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Bayesian NetworksBayesian Networks

Eric XingEric Xing

Lecture 13, March 1, 2010

Reading: Chap. 8, C.B book
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What is a Bayesian Network?
--- example from a signal transduction pathway

A possible world for cellular signal transduction: 
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Representation: what is the joint probability dist. on multiple 
variables?

Recap of Basic Prob. Concepts

How many state configurations in total? --- 28

Are they all needed to be represented?
Do we get any scientific/medical insight?

Learning: where do we get all this probabilities? 
Maximal-likelihood estimation? but how many data do we need?
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Where do we put domain knowledge in terms of plausible relationships between 
variables, and plausible values of the probabilities?

Inference: If not all variables are observable, how to compute the 
conditional distribution of latent variables given evidence?

Computing p(H|A) would require summing over all 26 configurations of the 
unobserved variables
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What is a Bayesian Network?
--- example from a signal transduction pathway

A possible world for cellular signal transduction: 
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BN: Structure Simplifies 
Representation

Dependencies among variables
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If Xi's are conditionally independent (as described by a BN), the 
joint can be factored to a product of simpler terms, e.g., 

Bayesian Network

Why we may favor a BN?

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)
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Representation cost: how many probability statements are needed? 

Algorithms for systematic and efficient inference/learning computation
• Exploring the graph structure and probabilistic semantics

Incorporation of domain knowledge and causal (logical) structures

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28! 
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Specification of a BN
There are two components to any GM:

the qualitative specificationq p
the quantitative specification
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Bayesian Network: Factorization Theorem

P(X1, X2, X3, X4, X5, X6, X7, X8)
Receptor A Receptor BX1 X2Receptor A Receptor BX1 X2X1 X2

Theorem: 
Given a DAG, The most general form of the probability distribution 

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)
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g p y
that is consistent with the (probabilistic independence properties 
encoded in the) graph factors according to “node given its parents”:

where      is the set of parents of xi. d is the number of nodes 
(variables) in the graph.
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Examples

© Eric Xing @ CMU, 2006-2010
10



6

Qualitative Specification
Where does the qualitative specification come from?

Prior knowledge of causal relationships
Prior knowledge of modular relationships
Assessment from experts
Learning from data
We simply link a certain architecture (e.g. a layered graph) 
…

© Eric Xing @ CMU, 2006-2010
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B

Local Structures & 
Independencies

Common parent
Fixing B decouples A and C

A CB

A C
g p

"given the level of gene B, the levels of A and C are independent"

Cascade
Knowing B decouples A and C
"given the level of gene B, the level gene A provides no 
extra prediction value for the level of gene C"

V-structure A

C

BV-structure
Knowing C couples A and B
because A can "explain away" B w.r.t. C
"If A correlates to C, then chance for B to also correlate to B will decrease"

The language is compact, the concepts are rich!
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A simple justification
B

A C
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Graph separation criterion
D-separation criterion for Bayesian networks (D for Directed 
edges):g )

Definition: variables x and y are D-separated (conditionally 
independent) given z if they are separated in the moralized 
ancestral graph

Example:Example:

© Eric Xing @ CMU, 2006-2010
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Global Markov properties of 
DAGs

X is d-separated (directed-separated) from Z given Y if we can't 
send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary 
conditions):

• Defn: I(G)=all independence 
properties that correspond to d-
separation:

• D-separation is sound and 
complete

{ });(dsep:)(I YZXYZXG G⊥=

© Eric Xing @ CMU, 2006-2010
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Example: 
Complete the I(G) of this 
graph:x4

x1

x3

x2

Essentially: A BN is a database of Pr. Independence statements among variables.
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Structure: DAG Ancestor

Bayesian Network: Conditional 
Independence Semantics

• Meaning: a node is 
conditionally independent
of every other node in the 
network outside its Markov 
blanket

• Local conditional 
distributions (CPD) and the

X

Y1 Y2

Parent

distributions (CPD) and the 
DAG completely determine 
the joint dist. 

• Give causality
relationships, and facilitate 
a generative process

Descendent

Children's co-parentChildren's co-parent

Child
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Towards quantitative specification of 
probability distribution

Separation properties in the graph imply independence 
properties about the associated variablesp p
For the graph to be useful, any conditional independence 
properties we can derive from the graph should hold for the 
probability distribution that the graph represents

The Equivalence Theorem
For a graph GFor a graph G,
Let D1 denote the family of all distributions that satisfy I(G),
Let D2 denote the family of all distributions that factor according to G,
Then D1≡D2.

© Eric Xing @ CMU, 2006-2010
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Quantitative Specification

A B

C

p(A,B,C) = 
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a0 0.75
a1 0 25

b0 0.33
b1 0 67

P(a,b,c.d) = 

Conditional probability tables 
(CPTs)

a1 0.25 b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0 55 0 0 1 0 3

A B

P(a)P(b)P(c|a,b)P(d|c)

c1 0.55 0 0.1 0.3C

D
c0 c1

d0 0.3 0.5
d1 07 0.5
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P(a,b,c.d) = 
A N(µ Σ ) B N( Σ )

Conditional probability density 
func. (CPDs)

A B

P(a)P(b)P(c|a,b)P(d|c)A~N(µa, Σa) B~N(µb, Σb)

)C

D

C~N(A+B, Σc)

D~N(µa+C, Σa)
D

C
P(

D|
 C

)
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Conditional Independencies

X1

Y

Features

Label

X2 Xn-1 Xn
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What is this model

1. When Y is observed?
2. When Y is unobserved?
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Conditionally Independent 
Observations

θ Model parameters

Data = {y1,…yn}X1 X2 Xn-1 Xn

© Eric Xing @ CMU, 2006-2010
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“Plate” Notation

θ Model parameters

Xi

i=1:n

Data = {x1,…xn}

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner

© Eric Xing @ CMU, 2006-2010
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Example: Gaussian Model

µ Generative model:   σ

xi

i=1:n

p(x1,…xn | µ, σ) = P p(xi | µ, σ)
=   p(data | parameters)
=   p(D  | θ)     

where θ = {µ, σ}

Likelihood = p(data | parameters)Likelihood = p(data | parameters) 
= p( D | θ ) 
= L (θ) 

Likelihood tells us how likely the observed data are conditioned 
on a particular setting of the parameters

Often easier to work with log L (θ) 

© Eric Xing @ CMU, 2006-2010
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Bayesian models

xi

θ

i=1:n
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Example: modeling text

A Hierarchical Phrase-Based Model 
for Statistical Machine Translation

We present a statistical phrase-based 
Translation model that uses hierarchical 
phrases—phrases that contain sub-phrases. 
The model is formally a synchronous 
context-free grammar but is learned 
from a bitext without any syntactic 
information. Thus it can be seen as a 
shift to the formal machinery of syntax
based translation systems without any 
linguistic commitment. In our experiments

© Eric Xing @ CMU, 2006-2010
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using BLEU as a metric, the hierarchical 
Phrase based model achieves a relative 
Improvement of 7.5% over Pharaoh, 
a state-of-the-art phrase-based system.

Density estimation m s

More examples

Density estimation

Regression

Parametric and nonparametric  methods

Linear, conditional mixture, nonparametric
X Y

m,s

X X

Classification
Generative and discriminative approach

Q

X

Q

X
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Example, con'd
Evolution

ancestor

Qh Qm
T years

?

AGAGAC
A C

AGAGAC

Tree Model
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Example, con'd
Speech recognition

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Hidden Markov Model

© Eric Xing @ CMU, 2006-2010
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Example, con'd
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An 
(incomplete) 

genealogy g gy
of BNs

(Picture by 
Zoubin 
Ghahramani and 
Sam Roweis)
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BN and Graphical Models
A Bayesian network is a special case of Graphical Models

A G hi l M d l f t f il f di t ib ti t fA Graphical Model refers to a family of distributions on a set of 
random variables that are compatible with all the probabilistic 
independence propositions encoded by a graph that connects these 
variables

It is a smart way to write/specify/compose/design exponentially-large 
probability distributions without paying an exponential cost, and at 
the same time endow the distributions with structured semantics
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Directed edges give causality relationships (Bayesian 
Network or Directed Graphical Model):

Two types of GMs

p )

Undirected edges simply give correlations between 
variables (Markov Random Field or Undirected Graphical
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P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

variables (Markov Random Field or Undirected Graphical 
model):
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P(X1, X2, X3, X4, X5, X6, X7, X8)

= 1/Z exp{E(X1)+E(X2)+E(X3, X1)+E(X4, X2)+E(X5, X2)
+ E(X6, X3, X4)+E(X7, X6)+E(X8, X5, X6)}
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Computing statistical queries regarding the network, e.g.:
Is node X independent on node Y given nodes Z,W ?

Probabilistic Inference

What is the probability of X=true if (Y=false and Z=true)?
What is the joint distribution of (X,Y) if Z=false?
What is the likelihood of some full assignment?
What is the most likely assignment of values to all or a subset the nodes of the network?

General purpose algorithms exist to fully automate such 
computation 

C t ti l t d d th t l f th t kComputational cost depends on the topology of the network
Exact inference: 

The junction tree algorithm

Approximate inference; 
Loopy belief propagation, variational inference, Monte Carlo sampling 

© Eric Xing @ CMU, 2006-2010
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The goal:

Learning BNs (or GMs)

Given set of independent samples (assignments of 
random variables), find the best (the most likely?) 
Bayesian Network (both DAG and CPDs)
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MLE for general BN parameters
If we assume the parameters for each CPD are globally 
independent, and all nodes are fully observed, then the log-p , y , g
likelihood function decomposes into a sum of local terms, one 
per node:
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Consider the distribution defined by the directed acyclic GM:

Example: decomposable 
likelihood of a directed model

)|()|()|()|()|( θθθθθ

This is exactly like learning four separate small BNs, each of 
which consists of a node and its parents.
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E.g.: MLE for BNs with tabular 
CPDs

Assume each CPD is represented as a table (multinomial) 
where

)|(
def

kXjXθ

Note that in case of multiple parents,      will have a composite 
state, and the CPD will be a high-dimensional table
The sufficient statistics are counts of family configurations

The log-likelihood is
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Using a Lagrange multiplier 
to enforce               , we get:
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Consider the distribution defined by the directed acyclic GM:

What if some nodes are not 
observed?

),,|(),|(),|()|()|( 132431311211 θθθθθ xxxpxxpxxpxpxp =

X1

X2 X3

Need to compute p(xH|xV) inference

X4
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Summary
Represent dependency structure with a directed acyclic graph

Node <-> random variable
Edges encode dependencies

Absence of edge -> conditional independence
Plate representation
A BN is a database of prob. Independence statement on variables 

The factorization theorem of the joint probability
Local specification globally consistent distribution

fLocal representation for exponentially complex state-space

Support efficient inference and learning – next lecture
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