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Recap of BN Representation
Joint probability dist. on multiple variables:
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If Xi's are independent: (P(Xi|·)= P(Xi))

If Xi's are conditionally independent (as described by a 
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P(X1, X2, X3, X4, X5, X6)
= P(X1) P(X2| X1) P(X3| X2) P(X4| X1) P(X5| X4) P(X6| X2, X5)

i y p ( y
GM), the joint can be factored to simpler products, e.g., 
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Inference and Learning
We now have compact representations of probability 
distributions:  BN

A BN M describes a unique probability distribution P

Typical tasks:

Task 1: How do we answer queries about P?

We use inference as a name for the process of computing answers to such 
queries

Task 2: How do we estimate a plausible model M from data D?

i. We use learning as a name for the process of obtaining point estimate of M.

ii. But for Bayesian, they seek p(M |D), which is actually an inference problem.

iii. When not all variables are observable, even computing point estimate of M 
need to do inference to impute the missing data.
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The goal:

Learning BNs

Given set of independent samples (assignments of 
random variables), find the best (the most likely?) 
Bayesian Network (both DAG and CPDs)
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MLE for general BN parameters
If we assume the parameters for each CPD are globally 
independent, and all nodes are fully observed, then the log-p , y , g
likelihood function decomposes into a sum of local terms, one 
per node:
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Consider the distribution defined by the directed acyclic GM:

Example: decomposable 
likelihood of a directed model

)|()|()|()|()|( θθθθθ

This is exactly like learning four separate small BNs, each of 
which consists of a node and its parents.
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E.g.: MLE for BNs with tabular 
CPDs

Assume each CPD is represented as a table (multinomial) 
where

)|(
def

kXjXθ

Note that in case of multiple parents,      will have a composite 
state, and the CPD will be a high-dimensional table
The sufficient statistics are counts of family configurations

The log-likelihood is
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Consider the distribution defined by the directed acyclic GM:

What if some nodes are not 
observed?

),,|(),|(),|()|()|( 132431311211 θθθθθ xxxpxxpxxpxpxp =

X1

X2 X3

Need to compute p(xH|xV) inference

X4
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Computing statistical queries regarding the network, e.g.:
Is node X independent on node Y given nodes Z,W ?

Probabilistic Inference

What is the probability of X=true if (Y=false and Z=true)?
What is the joint distribution of (X,Y) if Z=false?
What is the likelihood of some full assignment?
What is the most likely assignment of values to all or a subset the nodes of the network?

General purpose algorithms exist to fully automate such 
computation 

C t ti l t d d th t l f th t kComputational cost depends on the topology of the network
Exact inference: 

The junction tree algorithm

Approximate inference; 
Loopy belief propagation, variational inference, Monte Carlo sampling 
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Inferential Query 1: 
Likelihood

Most of the queries one may ask involve evidence

Evidence xv is an assignment of values to a set Xv of nodes in the GM 
over varialbe set X={X1, X2, …, Xn}

Without loss of generality Xv={Xk+1, … , Xn}, 

Write XH=X\Xv as the set of hidden variables, XH can be ∅ or X

Simplest query: compute probability of evidence
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KK== ∑

Simplest query: compute probability of evidence

this is often referred to as computing the likelihood of  xv
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Often we are interested in the conditional probability 
distribution of a variable given the evidence

Inferential Query 2: 
Conditional Probability

g

this is the a posteriori belief in XH, given evidence xv

We usually query a subset Y of all hidden variables X ={Y Z}
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We usually query a subset Y of all hidden variables XH={Y,Z}
and "don't care" about the remaining, Z:

the process of summing out the "don't care" variables z is called 
marginalization, and the resulting P(Y|xv) is called a marginal prob.
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z

VV xzZYxY )|,()|( PP
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Prediction: what is the probability of an outcome given the starting 
condition

A CB
?

Applications of a posteriori Belief

the query node is a descendent of the evidence

Diagnosis: what is the probability of disease/fault given symptoms

the query node an ancestor of the evidence

A CB

A CB
?

Learning under partial observation
fill in the unobserved values under an "EM" setting (more later)

The directionality of information flow between variables is not 
restricted by the directionality of the edges in a GM

probabilistic inference can combine evidence form all parts of the network
12
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In this query we want to find the most probable joint 
assignment (MPA) for some variables of interest

Inferential Query 3: 
Most Probable Assignment

Such reasoning is usually performed under some given 
evidence xv, and ignoring (the values of) other variables Z:

∑ ===
z

VyVyV xzZYxYxY )|,(maxarg)|(maxarg|* PP

this is the maximum a posteriori configuration of Y.

z
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Thm:
C ti P(X | ) i bit BN i NP h d

Complexity of Inference

Computing P(XH=xH| xv) in an arbitrary BN is NP-hard

Hardness does not mean we cannot solve inference

It implies that we cannot find a general procedure that worksIt implies that we cannot find a general procedure that works 
efficiently for arbitrary BNs
For particular families of BNs, we can have provably efficient 
procedures
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Approaches to inference

Exact inference algorithms

√

√

√
The elimination algorithm
The junction tree algorithms      (but will not cover in detail here)

Approximate inference techniques

Stochastic simulation / sampling methods √
√

Stochastic simulation / sampling methods
Markov chain Monte Carlo methods
Variational algorithms (will be covered in advanced ML courses)
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A signal transduction pathway:

B C ED

Marginalization and Elimination

Query: P(e)

A B C ED

∑∑∑∑=
d c b a

e)P(a,b,c,d,eP )(

What is the likelihood that protein E is active?

By chain decomposition, we get

∑∑∑∑=
d c b a

dePcdPbcPabPaP )|()|()|()|()(

a naïve summation needs 
to enumerate over an 
exponential number of  
terms
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A B C ED

Elimination on Chains

A B C ED

Rearranging terms ...

∑∑∑ ∑

∑∑∑∑
=
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d c b a

d c b a

abPaPdePcdPbcP

dePcdPbcPabPaPeP
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)|()|()|()|()()(
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A B C EDX

Elimination on Chains

Now we can perform innermost summation

A B C EDX

∑∑∑

∑∑∑ ∑=
d c b a

bdPdPbP

abPaPdePcdPbcPeP

)()|()|()|(

)|()()|()|()|()(

This summation "eliminates" one variable from our 
summation argument at a "local cost".

∑∑∑=
d c b

bpdePcdPbcP )()|()|()|(
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A B C EDX X

Elimination in Chains

A B C ED

∑∑∑= bpdePcdPbcPeP )()|()|()|()(

X X
Rearranging and then summing again, we get
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A B C EDX X X X

Elimination in Chains

Eliminate nodes one by one all the way to the end, we get

A B C ED

∑ dpdePeP )()|()(

X X X X

Complexity:
Each step costs O(|Val(Xi)|*|Val(Xi+1)|) operations: O(nk2)
Compare to naïve evaluation that sums over joint values of n-1 variables O(kn)

∑=
d

dpdePeP )()|()(
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General idea:
Write query in the form

Inference on General BN via 
Variable Elimination

Write query in the form

this suggests an "elimination order" of latent variables to be marginalized  

Iteratively

Move all irrelevant terms outside of innermost sum

∑ ∑∑∏=
nx x x i

ii paxPXP
3 2

1 )|(),( Le

Perform innermost sum, getting a new term
Insert the new term into the product

wrap-up
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e
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A food web

A more complex network

B A

DC

E F

G H

What is the probability that hawks are leaving given that the grass condition is poor?

22
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Query: P(A |h)
Need to eliminate: B,C,D,E,F,G,H

B A

Example: Variable Elimination

Initial factors:

Choose an elimination order: H,G,F,E,D,C,B

Step 1: 

DC

E F

G H

),|()|()|(),|()|()|()()( fehPegPafPdcePadPbcPbPaP

Conditioning (fix the evidence node (i.e., h) on its observed value (i.e.,   )):

This step is isomorphic to a marginalization step:

),|~(),( fehhpfemh ==
h~

∑ ==
h

h hhfehpfem )~(),|(),( δ

B A

DC

E F

G
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Query: P(B |h)
Need to eliminate: B,C,D,E,F,G

B A

Example: Variable Elimination

Initial factors:

Step 2: Eliminate G

DC

E F

G H
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(
femegPafPdcePadPbcPbPaP

fehPegPafPdcePadPbcPbPaP

h⇒

Step 2: Eliminate G
compute

1)|()( == ∑
g

g egpem
B A

DC

E F),()|(),|()|()|()()(

),()()|(),|()|()|()()(

femafPdcePadPbcPbPaP

fememafPdcePadPbcPbPaP

h

hg

=

⇒
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Query: P(B |h)
Need to eliminate: B,C,D,E,F

B A

Example: Variable Elimination

Initial factors:

Step 3: Eliminate F

DC

E F

G H),()|(),|()|()|()()(
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(

femafPdcePadPbcPbPaP
femegPafPdcePadPbcPbPaP

fehPegPafPdcePadPbcPbPaP

h

h

⇒
⇒

Step 3: Eliminate F
compute

∑=
f

hf femafpaem ),()|(),(

),(),|()|()|()()( eamdcePadPbcPbPaP f⇒

B A

DC

E
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Query: P(B |h)
Need to eliminate: B,C,D,E

B A

Example: Variable Elimination

Initial factors:

Step 4: Eliminate E

DC

E F

G H
),(),|()|()|()()(

),()|(),|()|()|()()(
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(

eamdcePadPbcPbPaP
femafPdcePadPbcPbPaP

femegPafPdcePadPbcPbPaP
fehPegPafPdcePadPbcPbPaP

f

h

h

⇒
⇒
⇒

B A

DC

E

Step 4: Eliminate E
compute

∑=
e

fe eamdcepdcam ),(),|(),,(

),,()|()|()()( dcamadPbcPbPaP e⇒

B A

DC
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Query: P(B |h)
Need to eliminate: B,C,D

B A

Example: Variable Elimination

Initial factors: DC

E F

G H

),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
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dcamadPbcPbPaP

eamdcePadPbcPbPaP
femafPdcePadPbcPbPaP

femegPafPdcePadPbcPbPaP
fehPegPafPdcePadPbcPbPaP

e

f

h

h

⇒

⇒
⇒
⇒

Step 5: Eliminate D
compute ∑=

d
ed dcamadpcam ),,()|(),(

),()|()()( camdcPbPaP d⇒

B A

C
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Query: P(B |h)
Need to eliminate: B,C

B A

Example: Variable Elimination

Initial factors: DC

E F

G H

),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

dcamadPdcPbPaP
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femegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

e
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⇒

⇒
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⇒

Step 6: Eliminate C
compute

),()|()()( camdcPbPaP d⇒

∑=
c

dc cambcpbam ),()|(),(

),()|()()( camdcPbPaP d⇒

B A
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Query: P(B |h)
Need to eliminate: B

B A

Example: Variable Elimination

Initial factors: DC

E F

G H

),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

dcamadPdcPbPaP

eamdcePadPdcPbPaP
femafPdcePadPdcPbPaP

femegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

e

f

h

h

⇒

⇒
⇒
⇒

Step 7: Eliminate B
compute

),()()(
),()|()()(

bambPaP
camdcPbPaP

c

d

⇒
⇒

∑=
b

cb bambpam ),()()(

)()( amaP b⇒

A
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Query: P(B |h)
Need to eliminate: B

B A

Example: Variable Elimination

Initial factors: DC

E F

G H

),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

dcamadPdcPbPaP

eamdcePadPdcPbPaP
femafPdcePadPdcPbPaP

femegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

e

f

h

h

⇒

⇒
⇒
⇒

Step 8: Wrap-up
)()(

),()()(
),()|()()(

amaP
bambPaP

camdcPbPaP

b

c

d

⇒
⇒
⇒

, )()()~,( amaphap b=

∑
=⇒

a
b

b

amap
amaphaP

)()(
)()()~|(

∑=
a

b amaphp )()()~(
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Suppose in one elimination step we compute

∑= yyxmyym )(')(

Complexity of variable 
elimination

This requires 
multiplications

─ For each value of x, y1, …, yk, we do k multiplications

∑=
x

kxkx yyxmyym ),,,(),,( 11 KK

∏
=

=
k

i
cikx i

xmyyxm
1

1 ),(),,,(' yK

∏••
i

Ci
Xk )Val()Val( Y

additions

─ For each value of y1, …, yk , we do |Val(X)| additions

Complexity is exponential in number of variables in the 
intermediate factor

∏•
i

Ci
X )Val()Val( Y
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Understanding Variable 
Elimination

A graph elimination algorithm

moralization
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G H

B A

DC

E F

G H
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E F
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B A

DC

E

B A

C

B A A

graph elimination
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Elimination Cliques

B A

DC

B A

DC

E F

G H

B A

DC

E F

G H
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G

DC
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G H
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E

G H G
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DC
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B A A

),( femh )(emg ),( aemf ),,( dcame

),( camd ),( bamc )(amb
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Understanding Variable 
Elimination

A graph elimination algorithm

moralization

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A

graph elimination

Intermediate terms correspond to the cliques resulted from 
eliminationelimination

“good” elimination orderings lead to small cliques and hence reduce complexity
(what will happen if we eliminate "e" first in the above graph?)

finding the optimum ordering is NP-hard, but for many graph optimum or near-
optimum can often be heuristically found 

Applies to undirected GMs
34
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A clique tree

A

E F

B A

C

A

DC

A

DC

B A A

em
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dm

E F

H

E

G

E hm
gm

∑=
e

fg

e

eamemdcep
dcam

),()(),|(
),,(
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Our algorithm so far answers only one query (e.g., on one node), do 
we need to do a complete elimination for every such query? 

From Elimination to Message 
Passing

Elimination ≡ message passing on a clique tree

B A

C

B A A

bmcm

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A

≡

Messages can be reused

E F

H

A

E F

E

G

A

DC

E

A

DC

hm
gm

em
fm

dm

∑=
e

fg

e

eamemdcep
dcam

),()(),|(
),,(
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From Elimination to Message 
Passing

Our algorithm so far answers only one query (e.g., on one node), do 
we need to do a complete elimination for every such query? 

B A

C

B A A

cm bm

Elimination ≡ message passing on a clique tree
Another query ...

E F

H

A

E F

E

G

A

DC

E

A

DC

gm

em

dm
fm

hm

Messages mf and mh are reused, others need to be recomputed
37
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The Junction Tree Algorithm
Shafer-Shenoy algorithm

Message from clique i to clique j :

Clique marginal 
∑ ∏

≠
→→ =

iji

i
SC jk

kiikCji S
\

)(µψµ

∏ →∝
k

kiikCi SCp
i

)()( µψ
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A Sketch of the Junction Tree 
Algorithm 

The algorithm
Construction of junction trees --- a special clique treeConstruction of junction trees a special clique tree

Propagation of probabilities --- a message-passing protocol

Results in marginal probabilities of all cliques --- solves all 
queries in a single run

A generic exact inference algorithm for any GM

Complexity: exponential in the size of the maximal clique ---
a good elimination order often leads to small maximal clique, 
and hence a good (i.e., thin) JT

Many well-known algorithms are special cases of JT
Forward-backward, Kalman filter, Peeling, Sum-Product ...

39
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The Junction tree algorithm for HMM
A junction tree for the HMM

y2 y3y1 yT...

),( 11 xyψ ),( 21 yyψ ),( 32 yyψ ),( TT yy 1−ψ

)(yφ )(yφ

Rightward pass

A AA Ax2 x3x1 xT

... 

... 

),( 22 xyψ ),( 33 xyψ ),( TT xyψ

)( 2yζ )( 3yζ )( Tyζ
)( 1yφ )( 2yφ⇒⇒

),( 1+tt yyψ)( ttt y→−1µ )( 11 ++→ ttt yµ

)( 1+↑ tt yµ

∑

∑

→−++

++→−+

+
=

=

tt

t

tttyytt

y
ttttttt

yayxp

yxpyyyp

)()|(

)|()()|(

, 111

1111

1
µ

µ

∑ +↑→−+++→ =
ty

tttttttttt yyyyy )()(),()( 11111 µµψµ

This is exactly the forward algorithm!

Leftward pass …

This is exactly the backward algorithm! 
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Summary
Represent dependency structure with a directed acyclic graph

Node <-> random variable
Edges encode dependencies

Absence of edge -> conditional independence
Plate representation
A BN is a database of prob. Independence statement on variables 

The factorization theorem of the joint probability
Local specification globally consistent distribution

fLocal representation for exponentially complex state-space

Support efficient inference and learning
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