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Motivation

Clustering:
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A somewhat similar problem

An experience in a casino

Game:
1. You bet $1
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair 

die, maybe with loaded die)
4. Highest number wins $2

Question: 

1245526462146146136136661664661636
616366163616515615115146123562344

Which die is being used in each play?
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Question:
Naturally, data  points arrive one at a time

Does the ordering index carry (additional) clustering information besides the data g y ( ) g
value itself ?

Example: 
Chromosomes of tumor cell:

Copy number measurements 
(known as CGH)

© Eric Xing @ CMU, 2006-2010
4



3

Array CGH (comparative genomic 
hybridization)

The basic assumption of a 
CGH experiment is that the 
ratio of the binding of test and 
control DNA is proportional to 
the ratio of the copy numbers 
of sequences in the two 
samples.
But various kinds of noises 
make the true observations 
l t i t tless easy to interpret … 
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60-70 fold amplification of  CMYC region

DNA Copy number aberration 
types in breast cancer

Copy number profile for chromosome
1 from 600 MPE cell line

Copy number profile for chromosome
8 from COLO320 cell line

Copy number profile for chromosome 8
in MDA-MB-231 cell line

deletion
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Question:
Sometimes, just data value by itself is hardly clusterable!

Unlike continuous vectors, which can take different values in an “infinite” space, 
and often naturally settle to different cluster just due to value differences, entities 
with discrete attributes often can not manifest their labels by a one time snapshot 
of their discrete values alone, sometime additional information is needed … 

e.g., 

1245526462146146136136661664661636616366163616515615115146123562344
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Suppose you were told about the 
following story before heading to Vegas…

The Dishonest Casino !!!

A casino has two dice:
Fair die
P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
Loaded die
P(1) = P(2) = P(3) = P(5) = 1/10
P(6) = 1/2P(6) = 1/2

Casino player switches back-&-forth 
between fair and loaded die once 
every 20 turns
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Puzzles Regarding the Dishonest 
Casino 

GIVEN: A sequence of rolls by the casino player

12455264621461461361366616646616366163661636165156151151461235623441245526462146146136136661664661636616366163616515615115146123562344

QUESTION
How likely is this sequence, given our model of how the casino 
works?

This is the EVALUATION problem

What portion of the sequence was generated with the fair die, andWhat portion of the sequence was generated with the fair die, and 
what portion with the loaded die?

This is the DECODING question

How “loaded” is the loaded die? How “fair” is the fair die? How often 
does the casino player change from fair to loaded, and back?

This is the LEARNING question
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From static to dynamic mixture 
models

Dynamic mixtureDynamic mixtureStatic mixtureStatic mixture

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... AX1

Y1

N
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Hidden Markov Models

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... The sequence:

The underlying source:

CGH signal, 

genomic entities, 

sequence of rolls,

dice,

sequence of rolls, 
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Markov property:

An HMM is a Stochastic 
Generative Model

Observed sequence:

A

1 4 3 6 6 4

Hidden sequence (a parse or segmentation):
B

BA A ABB
© Eric Xing @ CMU, 2006-2010
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Definition (of HMM)
Observation spaceObservation space

Alphabetic set:
Euclidean space:

y2 y3y1 yT... { }Kccc ,,, L21=C
Euclidean space:

Index set of hidden statesIndex set of hidden states

Transition probabilitiesTransition probabilities between any two statesbetween any two states

or

Start probabilitiesStart probabilities

A AA Ax2 x3x1 xT
... 

dR

{ }M,,, L21=I

,)|( ,ji
i

t
j

t ayyp === − 11 1

( ) .,,,,lMultinomia~)|( ,,, I∈∀=− iaaayyp Miii
i

tt K211 1

Graphical model

1 2
pp

Emission probabilitiesEmission probabilities associated with each stateassociated with each state

or in general:

( ).,,,lMultinomia~)( Myp πππ K211

( ) .,,,,lMultinomia~)|( ,,, I∈∀= ibbbyxp Kiii
i

tt K211

( ) .,|f~)|( I∈∀⋅= iyxp i
i

tt θ1

K …

State automata

© Eric Xing @ CMU, 2006-2010
13

The Dishonest Casino Model

FAIR LOADED

0.05
0.950.95

0.05

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2
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Three Main Questions on HMMs
1.1. EvaluationEvaluation

GIVEN an HMM M, and a sequence x,M, q x,
FIND Prob (x | M)
ALGO. ForwardForward

2.2. DecodingDecoding
GIVEN an HMM M, and a sequence x ,
FIND the sequence y of states that maximizes, e.g., P(y | x , M),    

or the most probable subsequence of states
ALGO. ViterbiViterbi, Forward, Forward--backward backward 

3.3. LearningLearning
GIVEN an HMM M, with unspecified transition/emission probs.,

and a sequence x,
FIND parameters θ = (πi, aij, ηik) that maximize P(x | θ)
ALGO. BaumBaum--Welch (EM)Welch (EM)

© Eric Xing @ CMU, 2006-2010
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Joint Probability

1245526462146146136136661664661636616366163616515615115146123562344

When the state-labeling is known, this is easy … 

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
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Probability of a Parse
Given a sequence x = x1……xT

and a parse y = y1, ……, yT,
y2 y3y1 yT... 

a d a pa se y y1, , yT,
To find how likely is the parse:
(given our HMM and the sequence)

p(x, y) = p(x1……xT, y1, ……, yT) (Joint probability)
= p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)
= p(y1) P(y2 | y1) … p(yT | yT-1) × p(x1 | y1) p(x2 | y2) … p(xT | yT)

A AA Ax2 x3x1 xT
... 

p(y1) (y2 | y1) p(yT | yT 1) p( 1 | y1) p( 2 | y2) p( T | yT)

Marginal probability:

Posterior probability:
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Example: the Dishonest Casino
Let the sequence of rolls be:

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

Then, what is the likelihood of
y = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?
(say initial probs a0Fair = ½, aoLoaded = ½)

½ × P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) … P(4 | Fair) =

½ × (1/6)10 × (0.95)9 = .00000000521158647211 = 5.21 × 10-9
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Example: the Dishonest Casino
So, the likelihood the die is fair in all this run
is just 5 21 × 10-9is just 5.21 × 10

OK, but what is the likelihood of
π = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, 

Loaded, Loaded, Loaded?

½ × P(1 | Loaded) P(Loaded | Loaded) … P(4 | Loaded) =

½ × (1/10)8 × (1/2)2 (0.95)9 = .00000000078781176215 = 0.79 × 10-9

Therefore, it is after all 6.59 times more likely that the die is fair 
all the way, than that it is loaded all the way

© Eric Xing @ CMU, 2006-2010
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Example: the Dishonest Casino
Let the sequence of rolls be:

x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6

Now, what is the likelihood π = F, F, …, F?
½ × (1/6)10 × (0.95)9 = 0.5 × 10-9, same as before

What is the likelihood y = L, L, …, L?

½ (1/10)4 (1/2)6 (0 95)9 00000049238235134735 5 10 7½ × (1/10)4 × (1/2)6 (0.95)9 = .00000049238235134735 = 5 × 10-7

So, it is 100 times more likely the die is loaded
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Marginal Probability

1245526462146146136136661664661636616366163616515615115146123562344

What if state-labeling Y is not observed 

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
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The Forward Algorithm
We want to calculate P(x), the likelihood of x, given the HMM

Sum over all possible ways of generating x:p y g g

To avoid summing over an exponential number of paths y, define

(the forward probability)

The recursion:
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The Forward Algorithm –
derivation

Compute the forward probability:
yty1 ... yt-1... 
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The Forward Algorithm
We can compute       for all k, t, using dynamic programming!k

tα

Initialization:

Iteration:

k
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Termination:
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Three Main Questions on HMMs
1.1. EvaluationEvaluation

GIVEN an HMM M, and a sequence x,M, q x,
FIND Prob (x | M)
ALGO. ForwardForward

2.2. DecodingDecoding
GIVEN an HMM M, and a sequence x ,
FIND the sequence y of states that maximizes, e.g., P(y | x , M),    

or the most probable subsequence of states
ALGO. ViterbiViterbi, Forward, Forward--backward backward 

3.3. LearningLearning
GIVEN an HMM M, with unspecified transition/emission probs.,

and a sequence x,
FIND parameters θ = (πi, aij, ηik) that maximize P(x | θ)
ALGO. BaumBaum--Welch (EM)Welch (EM)
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The Backward Algorithm
We want to compute                      ,

the posterior probability distribution on the

)|( x1=k
tyP yt+1 yT... yt... 

the posterior probability distribution on the                                          
t th position, given x

We start by computing
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The recursion:
Forward, αt

k Backward, 
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The Backward Algorithm –
derivation

Define the backward probability:
kk

yt+1 yT... yt... 
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The Backward Algorithm
We can compute       for all k, t, using dynamic programming!k

tβ

Initialization:

Iteration:
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k
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Termination:
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Example:

FAIR LOADED

0.05 0.950.95x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4
FAIR LOADED

0.05P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2
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t
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tti ik
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t yxPa 111 1 +++ ==∑ ββ )|(,
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x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4 FAIR LOADED

0.05 0.950.95

Alpha (actual)
0.0833    0.0500
0.0136    0.0052
0.0022    0.0006
0.0004    0.0001
0.0001    0.0000
0.0000    0.0000
0 0000 0 0000

Beta (actual)
0.0000    0.0000
0.0000    0.0000
0.0000    0.0000
0.0000    0.0000
0.0001    0.0001
0.0007    0.0006
0 0045 0 0055

, , , , , , , , , FAIR LOADED

0.05P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2

kii
i
t

k
tt

k
t ayxP ,)|( ∑ −== 11 αα

iik P 1∑0.0000    0.0000
0.0000    0.0000
0.0000    0.0000
0.0000    0.0000

0.0045    0.0055
0.0264    0.0112
0.1633    0.1033
1.0000    1.0000
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x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4 FAIR LOADED

0.05 0.950.95

Alpha (logs)
-2.4849   -2.9957
-4.2969   -5.2655
-6.1201   -7.4896
-7.9499   -9.6553
-9.7834  -10.1454

-11.5905  -12.4264
-13 4110 -14 6657

Beta (logs)
-16.2439  -17.2014
-14.4185  -14.9922
-12.6028  -12.7337
-10.8042  -10.4389
-9.0373   -9.7289
-7.2181   -7.4833
-5 4135 -5 1977

, , , , , , , , , FAIR LOADED

0.05P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2

kii
i
t

k
tt

k
t ayxP ,)|( ∑ −== 11 αα

iik P 1∑-13.4110  -14.6657
-15.2391  -15.2407
-17.0310  -17.5432
-18.8430  -19.8129

-5.4135   -5.1977
-3.6352   -4.4938
-1.8120   -2.2698

0         0
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What is the probability of a 
hidden state prediction?
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What is the probability of a 
hidden state prediction?

A single state:

What about a hidden state sequence ?q
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Posterior decoding
We can now calculate

),(
)|(

xyPyP
k

t
k
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k
tk βα= 11

Then, we can ask
What is the most likely state at position t of sequence x:

Note that this is an MPA of a single hidden state, 
what if we want to a MPA of a whole hidden state sequence?

Posterior Decoding:

)()(
),(

)|(
xx

x
PP

yyP tttk
t

β
=== 1

)|(maxarg* x1== k
tkt yPk

{ }* Tk 11Posterior Decoding: 

This is different from MPA of a whole sequence
of hidden states

This can be understood as bit error rate
vs. word error rate

{ }: Tty tk
t L11 ==

Example:
MPA of X ?
MPA of (X, Y) ?

x y P(x,y)
0 0 0.35
0 1 0.05
1 0 0.3
1 1 0.3
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