
EM AlgorithmEM Algorithm

Aarti SinghAarti Singh

Slides courtesy: Eric Xing, Carlos Guetrin

Machine Learning 10-701/15-781

Feb 17, 2010

KK--means Recap …means Recap …

What is KWhat is K--means optimizing?means optimizing?

KK--means algorithmmeans algorithm

K-means algorithm:K-means algorithm:

(1)

Exactly first step – assign each point to the

nearest cluster center

KK--means algorithmmeans algorithm

K-means algorithm:K-means algorithm:

(2)

Solution: average of points in cluster i

Exactly second step (re-center)

KK--means algorithmmeans algorithm

K-means algorithm: (coordinate ascent on F)K-means algorithm: (coordinate ascent on F)

(1)

(2)

Expectation step

Maximization step

Today, we will see a generalization of this approach:

EM algorithm

KK--means Decision boundariesmeans Decision boundaries

“Linear”

Decision

Boundaries

Generative Model:

Assume data comes from a mixture of K Gaussians distributions

with same variance

KK--means: Generative modelmeans: Generative model

Mixture of K Gaussians distributions: (Multi-modal distribution)

• There are k components

• Component i has an associated

mean vector µi µ2

µ1

µ3

KK--means: Generative modelmeans: Generative model

Mixture of K Gaussians distributions: (Multi-modal distribution)

• There are k components

• Component i has an associated

mean vector µi µ2µ2

µ1

µ3

µ1

µ3

• Each component generates data

from a Gaussian with mean µi and

covariance matrix σ2ΙΙΙΙ

Each data point is generated according

to the following recipe:

KK--means: Generative modelmeans: Generative model

Mixture of K Gaussians distributions: (Multi-modal distribution)

• There are k components

• Component i has an associated

mean vector µi µ2µ2

• Each component generates data

from a Gaussian with mean µi and

covariance matrix σ2ΙΙΙΙ

Each data point is generated according

to the following recipe:

1) Pick a component at random:

Choose component i with

probability P(y=i)

KK--means: Generative modelmeans: Generative model

Mixture of K Gaussians distributions: (Multi-modal distribution)

• There are k components

• Component i has an associated

mean vector µi µ2µ2

• Each component generates data

from a Gaussian with mean µi and

covariance matrix σ2ΙΙΙΙ

Each data point is generated according

to the following recipe:

1) Pick a component at random:

Choose component i with

probability P(y=i)

2) Datapoint x ∼ Ν(µi, σ2ΙΙΙΙ)

x

KK--means: Generative modelmeans: Generative model

Mixture of K Gaussians distributions: (Multi-modal distribution)

µ2µ2

p(x|y=i) ∼ Ν(µi, σ2ΙΙΙΙ)

= Σ µ1

µ3

µ1

µ3

p(x) = Σ p(x|y=i) P(y=i)
i

Mixture

proportion

Mixture

component

Mixture

component

KK--means: Generative modelmeans: Generative model

Mixture of K Gaussians distributions: (Multi-modal distribution)

µ2µ2
Gaussian Bayes Classifier:

p(x|y=i) ∼ Ν(µi, σ2ΙΙΙΙ)

µ1

µ3

µ1

µ3

Gaussian Bayes Classifier:

)x|jy(P

)x|iy(P
log

=
=

xw T=

“Linear Decision boundary” – Recall that second-order terms cancel out

)jy(P)jy|x(p

)iy(P)iy|x(p
log

==
==

=

Depends on µ1, µ2, .. , µK, σ2 , P(y=1),…, P(Y=k)

KK--means: Generative modelmeans: Generative model

Maximum Likelihood Estimate (MLE)
µ2

µ3

µ1argmax ∏i P(yi,xi)

But we don’t know y ’s!!!

µ1, µ2, .. , µK,σ2,

P(y=1),…, P(Y=k)

But we don’t know yi’s!!!

Maximize marginal likelihood:

argmax ∏j P(xj) = argmax ∏j ∑i=1 P(yj=i,xj)

= argmax ∏j ∑i P(yj=i)p(xj|yj=i)

K

K

KK--means: Generative modelmeans: Generative model

Maximize marginal likelihood:

argmax ∏j P(xj) = argmax ∏j ∑i=1 P(yj=i,xj)

= argmax ∏j ∑i=1 P(yj=i)p(xj|yj=i)

K

K

 µ−−=∝=

2

x
1

exp)iy(P)x,iy(P

If each xj belongs to one class C(j) (hard assignment), marginal likelihood:

P(yj=i) = 1 or 0 1 if i = C(j)

Same as K-means!!!

∑∏∏∑
=== =

µ−
σ

−=

 µ−
σ

−∝=
m

1j

2

)j(Cj2

m

1j

2

)j(Cj2

m

1j

k

1i

jj x
2

1
x

2

1
exp)x,iy(P

 µ−
σ

−=∝= ij2jjj x
2

1
exp)iy(P)x,iy(P

(One) bad case for K(One) bad case for K--meansmeans

• Clusters may not be linearly separable

• Clusters may overlap

• Some clusters may be “wider” than others

General GMMGeneral GMM

GMM – Gaussian Mixture Model (Multi-modal distribution)

µ2µ2

• There are k components

• Component i has an associated

mean vector µi

µ1

µ3

µ1

µ3

• Each component generates data

from a Gaussian with mean µi and

covariance matrix Σi

Each data point is generated according

to the following recipe:

1) Pick a component at random:

Choose component i with

probability P(y=i)

2) Datapoint x ∼ Ν(µi, Σi)

General GMMGeneral GMM

GMM – Gaussian Mixture Model (Multi-modal distribution)

µ2µ2

p(x|y=i) ∼ Ν(µi, Σi)

= Σ µ1

µ3

µ1

µ3

p(x) = Σ p(x|y=i) P(y=i)
i

Mixture

proportion

Mixture

component

General GMMGeneral GMM

GMM – Gaussian Mixture Model (Multi-modal distribution)

µ2µ2

p(x|y=i) ∼ Ν(µi, Σi)

Gaussian Bayes Classifier:
µ1

µ3

µ1

µ3

Gaussian Bayes Classifier:

)x|jy(P

)x|iy(P
log

=
=

xwWxx TT +=

“Quadratic Decision boundary” – second-order terms don’t cancel out

)jy(P)jy|x(p

)iy(P)iy|x(p
log

==
==

=

Depend on µ1, µ2, .. , µK, Σ1, Σ2, .. , ΣK, P(y=1),…, P(Y=k)

General GMMGeneral GMM

Maximize marginal likelihood:

argmax ∏j P(xj) = argmax ∏j ∑i=1 P(yj=i,xj)

= argmax ∏j ∑i=1 P(yj=i)p(xj|yj=i)

K

K

Uncertain about class of each xj (soft assignment), P(yj=i) = P(y=i)

∏∑∏∑
= == =

 µ−∑µ−−
∑

=∝=
m

1j

k

1i

iji

T

ij

i

m

1j

k

1i

jj)x()x(
2

1
exp

)det(

1
)iy(P)x,iy(P

How do we find the µi‘s which give max. marginal likelihood?

* Set ∂ log Prob (….) = 0 and solve for μi‘s. Non-linear non-analytically solvable

∂ μi

* Use gradient descent: Often slow but doable

ExpectationExpectation--Maximization (EM)Maximization (EM)

A general algorithm to deal with hidden data, but we will study it in

the context of unsupervised learning (hidden labels) first

• EM is an optimization strategy for objective functions that can be
interpreted as likelihoods in the presence of missing data.

• It is much simpler than gradient methods:• It is much simpler than gradient methods:

No need to choose step size.

Enforces constraints automatically.

Calls inference and fully observed learning as subroutines.

• EM is an Iterative algorithm with two linked steps:

E-step: fill-in hidden values using inference

M-step: apply standard MLE/MAP method to completed data

• We will prove that this procedure monotonically improves the likelihood
(or leaves it unchanged). Thus it always converges to a local optimum of
the likelihood.

k

ExpectationExpectation--Maximization (EM)Maximization (EM)

A simple case:

We have unlabeled data x1 x2 … xm

We know there are k classes

We know P(y=1), P(y=2) P(y=3) … P(y=K)

We don’t know μ1 μ2 .. μk

We know common variance σ2

We can write P(data | μ1…. μk) We can write P(data | μ1…. μk)

= p x1...xm µ1...µk()

= p x j µ1...µk()
j=1

m

∏

= p x j µi()P y = i()
i=1

k

∑
j=1

m

∏

∝ exp −
1

2σ 2
x j −µi

2

 P y = i()

i=1

k

∑
j=1

m

∏

Independent data

Marginalize over class

Expectation (E) stepExpectation (E) step

If we know µ1,…,µk → easily compute prob. point xj belongs to

class y=i

() ()iyPx
2

1
exp...,xiyP

2

ij2k1j =

 µ−
σ

−∝µµ=

Simply evaluate gaussian and normalize

Maximization (M) stepMaximization (M) step

If we know prob. point xj belongs to class y=i

→ MLE for µi is weighted average

imagine multiple copies of each xj, each with weight P(y=i|xj):

µi =

P y = i x j()
j=1

m

∑ x j

P y = i x j()
j=1

m

∑

EM for spherical, same variance GMMsEM for spherical, same variance GMMs

E-step

Compute “expected” classes of all datapoints for each class

() ()iyPx
2

1
exp...,xiyP

2

ij2k1j =

 µ−
σ

−∝µµ=
In K-means “E-step”
we do hard assignment

EM does soft assignment

M-step

Compute Max. like μ given our data’s class membership distributions

µi =

P y = i x j()
j=1

m

∑ x j

P y = i x j()
j=1

m

∑

EM does soft assignment

EM for axisEM for axis--aligned GMMsaligned GMMs

E-step

Compute “expected” classes of all datapoints for each class

Just evaluate a

Gaussian at xj

Iterate. On iteration t let our estimates be

λt = { μ1
(t), μ2

(t) … μk
(t), Σ1

(t), Σ2
(t) … Σk

(t), p1
(t), p2

(t) … pk
(t) } pi

(t) = p(t) (y=i)

σ

σ

σ

σ

σ

=Σ

−

m,i
2

1m,i
2

3,i
2

2,i
2

1,i
2

i

0000

0000

0000

0000

0000

L

L

MMOMMM

L

L

L

() ())()()(
,p,P

t

i

t

ij

t

itj xpxiy Σ∝= µλ

M-step

Compute Max. like μ given our data’s class membership distributions

() (),p,P iijitj xpxiy Σ∝= µλ

()
()
()∑

∑
=

=

=+

j

tj

j

j

tj

t

i
xiy

xxiy

λ

λ

,P

 ,P

µ
1

()
m

xiy

p
j

tj

t

i

∑ =

=+

λ,P
)1(

m = #data points

EM for general GMMsEM for general GMMs

E-step

Compute “expected” classes of all datapoints for each class

Just evaluate a

Gaussian at xj

Iterate. On iteration t let our estimates be

λt = { μ1
(t), μ2

(t) … μk
(t), Σ1

(t), Σ2
(t) … Σk

(t), p1
(t), p2

(t) … pk
(t) }

pi
(t) is shorthand for

estimate of P(y=i) on

t’th iteration

() ())()()(
,p,P

t

i

t

ij

t

itj xpxiy Σ∝= µλ

M-step

Compute MLEs given our data’s class membership distributions (weights)

() ()iijitj

()
()
()∑

∑
=

=

=+

j

tj

j

j

tj

t

i
xiy

xxiy

λ

λ

,P

 ,P

µ
1 ()

() ()() ()()
() ,xiyP

xx ,xiyP

j

tj

T1t

ij

1t

ij

j

tj

1t

i ∑

∑
λ=

µ−µ−λ=

=Σ

++

+

()
m

xiy

p
j

tj

t

i

∑ =

=+

λ,P
)1(

m = #data points

EM for general GMMs: ExampleEM for general GMMs: Example

©2005-2009 Carlos Guestrin

After 1After 1stst iterationiteration

©2005-2009 Carlos Guestrin

After 2After 2ndnd iterationiteration

©2005-2009 Carlos Guestrin

After 3After 3rdrd iterationiteration

©2005-2009 Carlos Guestrin

After 4After 4thth iterationiteration

©2005-2009 Carlos Guestrin

After 5After 5thth iterationiteration

©2005-2009 Carlos Guestrin

After After 66thth iterationiteration

©2005-2009 Carlos Guestrin

After 20After 20thth iterationiteration

©2005-2009 Carlos Guestrin

GMM clustering of the assay dataGMM clustering of the assay data

©2005-2009 Carlos Guestrin

Resulting Resulting

Density Density

EstimatorEstimator

©2005-2009 Carlos Guestrin

Three Three

classes of classes of

assayassayassayassay
(each learned with

it’s own mixture

model)

©2005-2009 Carlos Guestrin

Resulting Resulting

BayesBayes

ClassifierClassifierClassifierClassifier

©2005-2009 Carlos Guestrin

General EM algorithmGeneral EM algorithm

Marginal likelihood – x is observed, z is missing:

E stepE step

x is observed, z is missing

Compute probability of missing data given current choice of θ

()tj,xiyP E.g., λ=

LowerLower--bound on marginal likelihoodbound on marginal likelihood

P(z) f(z)P(z) f(z)

Jensen’s inequality: log ∑z P(z) f(z) ≥ ∑z P(z) log f(z)

log: concave function

log(ax+(1-a)y) ≥ a log(x) + (1-a) log(y)

x yax+(1-a)y

LowerLower--bound on marginal likelihoodbound on marginal likelihood

P(z) f(z)

Jensen’s inequality: log ∑z P(z) f(z) ≥ ∑z P(z) log f(z)

≥

P(z) f(z)

M stepM step

Maximize lower bound on marginal likelihood

≥

Use expected counts instead of counts:
If learning requires Count(x,z), Use EQ(t+1)[Count(x,z)]

Expected log likelihood

Convergence of Convergence of EMEM

Maximizes lower bound F on marginal likelihood

M-step: Fix Q, maximize F over θ

Maximizes lower bound F on marginal likelihood

E-step: Fix θ, maximize F over Q

Convergence of EMConvergence of EM

E-step: Fix θ, maximize F over Q

1

KL divergence between two distributions

Convergence of EMConvergence of EM

E-step: Fix θ, maximize F over Q

KL>=0, Maximized if KL divergence = 0 KL(Q,P) = 0 iif Q = P

Recall E-step:

+

Convergence of EMConvergence of EM

Maximizes lower bound F on marginal likelihood

M-step: Fix Q, maximize F over θ

Maximizes lower bound F on marginal likelihood

E-step: Fix θ, maximize F over Q

Re-aligns F with marginal likelihood

Monotonic convergence Monotonic convergence of EMof EM

Likelihood function

F

Sequence of EM surrogate F-functions

EM monotonically converges to a local maximum of likelihood !

Monotonic convergence Monotonic convergence of EMof EM

Typical likelihood function

Different sequence of EM surrogate
F-functions depending on initialization

Use multiple, randomized initializations in practice

Summary: EM AlgorithmSummary: EM Algorithm

• A way of maximizing likelihood function for hidden variable models. Finds
MLE of parameters when the original (hard) problem can be broken up
into two (easy) pieces:
1.Estimate some “missing” or “unobserved” data from observed data and current
parameters.

2.Using this “complete” data, find the maximum likelihood parameter estimates.

• Alternate between filling in the latent variables using the best guess • Alternate between filling in the latent variables using the best guess
(posterior) and updating the parameters based on this guess:
1. E-step:

2. M-step:

• In the M-step we optimize a lower bound on the likelihood. In the E-step
we close the gap, making bound=likelihood.

• EM performs coordinate ascent on F, can get stuck in local minima.

• BUT Extremely popular in practice.

)Q,(FmaxargQ t

Q

1t θ=+

)Q,(Fmaxarg 1t1t +

θ

+ θ=θ

