimize p Maximization step

Today, we will see a generalization of this approach:

EM algorithm

K-means Decision boundaries

<
k, © .
\ @ 1 o llLInear”
3

\’ r~ Decision

2 ° ® n Boundaries
¢ J{g \ ¢ .k A 4
1 <> 3 <>
PN <>
®e \ e @ .

Generative Model:

Assume data comes from a mixture of K Gaussians distributions
with same variance

K-means: Generative model

Mixture of K Gaussians distributions: (Multi-modal distribution)

There are k components

Component i has an associated
mean vector g

o Hi

o Mo

K-means: Generative model

Mixture of K Gaussians distributions: (Multi-modal distribution)

e There are k components

e Componenti has an associated

mean vector g
e Each component generates data \

from a Gaussian with mean s and
covariance matrix o/

Each data point is generated according
to the following recipe:

K-means: Generative model

Mixture of K Gaussians distributions: (Multi-modal distribution)

e There are k components

e Componenti has an associated
mean vector g

e Each component generates data
from a Gaussian with mean s and
covariance matrix o°/

Each data point is generated according
to the following recipe:

1) Pick a component at random:

Choose component i with
probability P(y=i)

K-means: Generative model

Mixture of K Gaussians distributions: (Multi-modal distribution)

e There are k components

e Componenti has an associated
mean vector g

e Each component generates data
from a Gaussian with mean s and
covariance matrix o°/

Each data point is generated according
to the following recipe:

1) Pick a component at random:

Choose component i with
probability P(y=i)

2) Datapoint x ~ N(u, 6°I)

K-means: Generative model
Mixture of K Gaussians distributions: (Multi-modal distribution)

p(x]y=i) ~ N(u, o°I)

p(x) =2 p(x[y=i) P(y=i) \
Y V
Mixture Mixture

component proportion

K-means: Generative model
Mixture of K Gaussians distributions: (Multi-modal distribution)

p(x]y=i) ~ N(u, o°I)

o M
Gaussian Bayes Classifier: ’
o Hi o
log P(y ={| X)
P(y =]|x))
. . o M3
_ log p(x|y=DP(y=1)

p(x|y=)P(y=))

~@'x

“Linear Decision boundary” — Recall that second-order terms cancel out

> Depends on yu,, iy, .. , ly, 07, P(y=1),..., P(Y=k)

K-means: Generative model

Maximum Likelihood Estimate (MLE)
H>
argmax [[. P(y,,x:) w, \

,Llla /LIZJ e /LlKao-Zl

P(y=1),..., P(Y=k)
g

But we don’t know y/s!!!

Maximize marginal likelihood:

argmax |]; P(x;) = argmax [], Zliil P(y;=i,x))
Ko _: .
=argmax [[, 2. P(y;=i)p(x;| y;=i)

K-means: Generative model

Maximize marginal likelihood:

K
argmax | I; P(x;) = argmax [[, 2., P(y;=i,x;)

K . .

=argmaxilly 2ic P(yj=|)p(xj | yjzl)

il

P(y, =1,x;) o« P(y; =1) exp{— =[x,
20
If each x; belongs to one class C(j) (hard assignment), marginal likelihood:
P(y;=i)=1o0r0 1ifi=C(j)

P(yj = i,Xj) oC ﬁ exp{— 2;2 HXj - Mc(j)H2:| = i_ 2;2 HXj - Hc(j)H2
i

1)

=1 1

k
=1

Same as K-means!!!

(One) bad case for K-means

* Clusters may not be linearly separable
e Clusters may overlap
* Some clusters may be “wider” than others

General GMM

GMM — Gaussian Mixture Model (Multi-modal distribution)

e There are k components

e Componenti has an associated
mean vector g

e Each component generates data
from a Gaussian with mean s and
covariance matrix 2;

\

Each data point is generated according
to the following recipe:

1) Pick a component at random:

Choose component i with
probability P(y=i)

2) Datapoint x ~ N(z, X))

General GMM

GMM — Gaussian Mixture Model (Multi-modal distribution)

p(x[y=i) ~ N, %)

p(x) = ,Z p(x[y=i) P(y=i)

v v

Mixture Mixture
component proportion

General GMM

GMM — Gaussian Mixture Model (Multi-modal distribution)

p(x[y=i) ~ N, %)

o M
Gaussian Bayes Classifier: ’
o Hi
log P(y = {I X)
P(y =]j[x)
o H3

_ log p(x|y= i.)P(y = i.)
p(x|y=)P(y=))

= x@c +@TX

“Quadratic Decision boundary” — second-order terms don’t cancel out

>Depend on iy, fy, .. 5 s 27, 2, .. 5 24, P(y=1),..., P(Y=K)

General GMM

Maximize marginal likelihood:

argmax |]; P(x;) = argmax [], Zliil P(y;=i,x;)
K . .
=argmaxill pI P(yj=|)p(xj | yjzl)

Uncertain about class of each x; (soft assignment), P(y;=i) = P(y=i)

ﬁzp(yj =1,X;) o ﬁZP(YZi)\/ﬁCXp[—;(Xj _Hi)T Zi(xj _“i):|

How do we find the g's which give max. marginal likelihood?

*Set 0 logProb(...)=0 and solve for y,s. Non-linear non-analytically solvable

O U;

* Use gradient descent: Often slow but doable

Expectation-Maximization (EM)

A general algorithm to deal with hidden data, but we will study it in
the context of unsupervised learning (hidden labels) first

EM is an optimization strategy for objective functions that can be
interpreted as likelihoods in the presence of missing data.

* |tis much simpler than gradient methods:

No need to choose step size.
Enforces constraints automatically.
Calls inference and fully observed learning as subroutines.

 EMis an Iterative algorithm with two linked steps:

E-step: fill-in hidden values using inference
M-step: apply standard MLE/MAP method to completed data

 We will prove that this procedure monotonically improves the likelihood

(or leaves it unchanged). Thus it always converges to a local optimum of
the likelihood.

Expectation-Maximization (EM)

A simple case:
We have unlabeled data x; x, ... x,,
We know there are k classes
We know P(y=1), P(y=2) P(y=3) ... P(y=K)
We don’t know W, W, .. W,
We know common variance c°

We can write P(data | py.... 1)

:p(xl...xm‘yl...yk)

:Hp(xj‘Mmﬂk) Independent data
j=1

- ﬁzklp(xj

j=1 i=1

m
=] |
J=1

/Lli))(y = i) Marginalize over class

2}@:0

¢ 1
> ex 5ol

Expectation (E) step

If we know L,,...,l,, — easily compute prob. point x; belongs to
class y=i

P(y = i‘xj, Ly]y)oc exp(— 2;2 ij _ MiHZJP(y = i)

Simply evaluate gaussian and normalize

Maximization (M) step

If we know prob. point x; belongs to class y=i
— MLE for . is weighted average

imagine multiple copies of each x;, each with weight P(y=i|x;):
ZP(y =i‘xj)xj
= J=1
ZP(yzi‘xj)
j=1

H

EM for spherical, same variance GMMs

E-step
Compute “expected” classes of all datapoints for each class

In K-means "E-step”

: 2jP(y =i) we do hard assignment

267

P(y:i‘xj,ul...uk)oc exp(— ij—pi

EM does soft assignment
M-step

Compute Max. like p given our data’s class membership distributions
ZP(y = i‘xj)xj
= J=1
ZP(y = i‘xj)
j=1

H,

EM for axis-alighed GMMs :- ® © = - @

Iterate. On iteration t let our estimates be 0 0 0 - 0 Ghm
YRER BTRCATRUSTHC) 2; (t) 2’2 (t) 2;<(t)/ p,, p, ... p 1} pt = p (y=i)

E-step

Compute “expected” classes of all datapoints for each class
Just evaluate a

(?) (1) Gaussian at x;
M52) ,

i

P(y = i‘xj,/lt)oc pl.(t)p(xj

M-step

Compute Max. like p given our data’s class membership distributions
(z+1 ZP(- z‘x], t)
5 ZP(= l‘ J’ t)
ZP(= l‘xj’ t)

(t+1) Jj

P = m % m = #data points

EM for general GMMs

Iterate. On iteration t let our estimates be p is shorthand for

A= {0 0. w30 3w, 3w ptp M pl estimate of P(y=i) on
t {”1 s Ha Hi”s <1 < k» P17 Pa P / t’th iteration

E-step
Compute “expected” classes of all datapoints for each class

Just evaluate a

(?) (1) Gaussian at x;
JTAND)) !

i

Py =i,.4) p“pl

M-step
Compute MLEs given our data’s class membership distributions (weights)

ZP(_l‘xﬂ z) ZP(_1‘ X t)(xj_“i(t+l)xxj_“i(t+l))T

(t+1 7 (t+1)

: ZP(=ix.2) YPly =it
ZP(yzi‘xj,/lt)

(t+1) j

P = m % m = #data points

EM for general GMMs: Exam B

®

After 15t iteration

©2005-2009 Carlos Guestrin

After 2" jteration

After 3" jteration

©2005-2009 Carlos Guestrin

After 4th jteration

©2005-2009 Carlos Guestrin

After 5t jteration

©2005-2009 Carlos Guestrin

After 6th iteration

©2005-2009 Carlos Guestrin

After 20th jiteration

GMM clustering of the assay-.data-

©2005-2009 Carlos Guestrin

Resulting
Density
Estimator

r 4

-

Three
classes of
assay

(each learned with
it’s own mixture
model)

©2005-2009 Carlos Guestrin

Resulting
Bayes
Classifier

©2005-2009 Carlos Guestrin

General EM algorithm

Marginal likelihood — x is observed, z is missing:

P(D;0) log ﬁ P(x; | 6)

1=1

E step

X is observed, z is missing
Compute probability of missing data given current choice of 0

QU (z|x;) = P(z]x;,60)

E.g.,P(yzi‘Xj,kt)

Lower-bound on marginal likelihood

P(D;0) = ilogZP(Xj,ZIH)
j=1 z

m - P(z,x; | 8)
= Y log »_ Q(z]|x;) :
D AT TCIED)
I Y
P(z) f(z)

Jensen’s inequality: log >, P(z) f(z) > 2., P(z) log f(z)

log: concave function

/ log(ax+(1-a)y) = alog(x) + (1-a) log(y)
/ X ax+l(1-a)y y

Lower-bound on marginal likelihood

Jensen’s inequality: log >, P(z) f(z) > 2., P(z) log f(z)

mo x.:| @
PRI CLIL
; = 5

F=1

= 2. 2 Qz]x))log P(z,%; |) + m.-H(Q)

J=l A

M step

P(D;0) 2 Y . Q(z | x;)log P(z,x; | 0) +m.H(Q)

j=1

Maximize lower bound on marginal likelihood

T
p(t+1) arg max 3 ZQ“"‘”(E | x;) log P(z,%; | 0)
j=1 &

\ J
|

Expected log likelihood

Use expected counts instead of counts:
If learning requires Count(x,z), Use Eq,;[Count(x,z)]

Convergence of EM
P(D:0) > F(8,Q)

M-step: Fix Q, maximize F over 0

P(D;0) > F(#, Q{ﬂ} = X ZQUJ(E | ;) log P(z,x; | 8) + m.H(Q“))
j=1 2
Maximizes lower bound F on marginal likelihood

E-step: Fix O, maximize F over Q

Convergence of EM
P(D:0) > F(8,Q)

E-step: Fix O, maximize F over Q

. ()
P(D:6") = FO6D,Q) = 3 ¥ Q(zx;) log Plz.x; 1677
j=1 7% Q(| X])

B N 0(n) log £ %5:6D) P(x;[0))
= 2, 200919 00 x)

j=1
m J= | E(f}) m

|

~KL(Q(z[x;), P(z[x;, ::*'f”)} P(D: e(”)

KL divergence between two distributions

Convergence of EM
P(D:0) > F(8,Q)

E-step: Fix O, maximize F over Q

. ()
P(D:6") = FO6D,Q) = 3 ¥ Q(zx;) log Plz.x; 1677
j=1 2 Q(z | X])

= 2, ~KL(Q(ah). P(alx;, 01)) + P(D: 0"

KL>=0, Maximized if KL divergence =0 KL(Q,P)=0iifQ=P

Recall Estep: QD (z|x;) = P(z|x;,00)

Convergence of EM
P(D:0) > F(8,Q)

M-step: Fix Q, maximize F over 0

P(D;0) > F(o,0W") = i S QW (2| x;) log P(z,x; | 8) +m.H(QW)
j=1 2
Maximizes lower bound F on marginal likelihood

E-step: Fix O, maximize F over Q

P(D;6') > Fe®, @) =P(D:0") -~ 3 KL(Qz|x)IP(z] x;,6))
je=1.

J

Re-aligns F with marginal likelihood

FO®, @ty = p(D;6")

Monotonic convergence of EM

Likelihood function \ »'

P(D:0) : \\

/,

Sequence of EM surrogate F-functions

EM monotonically converges to a local maximum of likelihood !

Monotonic convergence of EM

Typical likelihood function ‘\

Different sequence of EM surrogate
F-functions depending on initialization

Use multiple, randomized initializations in practice

Summary: EM Algorithm

A way of maximizing likelihood function for hidden variable models. Finds
MVLE of parameters when the original (hard) problem can be broken up
into two (easy) pieces:

1.Estimate some “missing” or “unobserved” data from observed data and current
parameters.

2.Using this “complete” data, find the maximum likelihood parameter estimates.

Alternate between filling in the latent variables using the best guess
(posterior) and updating the parameters based on this guess:

1. E-step: Qt+l = argmax F(et,Q)
2. M-step: Q! = arg nl(;ax F(G,QHI)

In the M-step we optimize a lower bound on the likelihood. In the E-step
we close the gap, making bound=likelihood.

EM performs coordinate ascent on F, can get stuck in local minima.

BUT Extremely popular in practice.

