

- Clustering:
$\left\{x_{n}, y_{n}\right\}$

A somewhat similar problem

An experience in a casino

Game:

1. You bet \$1
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die, maybe with loaded die)
4. Highest number wins \$2

Question:

1245526462146146136136661664661636 616366163616515615115146123562344

Which die is being used in each play?

Question:

- 00
- 0
- 000
- 00
- 0
- Naturally, data points arrive one at a time
- Does the ordering index carry (additional) clustering information besides the data value itself ?
- Example:

Chromosomes of tumor cell:

Copy number measurements
(known as CGH)

Array CGH (comparative genomic hybridization)

- The basic assumption of a CGH experiment is that the ratio of the binding of test and control DNA is proportional to the ratio of the copy numbers of sequences in the two samples.
- But various kinds of noises make the true observations less easy to interpret ...

DNA Copy number aberration types in breast cancer

60-70 fold amplification of CMYC tegion

Clramosome 1 position (b)
Copy number profile for chromosome 1 from 600 MPE cell line
(c)

Copy number profile for chromosome 8 in MDA-MB-231 cell line
deletion

Question:

- Sometimes, just data value by itself is hardly clusterable!
- Unlike continuous vectors, which can take different values in an "infinite" space, and often naturally settle to different cluster just due to value differences, entities with discrete attributes often can not manifest their labels by a one time snapshot of their discrete values alone, sometime additional information is needed ...
- e.g.,

1245526462146146136136661664661636616366163616515615115146123562344

Suppose you were told about the following story before heading to Vegas...

The Dishonest Casino !!!

A casino has two dice:

- Fair die
$P(1)=P(2)=P(3)=P(5)=P(6)=1 / 6$
- Loaded die
$P(1)=P(2)=P(3)=P(5)=1 / 10$
$P(6)=1 / 2$
Casino player switches back-\&-forth between fair and loaded die once every 20 turns

Puzzles Regarding the Dishonest Casino

GIVEN: A sequence of rolls by the casino player
1245526462146146136136661664661636616366163616515615115146123562344
フ??
QUESTION

- How likely is this sequence, given our model of how the casino works?
- This is the EVALUATION problem
- What portion of the sequence was generated with the fair die, and what portion with the loaded die?
- This is the DECODING question
- How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?
- This is the LEARNING question

From static to dynamic mixture models

Static mixture

Hidden Markov Models

The underlying source: genomic entities, dice,

The sequence:
CGH signal,
sequence of rolls,

$P\left(y_{t+1} \mid y_{t, y_{t-1}} \cdots y_{t-2} \cdots y_{t}\right)$ $=p\left(y_{t_{1}} \mid y_{t}\right)$
Markov property:

An HMM is a Stochastic Generative Model

\equiv

- Observed sequence:

$$
\begin{aligned}
& \mathrm{C}=\left\{c_{1}, c_{2}, \mathrm{~S}^{\prime}, c_{k}\right\} \\
& \mathrm{R}^{d}
\end{aligned}
$$

- Index set of hidden states

$$
I=\{1,2,2 \cdot, M\}
$$

- Transition probabilities between any two states

Graphical model
or $p\left(y_{+} \mid y_{t-1}^{\prime}=1\right) \sim \operatorname{Multinomial}\left(a_{i, 1}, a_{i, 2}, \ldots, a_{i, M}\right), \forall i \in I$.

- Start probabilities
$p\left(y_{1}\right) \sim \operatorname{Multinomial}\left(\pi_{1}, \pi_{2}, \mathbb{N}, \pi_{M}\right)$.
- Emission probabilities associated with eatigh state
$p\left(x_{+} \mid y_{+}^{i}=1\right) \sim \operatorname{Multinomial}\left(b_{i, 1}, b_{i, 2}, \ldots, b_{i, K}\right), \forall i \in \mathbb{I}$. or in general:

State 2utomata $2 y_{T}=1$

$$
p\left(x_{t} \mid y_{t}^{i}=1\right) \sim \mathrm{f}\left(\cdot \mid \theta_{i}\right), \forall i \in \mathrm{I}
$$

The Dishonest Casino Model

Transition

Emissim.

$$
\begin{aligned}
& P(1 \mid F)=1 / 6 \\
& P(2 \mid F)=1 / 6 \\
& P(3 \mid F)=1 / 6 \\
& P(4 \mid F)=1 / 6 \\
& P(5 \mid F)=1 / 6 \\
& P(6 \mid F)=1 / 6
\end{aligned}
$$

Three Main Questions on HMMs

1. Evaluation

GIVEN an HMM \boldsymbol{M}, and a sequence \boldsymbol{x},
FIND $\operatorname{Prob}(\boldsymbol{x} \mid \boldsymbol{M})$
ALGO. Forward
2. Decoding

GIVEN an HMM \boldsymbol{M}, and a sequence \boldsymbol{x},
FIND the sequence y of states that maximizes, e.g., $\mathrm{P}(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{M})$, or the most probable subsequence of states
ALGO. Viterbi, Forward-backward
3. Learning

GIVEN an HMM \boldsymbol{M}, with unspecified transition/emission probs., and a sequence \boldsymbol{x},
FIND parameters $\theta=\left(\pi_{\mathrm{i}}, a_{\mathrm{ij}}, \eta_{\mathrm{ik}}\right)$ that maximize $\mathrm{P}(\boldsymbol{x} \mid \theta)$
ALGO. Baum-Welch (EM)

- When the state-labeling is known, this is easy ...

$$
\begin{aligned}
& P(\mathbf{X}, \mathbf{Y}) ? \\
= & P\left(x_{1} x_{2} \cdots x_{T}, y_{1} \cdots y_{T}\right) \\
P(A, B C) & =P(A) P(B \mid A) P(C \mid B, A)
\end{aligned}
$$

Probability of a Parse

- Given a sequence $\mathbf{x}=x_{1} \ldots \ldots x_{T}$
and a parse $y=y_{1}$ \qquad y_{T},
- To find how likely is the parse:
(given our HMM and the sequence)
 $y_{1}=1$
2 $2 \mathrm{p}(21)$
$p(\mathbf{x}, \mathbf{y})=p\left(x_{1}, \ldots . x_{\mathrm{T}}, y_{1}, \ldots \ldots, y_{\mathrm{T}}\right) \quad$ (Joint probability)
$=p\left(y_{1}\right) p\left(x_{1} \mid y_{1}\right) p\left(y_{2} \mid y_{1}\right) p\left(x_{2} \mid y_{2}\right) \ldots p\left(y_{\mathrm{T}} \mid y_{\mathrm{T}-1}\right) p\left(x_{\mathrm{T}} \mid y_{\mathrm{T}}\right)$
$=p\left(y_{1}\right) \mathrm{P}\left(y_{2} \mid y_{1}\right) \ldots p\left(y_{\mathrm{T}} \mid y_{\mathrm{T}-1}\right) \times p\left(x_{1} \mid y_{1}\right) p\left(x_{2} \mid y_{2}\right) \ldots p\left(x_{\mathrm{T}} \mid y_{\mathrm{T}}\right)$
ス
- Marginal probability: $p(\mathbf{x})=\sum_{y} p(\mathbf{x}, \mathbf{y})=\sum_{y_{1}} \sum_{y_{2}} \bar{\cdots} \cdot \sum_{y_{N}} \pi_{y_{1}} \prod_{t=2}^{T} p\left(y_{t} \mid y_{t-1}\right) \prod_{t=1}^{T} p\left(x_{t} \mid y_{t}\right)$
- Posterior probability: $p(\mathbf{y} \dagger \mathbf{x})=p(\mathbf{x}, \mathbf{y}) / p(\mathbf{x})$

Example: the Dishonest Casino

- Let the sequence of rolls be:

$$
\text { - } x=1,2,1,5,6,2,1,6,2,4
$$

- Then, what is the likelihood of
- $\boldsymbol{y}=$ Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?
(say initial probs $\mathrm{a}_{0 \text { Fair }}=1 / 2, \mathrm{a}_{\text {oLoaded }}=1 / 2$)

$$
P(x, y)
$$

$1 / 2 \times P(1 \mid$ Fair $) P($ Fair | Fair $) P(2 \mid$ Fair $) P($ Fair | Fair $) \ldots P(4 \mid$ Fair $)=$
$1 / 2 \times(1 / 6)^{10} \times(0.95)^{9}=.00000000521158647211=5.21 \times 10^{-9}$

Example: the Dishonest Casino

- So, the likelihood the die is fair in all this run is just 5.21×10^{-9}
- OK, but what is the likelihood of
 - $\pi=$ Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded?
$1 / 2 \times P(1 \mid$ Loaded $) P($ Loaded | Loaded $) \ldots P(4 \mid$ Loaded $)=$ -5×10^{-9}
$1 / 2 \times(1 / 10)^{8} \times(1 / 2)^{2}(0.95)^{9}=.00000000078781176215=0.79 \times 10^{-9}$
- Therefore, it is after all 6.59 times more likely that the die is fair all the way, than that it is loaded all the way

Example: the Dishonest Casino

- Let the sequence of rolls be:
- $x=1,6,6,5,6,2,6,6,3,6$
- Now, what is the likelihood $\pi=F, F, \ldots, F$?
- $1 / 2 \times(1 / 6)^{10} \times(0.95)^{9}=0.5 \times 10^{-9}$, same as before
- What is the likelihood $\boldsymbol{y}=\mathrm{L}, \mathrm{L}, \ldots, \mathrm{L}$?
$1 / 2 \times(1 / 10)^{4} \times(1 / 2)^{6}(0.95)^{9}=.00000049238235134735=5 \times 10^{-7}$
- So, it is 100 times more likely the die is loaded

Marginal Probability

1245526462146146136136661664661636616366163616515615115146123562344
— FF

- What if state-labeling Y is not observed

$$
\begin{aligned}
& P(\mathbf{X}) ? \\
& =\sum_{Y^{\prime}} P(x, y)
\end{aligned}
$$

$a_{\pi}^{k}=p\left(x_{1} \cdots x_{\pi}, y_{*}\right)$
 The Forward Algorithm

- We want to calculate $P(x)$, the likelihood of x , given the HMM
- Sum over all possible ways of generating \mathbf{x} :

$$
\underline{\underline{p(\mathbf{x}})}=\sum_{\mathbf{y}} p(\mathbf{x}, \mathbf{y})=\sum_{y_{1}} \sum_{y_{2}} \cdots \sum_{y_{+}} \pi_{y_{1}} \prod_{t=2}^{T} a_{y_{t-1}, y_{+}} \prod_{t=1}^{T} p\left(x_{t} \mid y_{+}\right)^{\mathrm{y}}\left(M^{\bar{N}}\right)
$$

- To avoid summing over an exponential number of paths \mathbf{y}, define
$\alpha\left(y_{t}^{k}=1\right)=\alpha_{t}^{k} \stackrel{\operatorname{def}}{=} P\left(x_{1}, \ldots, x_{t}, y_{t}^{k}=1\right) \quad$ (the forward probability)
- The recursion
$\alpha_{t}^{k}=p\left(x_{t} \mid y_{t}^{k}=1\right) \sum_{i} \alpha_{t-1}^{i} a_{i, k}$
$P(\mathbf{x})=\sum_{k} \alpha_{T}^{k}$

The Forward Algorithm derivation

- Compute the forward probability:
$\alpha_{t}^{k}=P\left(x_{1}, \ldots, x_{t-1}, x_{t}, y_{t}^{k}=1\right)$
$=\sum_{y_{t-1}} P\left(x_{1} \cdots x_{t-1}, y_{t-1}^{k}, \quad y_{t}^{k}=1\right)$
$\stackrel{y_{t+1}}{=} \sum_{y_{t-1}} P\left(x_{1}, \ldots, x_{t-1}, y_{t-1}\right) P\left(y_{t}^{k}=1 \mid y_{t-1}, x_{1}, \ldots, x_{t-1}\right) P\left(x_{t} \mid y_{t}^{k}=1, x_{1}, \ldots, x_{t-1}, y_{t-1}\right)$
$=\sum_{y_{t-1}} P\left(x_{1}, \ldots, x_{t-1}, y_{t-1}\right) P\left(y_{t}^{k}=1 \mid y_{t-1}\right) P\left(x_{t} \mid y_{t}^{k}=1\right)$
$=P\left(x_{+} \mid y_{t}^{k}=1\right) \sum_{i} P\left(x_{1}, \ldots, x_{t-1}, y_{t-1}^{i}=1\right) P\left(y_{t}^{k}=1 \mid y_{t-1}^{i}=1\right)$
$=P\left(x_{+} \mid y_{t}^{k}=1\right) \sum_{i} \alpha_{t-1}^{i} a_{i, k}$

Chain rule: $P(A, B, C)=P(A) P(B \mid A) P(C \mid A, B)$

The Forward Algorithm

- We can compute α_{t}^{k} for all k, t, using dynamic programming!

Initialization:

$$
\alpha_{1}^{k}=P\left(x_{1}, y_{1}^{k}=1\right)
$$

$$
\alpha_{1}^{k}=P\left(x_{1} \mid y_{1}^{k}=1\right) \pi_{k}
$$

$$
=P\left(x_{1} \mid y_{1}^{k}=1\right) P\left(y_{1}^{k}=1\right)
$$

$$
=P\left(x_{1} \mid y_{1}^{k}=1\right) \pi_{k}
$$

Iteration:

$$
\alpha_{t}^{k}=P\left(x_{t} \mid y_{t}^{k}=1\right) \sum
$$ Termination:

$$
P(\mathbf{x})=\sum_{k} \alpha_{T}^{k}
$$

Three Main Questions on HMMs

1. Evaluation

GIVEN an HMM \boldsymbol{M}, and a sequence \boldsymbol{x}, FIND Prob $(\boldsymbol{x} \mid \boldsymbol{M})$
ALGO. Forward
2. Decoding

GIVEN an HMM \boldsymbol{M}, and a sequence \boldsymbol{x},
FIND the sequence y of states that maximizes, e.g., $P(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{M})$, or the most probable subsequence of states
ALGO. Viterbi, Forward-backward
3. Learning

GIVEN an HMM \boldsymbol{M}, with unspecified transition/emission probs.,
and a sequence \boldsymbol{x},
FIND parameters $\theta=\left(\tau_{\mathrm{i}}, a_{\mathrm{ij}}, \eta_{\mathrm{ik}}\right)$ that maximize $\mathrm{P}(\boldsymbol{x} \mid \theta)$
ALGO. Baum-Welch (EM)

The Backward Algorithm ${ }^{P\left(y_{+}(x)=P(y)\right.}$

- We want to compute $P\left(y_{+}^{k}=1 \mid \mathbf{x}\right)$, the posterior probability distribution on the $t^{\text {th }}$ position, given x
- We start by computing

$$
\begin{aligned}
P\left(y_{t}^{k}=1, \mathbf{x}\right) & =P\left(x_{1}, \ldots, x_{t}, y_{t}^{k}=1, x_{t+1}, \ldots, x_{T}\right) \\
& =P\left(x_{1}, \ldots, x_{t}, y_{+}^{k}=1\right) P\left(x_{t+1}, \ldots, x_{T} \mid x_{t}, x_{t}^{k}=1\right) \\
& =P\left(x_{1} \ldots x_{t}, y_{t}^{k}=1\right) P\left(x_{t+1} \ldots x_{T} \mid y_{t}^{k}=1\right)
\end{aligned}
$$

$$
\text { Forward, } \alpha_{t}^{k} \quad \text { Backward, } \quad \beta_{t}^{k}=P\left(x_{t+1}, \ldots, x_{T} \mid y_{t}^{k}=1\right)
$$

- The recursion:

$$
\beta_{t}^{k}=\sum_{i} a_{k, i} p\left(x_{t+1} \mid y_{t+1}^{i}=1\right) \beta_{t+1}^{i}
$$

The Backward Algorithm derivation

- Define the backward probability:

$$
\begin{aligned}
\beta_{t}^{k} & =P\left(x_{t+1}, \ldots, x_{T} \mid y_{t}^{k}=1\right) \\
& =\sum_{y_{t+1}} P\left(x_{t+1}, \ldots, x_{T}, y_{t+1} \mid y_{t}^{k}=1\right) \\
& =\sum_{i} P\left(y_{t+1}^{\prime}=1 \mid y_{t}^{k}=1\right) p\left(x_{t+1} \mid y_{t+1}^{\prime}=1, y_{t}^{k}=1\right) P\left(x_{t+2}, \ldots, x_{T} \mid x_{t+1}, y_{t+1}^{\prime}=1, y_{t}^{k}=1\right) \\
& =\sum_{i} P\left(y_{t+1}^{\prime}=1 \mid y_{t}^{k}=1\right) p\left(x_{t+1} \mid y_{t+1}^{\prime}=1\right) P\left(x_{t+2}, \ldots, x_{T} \mid y_{t+1}^{\prime}=1\right) \\
& =\sum_{i} a_{k, j} p\left(x_{t+1} \mid y_{t+1}^{\prime}=1\right) \beta_{t+1}^{\prime}
\end{aligned}
$$

The Backward Algorithm

- We can compute β_{t}^{k} for all k, t, using dynamic programming!

Initialization:

$$
\beta_{T}^{k}=1, \forall k
$$

Iteration:

$$
\beta_{t}^{k}=\sum_{i} a_{k, i} P\left(x_{t+1} \mid y_{t+1}^{i}=1\right) \beta_{t+1}^{i}
$$

Termination:

$$
P(\mathbf{x})=\sum_{k} \alpha_{1}^{k} \beta_{1}^{k}
$$

$x=1,2,1,5,6,2,1,6,2,4$		
Alpha (logs)	Beta (logs)	$\begin{array}{lll}P(1 \mid F)=1 / 6 & 0.05 & \mathrm{P}(1 \mid \mathrm{L})=1 / 10 \\ P(2 \mid F)=1 / 6 & & P(2 \mid L)=1 / 10\end{array}$
-2.4849 -2.9957	$-16.2439-17.2014$	$\begin{array}{ll} P(2 \mid F)=1 / 6 & P(2 \mid L)=1 / 10 \\ P(3 \mid F)=1 / 6 & P(3 \mid L)=1 / 10 \end{array}$
-4.2969 -5.2655	-14.4185-14.9922	$P(4 \mid F)=1 / 6 \quad P(4 \mid L)=1 / 10$
-6.1201 -7.4896	-12.6028-12.7337	$P(5 \mid F)=1 / 6 \quad P(5 \mid L)=1 / 10$
-7.9499 -9.6553	-10.8042 -10.4389	$P(6 \mid F)=1 / 6 \quad P(6 \mid L)=1 / 2$
-9.7834 -10.1454	$\text { -9.0373 }-9.7289$	$\alpha_{t}^{k}=P\left(x_{t} \mid y_{t}^{k}=1\right) \sum \alpha_{t-1}^{i} a_{i}$
-11.5905 -12.4264	-7.2181 -7.4833	$\alpha_{t}=P\left(x_{t} \mid y_{t}=1\right) \sum_{i} \alpha_{t-1} a_{i, k}$
-13.4110 -14.6657	$-5.4135-5.1977$	$\beta^{k}=\sum a_{k i} P\left(x+\gamma^{i}-1\right) \beta_{t}^{i}$
-15.2391-15.2407	-3.6352 -4.4938	$\beta_{t}^{\kappa}=\sum_{i} a_{k, i} P\left(x_{t+1} \mid y_{t+1}^{\prime}=1\right) \beta_{t+1}^{\prime}$
-17.0310-17.5432	-1.8120 -2.2698	
-18.8430-19.8129	00	

What is the probability of a hidden state prediction?

-

What is the probability of a hidden state prediction?

- A single state:

$$
P\left(y_{t} \mid \mathbf{X}\right)
$$

- What about a hidden state sequence ?

$$
P\left(y_{1}, \ldots, y_{T} \mid \mathbf{X}\right)
$$

Posterior decoding

- We can now calculate

$$
P\left(y_{t}^{k}=1 \mid \mathbf{x}\right)=\frac{P\left(y_{t}^{k}=1, \mathbf{x}\right)}{P(\mathbf{x})}=\frac{\alpha_{+}^{k} \beta_{t}^{k}}{P(\mathbf{x})}
$$

- Then, we can ask
- What is the most likely state at position t of sequence \mathbf{x} :

$$
k_{t}^{*}=\arg _{\max }^{k} P\left(y_{t}^{k}=1 \mid x\right)
$$

- Note that this is an MPA of a single hidden state, what if we want to a MPA of a whole hidden state sequence?
- Posterior Decoding:

$$
\left\{y_{t}^{k_{+}^{*}}=1: t=1 \cdots T\right\}
$$

- This is different from MPA of a whole sequence of hidden states
- This can be understood as bit error rate vs. word error rate

Example: MPA of X ? MPA of (X, Y) ?

