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Motivation .
e Clustering:
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A somewhat similar problem

An experience in a casino

Game:

1.You bet $1
2.You roll (always with a fair die)

3.Casino player rolls (maybe with fair
die, maybe with loaded die)

4. Highest number wins $2
Question:
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Which die is being used in each play?
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Question: '

e Naturally, data points arrive one at a time

e Does the ordering index carry (additional) clustering information besides the data
value itself ?

e Example:
Chromosomes of tumor cell:

Copy number measurements
(known as CGH)
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Array CGH (comparative genomic

hybridization)

-R-1-2-]

o .

e The basic assumption of a
CGH experiment is that the
ratio of the binding of test and
control DNA is proportional to
the ratio of the copy numbers
of sequences in the two
samples.

e But various kinds of noises
make the true observations
less easy to interpret ...
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Question: -+

e Sometimes, just data by itself is hardly clusterable!

e Unlike continuous vectors, which can take different values in an “infinite” space,
and often naturally settle to different cluster just due to value differences, entities
with discrete attributes often can not manifest their labels by a one time snapshot
of their discrete values alone, sometime additional information is needed ...

e eg.,
64621461461361366616646616366163661636165156 6 6
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Suppose you were told about the 33

following story before heading to Vegas... | ¢

The Dishonest Casino !!!

A casino has two dice:

e Fair die

P(1)=P(2) =P(3) =P(5) =P(6) =1/6
e Loaded die

P(1) = P(2) = P(3) = P(5) = 1/10

P(6) = 1/2

Casino player switches back-&-forth
between fair and loaded die once
every 20 turns
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Puzzles Regarding the Dishonest | 332

Casino -

GIVEN: A sequence of rolls by the casino player

64621461461361366616646616366163661636165156 612356
QUESTION
e How likely is this sequence, given our model of how the casino
works?

e Thisis the EVALUATION problem

e What portion of the sequence was generated with the fair die, and
what portion with the loaded die?
e Thisis the DECODING question

e How “loaded” is the loaded die? How “fair” is the fair die? How often
does the casino player change from fair to loaded, and back?
e Thisis the LEARNING question
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Hidden Markov Models o

dice,

The sequence: @ @ @ "

CGH signal,
sequence of rolls,

The underlying source: @ @ e e
genomic entities,

Markov property:
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An HMM is a Stochastic
Generative Model

e Observed sequence:

e Hiddgen sequence (a parse or segmentation):

O—O—0O—O—O—O—

12
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Definition (of HMM) -

e Observation space

|
ELPCT;Z(:LC:;::;Q C= {Q,Cz,-",CK} —’
: X
Index set of hidden states
) =02 M QD’ QB’ QB '” e”

e Transition probabilities between any two states ~ Graphical model
p()’fj :1|}’f/—1 =1)= a
or  p(y, | yi,=1)~Multinomial(g, ,,a,,.....a, , ) Vi €. 1 >
e Start probabilities
p(y) ~ Multinomial(z;, 7,,..., 7, ).
e Emission probabilities associated with each state

p(x, |y =1)~ Multinomial(8,,,6.,...., b, ¢ ) Vi €. K
or in general:
p(x, |)’,«/ -1~ f(. | Q.),V/' el State automata
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The Dishonest Casino Model .
0.05
0.95 0.95
LOADED
P(1|F) = 1/6 P(1]L) = 1/10
P(2IF) = 1/6 P(2IL) = 1/10
P(3|F) = 1/6 0.05 P(3IL) = 1/10
P(4|F) = 1/6 P(4|L) = 1/10
P(5|F) = 1/6 P(5|L) = 1/10
P(6IF) = 1/6 P(6IL) = 1/2
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Three Main Questions on HMMs -

1. Evaluation

GIVEN an HMM M, and a sequence x,
FIND Prob (x| M)
ALGO. Forward
2. Decoding
GIVEN an HMM M, and a sequence x,
FIND the sequence y of states that maximizes, e.g., P(y | x, M),
or the most probable subsequence of states
ALGO. Viterbi, Forward-backward
3. Learning
GIVEN an HMM M, with unspecified transition/emission probs.,
and a sequence x,
FIND parameters 6 = (7, g, 7) that maximize P(x| 0)
ALGO. Baum-Welch (EM)

15
© Eric Xing @ CMU, 2006-2010

Joint Probability '

64621461461361366616646616366163661636165156 6 6

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

e When the state-labeling is known, this is easy ...

P(X,Y) ?

16
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Probability of a Parse o

e Given a sequence X = Xj...... Xt
e —P
andaparsey =y, ...... s Vo @ @ @ @

e To find how likely is the parse:

(given our HMM and the sequence) @ @ @ @

pXy)  =plx...... X0 Vi oo Y1) (Joint probability)
= plya) pixi | ya) PO | ya) PO L ya) - Py | yea) PO | )
=py) POal y) - P | yed) X plx [ ya) pOs | o) o plxe | 1)

e Marginal probability: - p(x)=3_ p(x.y)=3. > > 7, JTp( Iy )] P I%)
e Posterior probability: pY1X)=px,y)/ p(x)

17
© Eric Xing @ CMU, 2006-2010

Example: the Dishonest Casino o

e Let the sequence of rolls be:

e Xx=1,21,56216 24 ﬁ ﬁ

e Then, what is the likelihood of
e y=Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?

(say initial probs age.ir = Y2, Ay gaded = ¥2)

% x P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) ... P(4 | Fair) =

1 x (1/6)10 x (0.95)? = .00000000521158647211 = 5.21 x 10

18
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Example: the Dishonest Casino o

e So, the likelihood the die is fair in all this run

is just 5.21 x 109 i

e OK, but what is the likelihood of

e 7 =Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded,
Loaded, Loaded, Loaded?

%

% x P(1 | Loaded) P(Loaded | Loaded) ... P(4 | Loaded) =

Vs x (1/10)8 x (1/2)2 (0.95)? = .00000000078781176215 = 0.79 x 107

e Therefore, it is after all 6.59 times more likely that the die is fair
all the way, than that it is loaded all the way

19
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Example: the Dishonest Casino o

e Let the sequence of rolls be:

e x=1,6,6,5626,6, 3,6 i ﬁ

e Now, what is the likelihood n = F, F, ..., F?
e 15 x(1/6)1° x (0.95)° = 0.5 x 10, same as before

e Whatis the likelihood y=1L, L, ..., L?
Y x (1/10)* x (1/2)8 (0.95)° = .00000049238235134735 = 5 x 1077

e S0, itis 100 times more likely the die is loaded

20
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Marginal Probability -

64621461461361366616646616366163661636165156 6 6

e What if state-labeling Y is not observed

P(X) 7

21
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The Forward Algorithm H

e We want to calculate AXx), the likelihood of x, given the HMM
e Sum over all possible ways of generating x:

p(X) - Zyp(x'y) :Zy1 Zyz'“ZyN 7[}’1[!0)44%HP(X7 |yf)

e To avoid summing over an exponential number of paths y, define
P P def X

a(y; =) =a; =P(x,...x,, ¥, =1) (the forward probability)

e The recursion:
k _ k _ /
ap = p(x, |y = l)zarfla/,k
F
k
P(x) = Z ar
k

22
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The Forward Algorithm —
derivation

e Compute the forward probability:

af =P(x;, X, 1, X,y =1)

&
© © ©

:ZYH'D(X1v---:Xr71v)’r71)P(}’fk =1yt X % )P Y =1 X X V)

:zy,1P(Xu---:er)’H)f’(yf =1y, ,)P(x, |yfk

=1)

=P Ly =D, P X Y = DPU =11y, =)

=P(x, |Yrk :1)2,-0‘;{710/,/(

Chain rule: P(A,B,C)=P(A)P(B| A)P(C|A,B)

© Eric Xing @ CMU, 2006-2010
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The Forward Algorithm

e We can compute af for all 4, #, using dynamic programming!

Initialization:

alk =P(x |}’1k =1z,

Iteration:

af =P(x, | yf =1 .0,

Termination:

P(x)= Zaﬁ

© Eric Xing @ CMU, 2006-2010

all(:'p(xu)ﬁk:l)
=P |y =DP(y =1)
:P(X1|)’1k:1)”k

24
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Three Main Questions on HMMs o
1. Evaluation
GIVEN an HMM M, and a sequence x,
FIND Prob (x| M)
ALGO. Forward
2. Decoding
GIVEN an HMM M, and a sequence x,
FIND the sequence y of states that maximizes, e.g., P(y | x, M),
or the most probable subsequence of states
ALGO. Viterbi, Forward-backward
3. Learning
GIVEN an HMM M, with unspecified transition/emission probs.,
and a sequence x,
FIND parameters 6 = (7, g, 7) that maximize P(x| 0)
ALGO. Baum-Welch (EM)
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The Backward Algorithm o

e We want to compute P(y* =1]|x) , (V)6

the posterior probability distribution on the

7t position, given x ° @

e We start by computing

Plyf =1,%)=P(X;, X, ¥ =1, %, 10000, X)

=P(Xys X, VE = DP (K greos X | Xioos X,y = 1)
= P(x;. X, Y =DP (X g Xr |y =1)
-
Forward, a./ Backward, A =P(X,p Xe | V¢ =1)

e The recursion:
,Btk = Z A p(Xm | Ytl+1 = 1),Btl+1

© Eric Xing @ CMU, 2006-2010
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The Backward Algorithm — ses

derivation -

e Define the backward probability: @,@ _@
ﬂrk =P (X g0 Xr |yfk =1 @ @ @

:Zymp(xm ----- Xr Vel Y =1)

= Z/‘ a,: pKs |}’¥+1 = l)ﬂrjﬂ

Chainrule: P(A,B,C|a)=P(A|a)P(B| A a)P(C|A B,a)

27
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The Backward Algorithm -

e We can compute ﬂfk for all 4, #, using dynamic programming!

Initialization:

BE=1 Yk

Iteration:
k . .
B =24 P | Vi =1)Brs
Termination:

P(X) =2 o B
k

28
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Example:

x=1,2,1,5/6,21,6,24

© Eric Xing @ CMU, 2006-2010

R

P(1|F) = 1/6
PQ2IF) = 1/6
P@GIF) = 1/6
P@IF) = 1/6
P(5|F) = 1/6
P(6IF) = 1/6

0.05

@‘, 0.95

P(IL) = 1/10
P@IL) = 1/10
P@IL) = 1/10
P@IL) = 1/10
P(IL) = 1/10
P@IL) = 1/2

af =P(x, |yt ZI)Z/ %1,
Bl = Z/ a, P | Ve =18

29

x=12/156,216,24

Alpha (actual)

0.0833
0.0136
0.0022
0.0004
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000

0.0500
0.0052
0.0006
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

Beta (actual)

0.0000
0.0000
0.0000
0.0000
0.0001
0.0007
0.0045
0.0264
0.1633
1.0000

0.0000
0.0000
0.0000
0.0000
0.0001
0.0006
0.0055
0.0112
0.1033
1.0000
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0.95 .@

P(1F) = 1/6
P(2IF) = 1/6
P(3IF) = 1/6
P(4[F) = 1/6
P(5|F) = 1/6
P(6IF) = 1/6

0.05

@” 0.95

P(IL) = 1110
P(IL) = 1/10
P@3IL) = 1/10
P(4]L) = 1110
P(5IL) = 1/10
P(6IL) = 172

af =P |yt =Y ) 1a,,
Bl = Z,. a, P Ly =B

30
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|
0.95 0.95
x=1,215,6 2162 4 '@ @‘,
Alpha (logs) Beta (logs) P(1]F) = 1/6 0.05 PAIL) = 1/10
-2.4849 -2.9957 -16.2439 -17.2014 S Ean o
-4.2969 -5.2655 -14.4185 -14.9922 P(4|F) = 1/6 P(4|L) = 1/10
-6.1201 -7.4896 -12.6028 -12.7337 P(5|F) = 1/6 P(5|L) = 1/10
7.9499 -9.6553 -10.8042 -10.4389 P(8IF)=1/6 PEIL =172
-0.7834 -10.1454 -9.0373 -9.7289 P P i
-11.5905 -12.4264 7.0181 -7.4833 a; =P(x | y; —I)Z/a,,la,.*
-13.4110 -14.6657 5.4135 -5.1977 K PN
-15.2391 -15.2407 -3.6352 -4.4938 B =2 P X | Yia =D
-17.0310 -17.5432 18120 -2.2698
-18.8430 -19.8129 o o0
© Eric Xin QCMU 2006-2010 31
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What is the probability of a
hidden state prediction? o

e A single state:

P(Ur|X)

e What about a hidden state sequence ?

32
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Posterior decoding :
e We can now calculate .
Plyf =1ix) =P =10 i
= = =
P(x) P(x)
e Then, we can ask
e What is the most likely state at position t of sequence x:
k" =argmax, P(y/ =1|x)
e Note that this is an MPA of a single hidden state,
what if we want to a MPA of a whole hidden state sequence?
Posterior Decoding: K _1.4_
. o AyF =lir=1.T |
e This is different from MPA of a whole sequence of hidden
states x|y PCx.y)
e This can be understood as bit error rate (e s
vs. word error rate Example: o| 7 Q.95
MPA of X ? zZ O o3
MPA of (X, Y) ? 7 7 0.3
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Viterbi decoding '

e GIVENX =X, .., x5 wewanttofindy =y, .., y4, such that
Ay|x) is maximized:

y' = argmax, ARy|x) = argmax, Ay X)
e Let

k k
Vi =max, o P(Xpe Xogs Yiveo Ve X Yp =1)

= Probability of most likely sequence of states ending at state y; = &

e The recursion: Xg Xp Xg eveerreeeseenneensanessinnaeaees Xy
VK =px |yi=Dmax,a V' = L/

T p t | Yf - / a/‘,k -1 7

e Underflows are a significant problem K[ J

PXiy X Vi V) = 7,0, "'ayr,pyrbym "'byr.xr
These numbers become extremely small — underflow

Solution: Take the logs of all values: ¥ =log p(x, | y¥ =1)+max,(log(a, , )+ ¥/, )

34
© Eric Xing @ CMU, 2006-2010
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The Viterbi Algorithm — derivation | :¢

e Define the viterbi probability:

K k
Vhl = max{yl,,.,y,)P()(l""lXf'yll""yr’Xr+1,yf+1 :1)

:max{yl,...y,}'p(xnl,}’rkﬂ:1|le---:Xrryl""*Yr)'p(xl:---rXﬂ)’lr---er)

:max{yl,.,.y'}P(de,yfA;l :1|yf)P()(l""’Xf—l'yl""'yr—l’Xf’yf)

=max; P(x,,, yiy =11y, =hmax,, , P(x,

<Yra}
P .
= max/ P(XHI, | Yf+1 = l)a//(Vfl

= P(Xr+1, |yrk+1 = 1) max; a/'.eri

© Eric Xing @ CMU, 2006-2010

o X Vi Yot X Yy =1)

35

The Viterbi Algorithm

e Input: X = x;, ..., X7
Initialization:
K =Plx |y =D,
Iteration:
Wk =P(x, |y} =Dmax, a, 0/,
Ptr(k,#) =argmax; a ./,
Termination:
P(x,y") = max, I4*
TraceBack:
y; =argmax, W
Yra =Ptr(y; 1)

© Eric Xing @ CMU, 2006-2010

36

18



Computational Complexity and B
iImplementation details o

I
e What is the running time, and space required, for Forward,

and Backward? _
atk = p(x, | ytk :1)Zatl—1ai,k

ﬂtk = Zak,i p(xm | yti+l zl)ﬁtiﬂ
Vtk = p(x | Ytk =1) max; ai,kvti—l
Time: O(KEN); Space: O(KN).

e Useful implementation technique to avoid underflows
e Viterbi: sum of logs
e Forward/Backward: rescaling at each position by multiplying by a constant

37
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Three Main Questions on HMMs o

1. Evaluation

GIVEN an HMM M, and a sequence x,
FIND Prob (x| M)
ALGO. Forward
2. Decoding
GIVEN an HMM M, and a sequence x,
FIND the sequence y of states that maximizes, e.g., P(y'| x, M),
or the most probable subsequence of states
ALGO. Viterbi, Forward-backward
3. Learning
GIVEN an HMM M, with unspecified transition/emission probs.,
and a sequence x,
FIND parameters 0 = (7, g, 7) that maximize P(x| 0)
ALGO. Baum-Welch (EM)

38
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Learning HMM -

e Next Lecture

39
© Eric Xing @ CMU, 2006-2010

Summary: the HMM algorithms 4

Questions:

e Evaluation: What is the probability of the observed
sequence? Forward

e Decoding: What is the probability that the state of the 3rd roll
is loaded, given the observed sequence? Forward-
Backward

e Decoding: What is the most likely die sequence? Viterbi

e Learning: Under what parameterization are the observed
seqguences most probable? Baum-Welch (EM)

o 40
© Eric Xing @ CMU, 2006-2010
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Applications of HMMs o

e Some early applications of HMMs

° finance, but we never saw them
° speech recognition
° modelling ion channels

e In the mid-late 1980s HMMs entered genetics and molecular
biology, and they are now firmly entrenched.

e Some current applications of HMMs to biology

° mapping chromosomes

° aligning biological sequences

° predicting sequence structure

° inferring evolutionary relationships
° finding genes in DNA sequence

X 41
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Typical structure of a gene t

Startcodon  codons  pongr site

[o{c{ssATGCCCTTCTCCAACAG ciL<:
start

Exon

Acceptor site

Poly-A site

Stop codon

GATCCCCATGCCTGAGGGCCCCTC

3'UTR
42

© Eric Xing @ CMU, 2006-2010
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GENSCAN (Burge & Karlin)

GAGAACGTGTGAGAGAGAGGCAAGCCGAAAAATCAGCCGC
(CGAAGGATACACTATCGTCGTCCTTGTCCGACGAACCGGT

PATACACAGCGCACACAT
l

'CCCTGCTGCGCCTC
(GCGTGCACAATTTGCGCCAATTTCCCCCCTTTTCCAGTTT
TTTTCAACCCAGCACCGCTCGTCTCTTCCTCTTCTTAACG
 TTAGCATTCGTACGAGGAACAGTGCTGTCATTGTGGCCGC |
TGTGTAGCTAAAAAGCGTAATTATTCATTATCTAGCTATC |
TTTTCGGATATTATTGTCATTT CTTGTGTAT |

@{  TTATATGGATGAAACGTGCTAT/ ATGCAGAATGA

pely)=

RS

AGAACTGAAGAGTTTCAAAACCT AATTGGAATAT |
AAAGTTTGGTTTTACAATTTGA’ CTATTGTAAGT

GGAGCGTAACATAGGGTAGAAAL AAATCAAAGTA

CTAAATGGAATACAAATTTTA TTGAGTARA
ATGAGCAAAGCGCCTATTTTGG! TGCTGTTTAC
AAGGGGAACATATTCATAATTTTCAGGTTTAGGTTACGCA
ward (+) strand [TATGTAGGCGTAAAGAAATAGCTATATTTGTAGAAGTGCA

Reverse (-) strand TATGCACT T TATAAAAAATTATCCTACATTAACGTATTTT
ATTTGCTTTAAAACCTATCTGAGATATTCCAATAAGGTAA
GTGCAGTAATACAATGTAAATAATTGCAAATAATGTTGTA

O ACTAAATACGTAAACAATAATGTAG,

© Eric Xing @ CMU, 2006-2010
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