Machine Learning 10-701/15-781, Spring 2010 Bayesian Networks Eric Xing Lecture 13, March 1, 2010 Reading: Chap. 8, C.B book

Recap of Basic Prob. Concepts

 Representation: what is the joint probability dist. on multiple variables?

$$P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8,) \\$$

- How many state configurations in total? --- 28
- Are they all needed to be represented?
- . Do we get any scientific/medical insight?

- Learning: where do we get all this probabilities?
 - Maximal-likelihood estimation? but how many data do we need?
 - Where do we put domain knowledge in terms of plausible relationships between variables, and plausible values of the probabilities?
- Inference: If not all variables are observable, how to compute the conditional distribution of latent variables given evidence?
 - Computing p(HA) would require summing over all 2⁶ configurations of the unobserved variables

© Eric Xing @ CMU, 2006-2010

Bayesian Network

□ If X_i 's are conditionally independent (as described by a BN), the joint can be factored to a product of simpler terms, e.g.,

$$P(X_{p}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8})$$

$$= P(X_{1}) P(X_{2}) P(X_{3}|X_{1}) P(X_{4}|X_{2}) P(X_{5}|X_{2})$$

$$P(X_{6}|X_{3}, X_{4}) P(X_{7}|X_{6}) P(X_{8}|X_{5}, X_{6})$$

$$P(X_{1}|X_{2}, X_{3}, X_{4}) P(X_{1}|X_{5}) P(X_{4}|X_{5}, X_{6})$$

- Why we may favor a BN?
 - Representation cost: how many probability statements are needed?

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28!

- Algorithms for systematic and efficient inference/learning computation
 - Exploring the graph structure and probabilistic semantics
- Incorporation of domain knowledge and causal (logical) structures

© Eric Xing @ CMU, 2006-2010

7

Specification of a BN

- There are two components to any GM:
 - the *qualitative* specification
 - the *quantitative* specification

© Eric Xing @ CMU, 2006-2010

Bayesian Network: Factorization Theorem

 $P(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8})$ $= P(X_1) P(X_2) P(X_3/X_1) P(X_4/X_2) P(X_5/X_2)$ $P(X_6/X_3, X_4) P(X_7/X_6) P(X_8/X_5, X_6)$

Theorem:

Given a DAG, The most general form of the probability distribution that is consistent with the (probabilistic independence properties encoded in the) graph factors according to "node given its parents":

$$P(\mathbf{X}) = \prod_{i} P(X_i \mid \mathbf{X}_{\pi_i})$$

where \mathbf{X}_{π} is the set of parents of xi. d is the number of nodes (variables) in the graph.

© Eric Xing @ CMU, 2006-2010

© Eric Xing @ CMU, 2006-2010

Examples

P(B. E. A. J.M) = PWP(G)P(A)F,B)P(J/A)P/M/A)

PLM 13)

Qualitative Specification

- Where does the qualitative specification come from?
 - Prior knowledge of causal relationships
 - Prior knowledge of modular relationships
 - Assessment from experts
 - Learning from data
 - We simply link a certain architecture (e.g. a layered graph)
 - ..

© Eric Xing @ CMU, 2006-2010

11

Local Structures & Independencies

• Fixing B decouples A and C

"given the level of gene B, the levels of A and C are independent."

Cascade

Knowing B decouples A and C
 "given the level of gene B, the level gene A provides no extra prediction value for the level of gene C"

V-structure

• The language is compact, the concepts are rich!

P(ER) E

© Eric Xing @ CMU, 2006-2010

A simple justification

© Eric Xing @ CMU, 2006-2010

13

Graph separation criterion

• D-separation criterion for Bayesian networks (D for Directed edges):

Definition: variables x and y are *D-separated* (conditionally independent) given z if they are separated in the *moralized* ancestral graph

• Example:

Global Markov properties of DAGs

 X is d-separated (directed-separated) from Z given Y if we can't send a ball from any node in X to any node in Z using the "Bayesball" algorithm illustrated bellow (and plus some boundary conditions):

 Defn: I(G)=all independence properties that correspond to dseparation:

$$I(G) = \left\{ X \perp Z \middle| Y : dsep_G(X; Z \middle| Y) \right\}$$

D-separation is sound and complete

15

Example:

• Complete the I(G) of this graph:

Essentially: A BN is a database of Pr. Independence statements among variables.

© Eric Xing @ CMU, 2006-2010

Bayesian Network: Conditional Independence Semantics

Structure: DAG

- Meaning: a node is conditionally independent of every other node in the network outside its Markov blanket
- Local conditional distributions (CPD) and the DAG completely determine the joint dist.
- Give causality relationships, and facilitate a generative process

Ancestor

Y1

Y2

Parent

Descendent

© Eric Xing @ CMU, 2006-2010

Towards quantitative specification of probability distribution

- Separation properties in the graph imply independence properties about the associated variables
- For the graph to be useful, any conditional independence properties we can derive from the graph should hold for the probability distribution that the graph represents
- The Equivalence Theorem

For a graph G,

Let \mathcal{D}_1 denote the family of all distributions that satisfy I(G), Let \mathcal{D}_2 denote the family of all distributions that factor according to G. Then $\mathcal{D}_1 \equiv \mathcal{D}_2$.

71881c)

© Eric Xing @ CMU, 2006-2010

Example: Gaussian Model

Generative model:

$$p(x_1,...x_n \mid \mu, \sigma) = P p(x_i \mid \mu, \sigma)$$

$$= p(data \mid parameters)$$

$$= p(D \mid \theta)$$

$$where \theta = \{\mu, \sigma\}$$

- Likelihood = p(data | parameters)= p(D | θ)= L (θ)
- Likelihood tells us how likely the observed data are conditioned on a particular setting of the parameters
 - Often easier to work with log L (θ)

© Eric Xing @ CMU, 2006-2010

25

Bayesian models P(b) A) i=1:n

Example: modeling text

A Hierarchical Phrase-Based Model for Statistical Machine Translation

We present a statistical phrase-based Translation model that uses hierarchical phrases—phrases that contain sub-phrase The model is formally a synchronous context-free grammar but is learned from a bitext without any syntactic information. Thus it can be seen as a shift to the formal machinery of syntax based translation systems without any linguistic commitment. In our experiments using BLEU as a metric, the hierarchical Phrase based model achieves a relative Improvement of 7.5% over Pharaoh, a state-of-the-art phrase-based system.

© Eric Xing @ CMU, 2006-2010

27

More examples

Density estimation

Parametric and nonparametric methods

Regression

Linear, conditional mixture, nonparametric

Classification

Generative and discriminative approach

Υ

Χ

© Eric Xing @ CMU, 2006-2010

- A Bayesian network is a special case of **Graphical Models**
- A Graphical Model refers to a family of distributions on a set of random variables that are compatible with all the probabilistic independence propositions encoded by a graph that connects these variables
- It is a smart way to write/specify/compose/design exponentially-large probability distributions without paying an exponential cost, and at the same time endow the distributions with structured semantics

© Eric Xing @ CMU, 2006-2010

33

Two types of GMs

- Directed edges give causality relationships (Bayesian Network or Directed Graphical Model):
 - $$\begin{split} &P(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}) \\ &= P(X_{1}) P(X_{2}) P(X_{3} | X_{1}) P(X_{4} | X_{2}) P(X_{5} | X_{2}) \\ &P(X_{6} | X_{3}, X_{4}) P(X_{7} | X_{6}) P(X_{8} | X_{5}, X_{6}) \end{split}$$

 Undirected edges simply give correlations between variables (Markov Random Field or Undirected Graphical model):

 $P(X_{D}, X_{D}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8})$

 $= \frac{1/\mathbf{Z}}{E} \exp\{E(X_1) + E(X_2) + E(X_3, X_1) + E(X_4, X_2) + E(X_5, X_2) + E(X_6, X_3, X_4) + E(X_2, X_6) + E(X_8, X_5, X_6)\}$

© Eric Xing @ CMU, 2006-2010

Probabilistic Inference

- Computing statistical queries regarding the network, e.g.:
 - Is node X independent on node Y given nodes Z,W?
 - What is the probability of X=true if (Y=false and Z=true)?
 - What is the joint distribution of (X,Y) if Z=false?
 - . What is the likelihood of some full assignment?
 - What is the most likely assignment of values to all or a subset the nodes of the network?
- General purpose algorithms exist to fully automate such computation
 - Computational cost depends on the topology of the network
 - Exact inference:
 - The junction tree algorithm
 - Approximate inference;
 - Loopy belief propagation, variational inference, Monte Carlo sampling

© Eric Xing @ CMU, 2006-2010

35

Learning BNs (or GMs)

The goal:

Given set of independent samples (assignments of random variables), find the best (the most likely?) Bayesian Network (both DAG and CPDs)

MLE for general BN parameters

 If we assume the parameters for each CPD are globally independent, and all nodes are fully observed, then the loglikelihood function decomposes into a sum of local terms, one per node:

$$\ell(\theta; D) = \log p(D \mid \theta) = \log \prod_{\substack{N_1 \\ 0 \mid 1}} \left(\prod_i p(x_{n,i} \mid \mathbf{X}_{n,\pi_i}, \theta_i) \right) = \sum_i \left(\sum_n \log p(x_{n,i} \mid \mathbf{X}_{n,\pi_i}, \theta_i) \right)$$

Example: decomposable likelihood of a directed model

• Consider the distribution defined by the directed acyclic GM:

$$p(x \mid \theta) = p(x_1 \mid \theta_1) p(x_2 \mid x_1, \theta_1) p(x_3 \mid x_1, \theta_3) p(x_4 \mid x_2, x_3, \theta_1)$$

• This is exactly like learning four separate small BNs, each of which consists of a node and its parents.

Eric Xing @ CMU, 2006-2010

E.g.: MLE for BNs with tabular CPDs

Assume each CPD is represented as a table (multinomial) where

$$\theta_{ijk} \stackrel{\text{def}}{=} p(X_i = j \mid X_{\pi_i} = k)$$

- Note that in case of multiple parents, \mathbf{X}_{π_i} will have a composite state, and the CPD will be a high-dimensional table
- The sufficient statistics are counts of family configurations

$$n_{ijk} \stackrel{\text{def}}{=} \sum_{n} x_{n,i}^{j} x_{n,\pi_{i}}^{k}$$

- The log-likelihood is $\ell(\theta; D) = \log \prod_{i,j,k} \theta_{ijk}^{n_{ijk}} = \sum_{i,j,k} n_{ijk} \log \theta_{ijk}$
- Using a Lagrange multiplier to enforce $\sum_{j} \theta_{ijk} = 1$, we get:

$$heta_{ijk}^{ML} = rac{n_{ijk}}{\displaystyle\sum_{i,j',k} n_{ij'k}}$$

© Eric Xing @ CMU, 2006-2010

39

What if some nodes are not observed?

Consider the distribution defined by the directed acyclic GM:

$$p(x \mid \theta) = p(x_1 \mid \theta_1) p(x_2 \mid x_1, \theta_1) p(x_3 \mid x_1, \theta_3) p(x_4 \mid x_2, x_3, \theta_1)$$

• Need to compute $p(x_H|x_V) \rightarrow inference$

© Eric Xing @ CMU, 2006-2010

Summary

- Represent dependency structure with a directed acyclic graph
 - Node <-> random variable
 - Edges encode dependencies
 - Absence of edge -> conditional independence
 - Plate representation
 - A BN is a database of prob. Independence statement on variables

- The factorization theorem of the joint probability
 - Local specification → globally consistent distribution
 - Local representation for exponentially complex state-space
- Support efficient inference and learning next lecture

© Eric Xing @ CMU, 2006-2010