

What is a Bayesian Network?

--- example from a signal transduction pathway

- A possible world for cellular signal transduction:

Kinase C X_{3}
Kinase D X_{4}

Recap of Basic Prob. Concepts

- Representation: what is the joint probability dist. on multiple variables?

$$
P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8},\right)
$$

- How many state configurations in total? --- $\mathbf{2}^{8}$
- Are they all needed to be represented?
- Do we get any scientific/medical insight?

- Learning: where do we get all this probabilities?
- Maximal-likelihood estimation? but how many data do we need?
- Where do we put domain knowledge in terms of plausible relationships between variables, and plausible values of the probabilities?
- Inference: If not all variables are observable, how to compute the conditional distribution of latent variables given evidence?
- Computing $p(H A)$ would require summing over all 2^{6} configurations of the unobserved variables

What is a Bayesian Network?

--- example from a signal transduction pathway

- A possible world for cellular signal transduction:

Receptor \mathbf{A}	X_{1}
Receptor \mathbf{B}	
X_{2}	

Kinase C X_{3}
Kinase D X_{4}

Kinase E X_{5}

TF F
x_{6}

Gene G X_{T}
Gene $\mathbf{H} \quad X_{8}$

BN: Structure Simplifies Representation

- Dependencies among variables

Bayesian Network

- If X_{i} 's are conditionally independent (as described by a BN), the joint can be factored to a product of simpler terms, e.g.,

$$
\begin{aligned}
& P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}\right) \\
= & P\left(X_{1}\right) P\left(X_{2}\right) P\left(X_{3} \mid X_{1}\right) P\left(X_{4} \mid X_{2}\right) P\left(X_{5} \mid X_{2}\right) \\
& P\left(X_{6} \mid X_{3}, X_{4}\right) P\left(X_{7} \mid X_{6}\right) P\left(X_{8} \mid X_{5}, X_{6}\right)
\end{aligned}
$$

- Why we may favor a BN?
- Representation cost: how many probability statements are needed?
$2+2+4+4+4+8+4+8=36$, an 8 -fold reduction from 2^{8} !
- Algorithms for systematic and efficient inferencellearning computation - Exploring the graph structure and probabilistic semantics
- Incorporation of domain knowledge and causal (logical) structures

Specification of a BN

- There are two components to any GM:
- the qualitative specification
- the quantitative specification

- Theorem:

Given a DAG, The most general form of the probability distribution that is consistent with the (probabilistic independence properties encoded in the) graph factors according to "node given its parents":

$$
P(\mathbf{X})=\prod_{i} P\left(X_{i} \mid \mathbf{X}_{\pi_{i}}\right)
$$

where $\mathbf{X}_{\pi_{i}}$ is the set of parents of xi. d is the number of nodes (variables) in the graph.

Qualitative Specification

- Where does the qualitative specification come from?
- Prior knowledge of causal relationships
- Prior knowledge of modular relationships
- Assessment from experts
- Learning from data
- We simply link a certain architecture (e.g. a layered graph)
-

Local Structures \& Independencies

- Common parent
- Fixing B decouples A and C
"given the level of gene B, the levels of A and C are independent"

- Cascade
- Knowing B decouples A and C

"given the level of gene B, the level gene A provides no
extra prediction value for the level of gene $\mathrm{C} "$
- V-structure
- Knowing C couples A and B
because A can "explain away" B w.r.t. C
"If A correlates to C, then chance for B to also correlate to B will decrease"
- The language is compact, the concepts are rich!

A simple justification

Graph separation criterion

- D-separation criterion for Bayesian networks (D for Directed edges):

Definition: variables x and y are D-separated (conditionally independent) given z if they are separated in the moralized ancestral graph

- Example:

\Rightarrow

original graph
ancestral
moral ancestral

Global Markov properties of DAGs

- X is d-separated (directed-separated) from Z given Y if we can't send a ball from any node in X to any node in Z using the "Bayesball" algorithm illustrated bellow (and plus some boundary conditions):

- Defn: $\mathbb{I}(G)=$ all independence properties that correspond to dseparation:

$$
\mathrm{I}(G)=\left\{X \perp Z \mid Y: \operatorname{dsep}_{G}(X ; Z \mid Y)\right\}
$$

- D-separation is sound and complete

[^0]
(b) © Eric Xing @ CMU, 2006-2010

Essentially: A BN is a database of Pr. Independence statements among variables.

Bayesian Network: Conditional Independence Semantics

Structure: DAG

- Meaning: a node is conditionally independent of every other node in the network outside its Markov blanket
- Local conditional distributions (CPD) and the DAG completely determine the joint dist.
- Give causality relationships, and facilitate a generative process

Towards quantitative specification of probability distribution

- Separation properties in the graph imply independence properties about the associated variables
- For the graph to be useful, any conditional independence properties we can derive from the graph should hold for the probability distribution that the graph represents

- The Equivalence Theorem

For a graph G,
Let \mathscr{D}_{1} denote the family of all distributions that satisfy I(G),
Let \mathscr{D}_{2} denote the family of all distributions that factor according to G,
Then $\mathscr{D}_{1} \equiv \mathscr{D}_{2}$.

Quantitative Specification

(A) B $\longleftrightarrow p(A, B, C)=$

Conditional probability tables (CPTs)			
		$\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c}$ $\mathrm{P}(\mathrm{a}) \mathrm{P}(\mathrm{b}) \mathrm{P}(\mathrm{c}$	

Conditional Independencies

Label

Features

What is this model

1. When Y is observed?
2. When Y is unobserved?

Conditionally Independent Observations

Plate $=$ rectangle in graphical model
variables within a plate are replicated in a conditionally independent manner

Example: Gaussian Model

Generative model:

$$
\begin{aligned}
\mathrm{p}\left(\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{n}} \mid \mu, \sigma\right) & \quad=\mathbf{P} \mathbf{p}\left(\mathrm{x}_{\mathrm{i}} \mid \mu, \sigma\right) \\
= & \mathbf{p}(\text { data } \mid \text { parameters }) \\
= & \mathbf{p}(\mathbf{D} \mid \theta)
\end{aligned}
$$

where $\theta=\{\mu, \sigma\}$

- Likelihood = p(data | parameters)

$$
\begin{aligned}
& =p(D \mid \theta) \\
& =L(\theta)
\end{aligned}
$$

- Likelihood tells us how likely the observed data are conditioned on a particular setting of the parameters
- Often easier to work with $\log \mathrm{L}(\theta)$

Example: modeling text

A Hierarchical Phrase-Based Model for Statistical Machine Translation
e present a statistical phrase-based Translation model that uses hierarchica phrases-phrases that contain sub-phra context-free grammar but is learned rom a bitext without any syntactic information. Thus it can be seen as a shift to the formal machinery of syntax based translation systems without any linguistic commitment. In our experimen Phrase based model achieves a relative Improvement of 7.5% over Pharaoh, a state-of-the-art phrase-based system.

More examples

-
- 0
- 0
- 0
- 90
\mid

Density estimation

Parametric and nonparametric methods

Regression

Linear, conditional mixture, nonparametric

Classification

Generative and discriminative approach

Example, con'd

- Speech recognition

Hidden Markov Model

BN and Graphical Models

- A Bayesian network is a special case of Graphical Models
- A Graphical Model refers to a family of distributions on a set of random variables that are compatible with all the probabilistic independence propositions encoded by a graph that connects these variables
- It is a smart way to write/specify/compose/design exponentially-large probability distributions without paying an exponential cost, and at the same time endow the distributions with structured semantics

Two types of GMs

- Directed edges give causality relationships (Bayesian Network or Directed Graphical Model):

$$
\begin{aligned}
& P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}\right) \\
= & P\left(X_{1}\right) P\left(X_{2}\right) P\left(X_{3} \mid X_{1}\right) P\left(X_{4} \mid X_{2}\right) P\left(X_{5} \mid X_{2}\right) \\
& P\left(X_{6} \mid X_{3}, X_{4}\right) P\left(X_{7} \mid X_{6}\right) P\left(X_{8} \mid X_{5}, X_{6}\right)
\end{aligned}
$$

- Undirected edges simply give correlations between variables (Markov Random Field or Undirected Graphical model):

$$
\begin{aligned}
& P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}\right) \\
= & 1 / Z \exp \left\{E\left(X_{1}\right)+E\left(X_{2}\right)+E\left(X_{3}, X_{1}\right)+E\left(X_{4}, X_{2}\right)+E\left(X_{5}, X_{2}\right)\right. \\
& \left.+E\left(X_{6}, X_{3}, X_{4}\right)+E\left(X_{7}, X_{6}\right)+E\left(X_{8}, X_{5}, X_{6}\right)\right\}
\end{aligned}
$$

Probabilistic Inference

- Computing statistical queries regarding the network, e.g.:
- Is node X independent on node Y given nodes Z, W ?
- What is the probability of $\mathrm{X}=$ true if ($\mathrm{Y}=$ false and $\mathrm{Z}=$ true)?
- What is the joint distribution of (X, Y) if $\mathrm{Z}=\mathrm{false}$?
- What is the likelihood of some full assignment?
- What is the most likely assignment of values to all or a subset the nodes of the network?
- General purpose algorithms exist to fully automate such computation
- Computational cost depends on the topology of the network
- Exact inference:
- The junction tree algorithm
- Approximate inference;
- Loopy belief propagation, variational inference, Monte Carlo sampling

Learning BNs (or GMs)

The goal:

Given set of independent samples (assignments of random variables), find the best (the most likely?) Bayesian Network (both DAG and CPDs)
CB
$(B, E, A, C, R)=(T, F, F, T, F)$
$(B, E, A, C, R)=(T, F, T, T, F)$
$(B, E, A, C, R)=(F, T, T, T, F)$

MLE for general BN parameters

- If we assume the parameters for each CPD are globally independent, and all nodes are fully observed, then the loglikelihood function decomposes into a sum of local terms, one per node:
$\ell(\theta ; D)=\log p(D \mid \theta)=\log \prod_{\text {Mn }}\left(\prod_{i} p\left(x_{n, i} \mid \mathbf{x}_{n, \pi_{i}}, \theta_{i}\right)\right)=\sum_{i}\left(\sum_{n} \log p\left(x_{n, i} \mid \mathbf{x}_{n, \pi_{i}}, \theta_{i}\right)\right)$

Example: decomposable likelihood of a directed model

- Consider the distribution defined by the directed acyclic GM:

$$
p(x \mid \theta)=p\left(x_{1} \mid \theta_{1}\right) p\left(x_{2} \mid x_{1}, \theta_{1}\right) p\left(x_{3} \mid x_{1}, \theta_{3}\right) p\left(x_{4} \mid x_{2}, x_{3}, \theta_{1}\right)
$$

- This is exactly like learning four separate small BNs, each of which consists of a node and its parents.

E.g.: MLE for BNs with tabular CPDs

- Assume each CPD is represented as a table (multinomial) where

$$
\theta_{i j k} \stackrel{\text { def }}{=} p\left(X_{i}=j \mid X_{\pi_{i}}=k\right)
$$

- Note that in case of multiple parents, $\mathbf{X}_{\pi_{i}}$ will have a composite state, and the CPD will be a high-dimensional table
- The sufficient statistics are counts of family configurations

$$
n_{i j k} \stackrel{\text { def }}{=} \sum_{n} x_{n, i}^{j} x_{n, \pi_{i}}^{k}
$$

- The log-likelihood is $\ell(\theta ; \boldsymbol{D})=\log \prod_{i, j, k} \theta_{j j k}^{n_{j k}}=\sum_{i, j, k} n_{j j k} \log \theta_{i j k}$
- Using a Lagrange multiplier to enforce $\sum_{j} \theta_{j i k}=1$, we get: $\quad \theta_{i j k}^{M L}=\frac{n_{i j k}}{\sum_{i, j^{\prime}, k} n_{i j \prime}}$

What if some nodes are not observed?

- Consider the distribution defined by the directed acyclic GM:

$$
p(x \mid \theta)=p\left(x_{1} \mid \theta_{1}\right) p\left(x_{2} \mid x_{1}, \theta_{1}\right) p\left(x_{3} \mid x_{1}, \theta_{3}\right) p\left(x_{4} \mid x_{2}, x_{3}, \theta_{1}\right)
$$

- Need to compute $\mathrm{p}\left(\mathrm{x}_{\mathrm{H}} \mid \mathrm{x}_{\mathrm{V}}\right) \rightarrow$ inference

Summary	?

- Represent dependency structure with a directed acyclic graph
- Node <-> random variable
- Edges encode dependencies
- Absence of edge -> conditional independence
- Plate representation
- A BN is a database of prob. Independence statement on variables

- The factorization theorem of the joint probability
- Local specification \rightarrow globally consistent distribution
- Local representation for exponentially complex state-space
- Support efficient inference and learning - next lecture

[^0]: (a)

