Machine Learning

10-701/15-781, Spring 2010

Bayesian Networks
Learning and Inference

Recap of BN Representation

- Joint probability dist. on multiple variables:

$$
\begin{aligned}
& P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right) \\
= & P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) P\left(X_{4} \mid X_{1}, X_{2}, X_{3}\right) P\left(X_{5} \mid X_{1}, X_{2}, X_{3}, X_{4}\right) P\left(X_{6} \mid X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)
\end{aligned}
$$

- If X_{i} 's are independent: $\left(P\left(X_{i} \mid \cdot\right)=P\left(X_{i}\right)\right)$
$P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right)$
$=P\left(X_{1}\right) P\left(X_{2}\right) P\left(X_{3}\right) P\left(X_{4}\right) P\left(X_{5}\right) P\left(X_{6}\right)=\prod P\left(X_{i}\right)$
- If X_{i} 's are conditionally independent (as described by a GM), the joint can be factored to simpler products, e.g.,

$P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right)$
$=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{1}\right) P\left(X_{5} \mid X_{4}\right) P\left(X_{6} \mid X_{2}, X_{5}\right)$

Inference and Learning

- We now have compact representations of probability distributions: BN
- A BN M describes a unique probability distribution P
- Typical tasks:
- Task 1: How do we answer queries about P ?
- We use inference as a name for the process of computing answers to such queries
- Task 2: How do we estimate a plausible model M from data D ?
i. We use learning as a name for the process of obtaining point estimate of M.
ii. But for Bayesian, they seek $p(M \mid D)$, which is actually an inference problem.
iii. When not all variables are observable, even computing point estimate of M need to do inference to impute the missing data.

Learning BNs

The goal:

Given set of independent samples (assignments of random variables), find the best (the most likely?) Bayesian Network (both DAG and CPDs)

MLE for general BN parameters

- If we assume the parameters for each CPD are globally independent, and all nodes are fully observed, then the loglikelihood function decomposes into a sum of local terms, one per node:
$\boldsymbol{\ell}(\theta ; D)=\log p(D \mid \theta)=\log \prod_{\text {vn }}\left(\prod_{i} p\left(x_{n, i} \mid \mathbf{x}_{n, \pi_{i}}, \theta_{i}\right)\right)=\sum_{i}\left(\sum_{n} \log p\left(x_{n, i} \mid \mathbf{x}_{n, \pi_{i}}, \theta_{i}\right)\right)$

Example: decomposable likelihood of a directed model

- Consider the distribution defined by the directed acyclic GM:

$$
p(x \mid \theta)=p\left(x_{1} \mid \theta_{1}\right) p\left(x_{2} \mid x_{1}, \theta_{1}\right) p\left(x_{3} \mid x_{1}, \theta_{3}\right) p\left(x_{4} \mid x_{2}, x_{3}, \theta_{1}\right)
$$

- This is exactly like learning four separate small BNs, each of which consists of a node and its parents.

E.g.: MLE for BNs with tabular CPDs

- Assume each CPD is represented as a table (multinomial) where

$$
\theta_{i j k} \stackrel{\text { def }}{=} p\left(X_{i}=j \mid X_{\pi_{i}}=k\right)
$$

- Note that in case of multiple parents, $\mathbf{X}_{\pi_{i}}$ will have a composite state, and the CPD will be a high-dimensional table
- The sufficient statistics are counts of family configurations

$$
n_{i j k} \stackrel{\text { def }}{=} \sum_{n} x_{n, i}^{j} x_{n, \pi_{i}}^{k}
$$

- The log-likelihood is $\ell(\theta ; \boldsymbol{D})=\log \prod_{i, j, k} \theta_{j, k}^{\eta_{j k}}=\sum_{i, j, k} n_{i j k} \log \theta_{i j k}$
- Using a Lagrange multiplier to enforce $\sum_{j} \theta_{j i k}=1$, we get: $\quad \theta_{i j k}^{M L}=\frac{n_{i j k}}{\sum_{i, j^{\prime}, k} n_{i j k}}$

What if some nodes are not observed?

- Consider the distribution defined by the directed acyclic GM:

$$
p(x \mid \theta)=p\left(x_{1} \mid \theta_{1}\right) p\left(x_{2} \mid x_{1}, \theta_{1}\right) p\left(x_{3} \mid x_{1}, \theta_{3}\right) p\left(x_{4} \mid x_{2}, x_{3}, \theta_{1}\right)
$$

- Need to compute $\mathrm{p}\left(\mathrm{x}_{\mathrm{H}} \mid \mathrm{x}_{\mathrm{V}}\right) \rightarrow$ inference

Probabilistic Inference

- Computing statistical queries regarding the network, e.g.:
- Is node X independent on node Y given nodes Z, W ?
- What is the probability of $\mathrm{X}=$ true if ($\mathrm{Y}=$ false and $\mathrm{Z}=$ true)?
- What is the joint distribution of (X, Y) if $\mathrm{Z}=\mathrm{false}$?
- What is the likelihood of some full assignment?
- What is the most likely assignment of values to all or a subset the nodes of the network?
- General purpose algorithms exist to fully automate such computation
- Computational cost depends on the topology of the network
- Exact inference:
- The junction tree algorithm
- Approximate inference;
- Loopy belief propagation, variational inference, Monte Carlo sampling

Inferential Query 1: Likelihood

- Most of the queries one may ask involve evidence
- Evidence \mathbf{x}_{v} is an assignment of values to a set \mathbf{X}_{v} of nodes in the GM over varialbe set $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{\mathrm{n}}\right\}$
- Without loss of generality $\mathbf{X}_{\mathrm{v}}=\left\{X_{k+1}, \ldots, X_{\mathrm{n}}\right\}$,
- Write $\mathbf{X}_{\mathbf{H}}=\mathbf{X} \backslash \mathbf{X}_{\mathrm{v}}$ as the set of hidden variables, $\mathbf{X}_{\mathbf{H}}$ can be \varnothing or \mathbf{X}
- Simplest query: compute probability of evidence

$$
P\left(\mathbf{x}_{\mathbf{v}}\right)=\sum_{\mathbf{x}_{\mathbf{H}}} P\left(\mathbf{X}_{\mathbf{H}},, \mathbf{X}_{\mathbf{v}}\right)=\sum_{x_{1}} \ldots \sum_{x_{k}} P\left(x_{1}, \ldots, x_{k}, \mathbf{x}_{\mathbf{v}}\right)
$$

- this is often referred to as computing the likelihood of \mathbf{x}_{v}

Inferential Query 2: Conditional Probability

- Often we are interested in the conditional probability distribution of a variable given the evidence

$$
P\left(\mathbf{X}_{\mathrm{H}} \mid \mathbf{X}_{\mathrm{v}}=\mathbf{x}_{\mathrm{V}}\right)=\frac{P\left(\mathbf{X}_{\mathrm{H}}, \mathbf{x}_{\mathrm{v}}\right)}{P\left(\mathbf{x}_{\mathrm{V}}\right)}=\frac{P\left(\mathbf{X}_{\mathrm{H}}, \mathbf{x}_{\mathrm{v}}\right)}{\sum_{\mathbf{x}_{\mathrm{H}}} P\left(\mathbf{X}_{\mathrm{H}}=\mathbf{x}_{\mathrm{H}}, \mathbf{x}_{\mathrm{V}}\right)}
$$

- this is the a posteriori belief in X_{H}, given evidence X_{v}
- We usually query a subset \mathbf{Y} of all hidden variables $\mathbf{X}_{\mathbf{H}}=\{\mathbf{Y}, \mathbf{Z}\}$ and "don't care" about the remaining, \mathbf{Z} :

$$
P\left(\mathbf{Y} \mid \mathbf{x}_{\mathbf{v}}\right)=\sum_{\mathbf{z}} P\left(\mathbf{Y}, \mathbf{Z}=\mathbf{z} \mid \mathbf{x}_{\mathbf{v}}\right)
$$

- the process of summing out the "don't care" variables z is called marginalization, and the resulting $P\left(\mathbf{Y} \mid \mathbf{x}_{\mathrm{v}}\right)$ is called a marginal prob.

Applications of a posteriori Belief

- Prediction: what is the probability of an outcome given the starting condition

- the query node is a descendent of the evidence
- Diagnosis: what is the probability of disease/fault given symptoms

- the query node an ancestor of the evidence
- Learning under partial observation
- fill in the unobserved values under an "EM" setting (more later)
- The directionality of information flow between variables is not restricted by the directionality of the edges in a GM
- probabilistic inference can combine evidence form all parts of the network

Inferential Query 3: Most Probable Assignment

- In this query we want to find the most probable joint assignment (MPA) for some variables of interest
- Such reasoning is usually performed under some given evidence \mathbf{x}_{v}, and ignoring (the values of) other variables \mathbf{Z} :

$$
\mathbf{Y}^{*} \mid \mathbf{x}_{\mathbf{v}}=\arg \max _{\mathrm{y}} P\left(\mathbf{Y} \mid \mathbf{x}_{\mathrm{v}}\right)=\arg _{\max }^{\mathrm{m}_{\mathrm{z}}} \sum_{\mathbf{z}} P\left(\mathbf{Y}, \mathbf{Z}=\mathbf{z} \mid \mathbf{x}_{\mathrm{v}}\right)
$$

- this is the maximum a posteriori configuration of \mathbf{Y}.

Complexity of Inference

Thm:
Computing $P\left(\mathrm{X}_{\mathrm{H}}=\mathrm{x}_{\mathrm{H}} \mid \mathrm{x}_{\mathrm{v}}\right)$ in an arbitrary BN is NP-hard

- Hardness does not mean we cannot solve inference
- It implies that we cannot find a general procedure that works efficiently for arbitrary BNs
- For particular families of BNs, we can have provably efficient procedures

Approaches to inference

- Exact inference algorithms
- The elimination algorithm $\sqrt{ }$
- The junction tree algorithms $\sqrt{ }$ (but will not cover in detail here)
- Approximate inference techniques
- Stochastic simulation / sampling methods
- Markov chain Monte Carlo methods
$\sqrt{ }$
- Variational algorithms (will be covered in advanced ML courses)

Marginalization and Elimination

- A signal transduction pathway:

What is the likelihood that protein E is active?

- Query: $P(e)$

$$
\begin{aligned}
P(e)=\underbrace{\sum_{d}} \sum_{c} \sum_{b} \sum_{a} P(a, b, c, d, e) \\
\begin{array}{l}
\begin{array}{l}
\text { a naïve summation needs } \\
\text { to enumerate over an } \\
\text { exponential number of } \\
\text { terms }
\end{array}
\end{array}
\end{aligned}
$$

Elimination on Chains

- Rearranging terms ...

$$
\begin{aligned}
P(e) & =\sum_{d} \sum_{c} \sum_{b} \sum_{a} P(a) P(b \mid a) P(c \mid b) P(d \mid c) P(e \mid d) \\
& =\sum_{d} \sum_{c} \sum_{b} P(c \mid b) P(d \mid c) P(e \mid d) \sum_{a} P(a) P(b \mid a)
\end{aligned}
$$

Elimination on Chains

- Now we can perform innermost summation

$$
\begin{aligned}
P(e) & =\sum_{d} \sum_{c} \sum_{b} P(c \mid b) P(d \mid c) P(e \mid d) \sum_{a} P(a) P(b \mid a) \\
& =\sum_{d} \sum_{c} \sum_{b} P(c \mid b) P(d \mid c) P(e \mid d) p(b)
\end{aligned}
$$

- This summation "eliminates" one variable from our summation argument at a "local cost".

Elimination in Chains

- Rearranging and then summing again, we get

$$
\begin{aligned}
P(e) & =\sum_{d} \sum_{c} \sum_{b} P(c \mid b) P(d \mid c) P(e \mid d) p(b) \\
& =\sum_{d} \sum_{c} P(d \mid c) P(e \mid d) \sum_{b} P(c \mid b) p(b) \\
& =\sum_{d} \sum_{c} P(d \mid c) P(e \mid d) p(c)
\end{aligned}
$$

Elimination in Chains

- Eliminate nodes one by one all the way to the end, we get

$$
P(e)=\sum_{d} P(e \mid d) p(d)
$$

- Complexity:
- Each step costs $O\left(\left|\operatorname{Val}\left(X_{i}\right)\right| *\left|\operatorname{Val}\left(X_{i+1}\right)\right|\right)$ operations: $O\left(n k^{2}\right)$
- Compare to naïve evaluation that sums over joint values of $n-1$ variables $O\left(k^{n}\right)$

Inference on General BN via Variable Elimination

General idea:

- Write query in the form

$$
P\left(X_{1}, \boldsymbol{e}\right)=\sum_{x_{n}} \cdots \sum_{x_{3}} \sum_{x_{2}} \prod_{i} P\left(x_{i} \mid p a_{i}\right)
$$

- this suggests an "elimination order" of latent variables to be marginalized
- Iteratively
- Move all irrelevant terms outside of innermost sum
- Perform innermost sum, getting a new term
- Insert the new term into the product
- wrap-up

$$
P\left(X_{1} \mid \boldsymbol{e}\right)=\frac{P\left(X_{1}, \boldsymbol{e}\right)}{P(\boldsymbol{e})}
$$

A more complex network

A food web

What is the probability that hawks are leaving given that the grass condition is poor?

Example: Variable Elimination

- Query: $P(A \mid h)$
- Need to eliminate: B, C, D, E, F, G, H
- Initial factors:
$P(a) P(b) P(c \mid b) P(d \mid a) P(e \mid c, d) P(f \mid a) P(g \mid e) P(h \mid e, f)$
- Choose an elimination order: H, G, F, E, D, C, B

- Step 1:
- Conditioning (fix the evidence node (i.e., h) on its observed value (i.e., \tilde{h})):

$$
m_{h}(e, f)=p(h=\tilde{h} \mid e, f)
$$

- This step is isomorphic to a marginalization step:

$$
m_{h}(e, f)=\sum_{h} p(h \mid e, f) \delta(h=\tilde{h})
$$

Example: Variable Elimination

- Query: $P(B \mid h)$
- Need to eliminate: B, C, D, E, F, G
- Initial factors:
$P(a) P(b) P(c \mid b) P(d \mid a) P(e \mid c, d) P(f \mid a) P(g \mid e) P(h \mid e, f)$
$\Rightarrow P(a) P(b) P(c \mid b) P(d \mid a) P(e \mid c, d) P(f \mid a) P(g \mid e) m_{h}(e, f)$

- Step 2: Eliminate G

$$
\begin{aligned}
& \quad \text { compute } \quad m_{g}(e)=\sum_{g} p(g \mid e)=1 \\
& \Rightarrow P(a) P(b) P(c \mid b) P(d \mid a) P(e \mid c, d) P(f \mid a) m_{g}(e) m_{h}(e, f) \\
& =P(a) P(b) P(c \mid b) P(d \mid a) P(e \mid c, d) P(f \mid a) m_{h}(e, f)
\end{aligned}
$$

Example: Variable Elimination

- Query: $P(B \mid h)$
- Need to eliminate: B, C, D, E, F
- Initial factors:
$P(a) P(b) P(c \mid b) P(d \mid a) P(e \mid c, d) P(f \mid a) P(g \mid e) P(h \mid e, f)$
$\Rightarrow P(a) P(b) P(c \mid b) P(d \mid a) P(e \mid c, d) P(f \mid a) P(g \mid e) m_{h}(e, f)$
$\Rightarrow P(a) P(b) P(c \mid b) P(d \mid a) P(e \mid c, d) P(f \mid a) m_{h}(e, f)$

- Step 3: Eliminate F

> compute $\quad m_{f}(e, a)=\sum_{f} p(f \mid a) m_{h}(e, f)$ $\Rightarrow P(a) P(b) P(c \mid b) P(d \mid a) P(e \mid c, d) m_{f}(a, e)$

Example: Variable Elimination

- Query: $P(B \mid h)$
- Need to eliminate: B, C, D, E
- Initial factors:
$P(a) P(b) P(c \mid b) P(d \mid a) P(e \mid c, d) P(f \mid a) P(g \mid e) P(h \mid e, f)$
$\Rightarrow P(a) P(b) P(c \mid b) P(d \mid a) P(e \mid c, d) P(f \mid a) P(g \mid e) m_{h}(e, f)$
$\Rightarrow P(a) P(b) P(c \mid b) P(d \mid a) P(e \mid c, d) P(f \mid a) m_{h}(e, f)$

$\Rightarrow P(a) P(b) P(c \mid b) P(d \mid a) P(e \mid c, d) m_{f}(a, e)$
- Step 4: Eliminate E
- compute $\quad m_{e}(a, c, d)=\sum_{e} p(e \mid c, d) m_{f}(a, e)$
$\Rightarrow P(a) P(b) P(c \mid b) P(d \mid a) m_{e}(a, c, d)$

Example: Variable Elimination

- Query: $P(B \mid h)$
- Need to eliminate: B, C, D
- Initial factors:
$P(a) P(b) P(c \mid b) P(d \mid a) P(e \mid c, d) P(f \mid a) P(g \mid e) P(h \mid e, f)$
$\Rightarrow P(a) P(b) P(c \mid b) P(d \mid a) P(e \mid c, d) P(f \mid a) P(g \mid e) m_{h}(e, f)$
$\Rightarrow P(a) P(b) P(c \mid b) P(d \mid a) P(e \mid c, d) P(f \mid a) m_{h}(e, f)$
$\Rightarrow P(a) P(b) P(c \mid b) P(d \mid a) P(e \mid c, d) m_{f}(a, e)$

$\Rightarrow P(a) P(b) P(c \mid b) P(d \mid a) m_{e}(a, c, d)$
- Step 5: Eliminate D

$$
\begin{aligned}
& \quad \text { compute } \quad m_{d}(a, c)=\sum_{d} p(d \mid a) m_{e}(a, c, d) \\
& \Rightarrow P(a) P(b) P(c \mid d) m_{d}(a, c)
\end{aligned}
$$

Example: Variable Elimination

- Query: $P(B \mid h)$
- Need to eliminate: B, C
- Initial factors:
$P(a) P(b) P(c \mid d) P(d \mid a) P(e \mid c, d) P(f \mid a) P(g \mid e) P(h \mid e, f)$
$\Rightarrow P(a) P(b) P(c \mid d) P(d \mid a) P(e \mid c, d) P(f \mid a) P(g \mid e) m_{h}(e, f)$
$\Rightarrow P(a) P(b) P(c \mid d) P(d \mid a) P(e \mid c, d) P(f \mid a) m_{h}(e, f)$
$\Rightarrow P(a) P(b) P(c \mid d) P(d \mid a) P(e \mid c, d) m_{f}(a, e)$
$\Rightarrow P(a) P(b) P(c \mid d) P(d \mid a) m_{e}(a, c, d)$
$\Rightarrow P(a) P(b) P(c \mid d) m_{d}(a, c)$
- Step 6: Eliminate C

$$
\begin{aligned}
& \text { compute } \quad m_{c}(a, b)=\sum_{c} p(c \mid b) m_{d}(a, c) \\
& \Rightarrow P(a) P(b) P(c \mid d) m_{d}(a, c)
\end{aligned}
$$

Example: Variable Elimination

- Query: $P(B \mid h)$
- Need to eliminate: B
- Initial factors:
$P(a) P(b) P(c \mid d) P(d \mid a) P(e \mid c, d) P(f \mid a) P(g \mid e) P(h \mid e, f)$
$\Rightarrow P(a) P(b) P(c \mid d) P(d \mid a) P(e \mid c, d) P(f \mid a) P(g \mid e) m_{h}(e, f)$
$\Rightarrow P(a) P(b) P(c \mid d) P(d \mid a) P(e \mid c, d) P(f \mid a) m_{h}(e, f)$

$\Rightarrow P(a) P(b) P(c \mid d) P(d \mid a) P(e \mid c, d) m_{f}(a, e)$
$\Rightarrow P(a) P(b) P(c \mid d) P(d \mid a) m_{e}(a, c, d)$
$\Rightarrow P(a) P(b) P(c \mid d) m_{d}(a, c)$
$\Rightarrow P(a) P(b) m_{c}(a, b)$
- Step 7: Eliminate B
- compute
$m_{b}(a)=\sum_{b} p(b) m_{c}(a, b)$
$\Rightarrow P(a) m_{b}(a)$

Example: Variable Elimination

- Query: $P(B \mid h)$
- Need to eliminate: B
- Initial factors:
$P(a) P(b) P(c \mid d) P(d \mid a) P(e \mid c, d) P(f \mid a) P(g \mid e) P(h \mid e, f)$
$\Rightarrow P(a) P(b) P(c \mid d) P(d \mid a) P(e \mid c, d) P(f \mid a) P(g \mid e) m_{h}(e, f)$
$\Rightarrow P(a) P(b) P(c \mid d) P(d \mid a) P(e \mid c, d) P(f \mid a) m_{h}(e, f)$
$\Rightarrow P(a) P(b) P(c \mid d) P(d \mid a) P(e \mid c, d) m_{f}(a, e)$
$\Rightarrow P(a) P(b) P(c \mid d) P(d \mid a) m_{e}(a, c, d)$
$\Rightarrow P(a) P(b) P(c \mid d) m_{d}(a, c)$
$\Rightarrow P(a) P(b) m_{c}(a, b)$
$\Rightarrow P(a) m_{b}(a)$
- Step 8: Wrap-up

$$
\begin{aligned}
& p(a, \tilde{h})=p(a) m_{b}(a), \quad p(\tilde{h})=\sum_{a} p(a) m_{b}(a) \\
& \Rightarrow P(a \mid \tilde{h})=\frac{p(a) m_{b}(a)}{\sum p(a) m_{b}(a)}
\end{aligned}
$$

Complexity of variable elimination

- Suppose in one elimination step we compute

$$
\begin{gathered}
m_{x}\left(y_{1}, \ldots, y_{k}\right)=\sum_{x} m_{x}^{\prime}\left(x, y_{1}, \ldots, y_{k}\right) \\
m_{x}^{\prime}\left(x, y_{1}, \ldots, y_{k}\right)=\prod_{i=1}^{k} m_{i}\left(x, \boldsymbol{y}_{c_{i}}\right)
\end{gathered}
$$

This requires

- $k \bullet|\operatorname{Val}(X)| \bullet \prod_{i}\left|\operatorname{Val}\left(\boldsymbol{Y}_{C_{i}}\right)\right|$ multiplications
- For each value of x, y_{1}, \ldots, y_{k} we do k multiplications
- $|\operatorname{Val}(X)| \bullet \prod\left|\operatorname{Val}\left(\boldsymbol{Y}_{C_{i}}\right)\right|$ additions
- For each value of y_{1}, \ldots, y_{k}, we do $/ \operatorname{Val}(X) /$ additions

Complexity is exponential in number of variables in the intermediate factor

Understanding Variable Elimination

- A graph elimination algorithm

Understanding Variable Elimination

- A graph elimination algorithm

- Intermediate terms correspond to the cliques resulted from elimination
- "good" elimination orderings lead to small cliques and hence reduce complexity (what will happen if we eliminate "e" first in the above graph?)
- finding the optimum ordering is NP-hard, but for many graph optimum or nearoptimum can often be heuristically found
- Applies to undirected GMs

From Elimination to Message Passing

 -- Our algorithm so far answers only one query (e.g., on one node), do we need to do a complete elimination for every such query?
- Elimination \equiv message passing on a clique tree

From Elimination to Message Passing

- Our algorithm so far answers only one query (e.g., on one node), do we need to do a complete elimination for every such query?
- Elimination \equiv message passing on a clique tree
- Another query ...

- Messages m_{f} and m_{h} are reused, others need to be recomputed

The Junction Tree Algorithm

- Shafer-Shenoy algorithm

(a)

(b)
- Message from clique i to clique j :
- Clique marginal

$$
\mu_{i \rightarrow j}=\sum_{C_{i} \backslash S_{i j}} \psi_{C_{i}} \prod_{k \neq j} \mu_{k \rightarrow i}\left(S_{k i}\right)
$$

$$
p\left(C_{i}\right) \propto \psi_{C_{i}} \prod_{k} \mu_{k \rightarrow i}\left(S_{k i}\right)
$$

A Sketch of the Junction Tree Algorithm

- The algorithm
- Construction of junction trees --- a special clique tree
- Propagation of probabilities --- a message-passing protocol
- Results in marginal probabilities of all cliques --- solves all queries in a single run
- A generic exact inference algorithm for any GM
- Complexity: exponential in the size of the maximal clique --a good elimination order often leads to small maximal clique, and hence a good (i.e., thin) JT
- Many well-known algorithms are special cases of JT
- Forward-backward, Kalman filter, Peeling, Sum-Product ...

The Junction tree algorithm for HMM
 ,

- A junction tree for the HMM

- Rightward pass

$$
\begin{aligned}
\mu_{t \rightarrow t+1}\left(y_{t+1}\right) & =\sum_{y_{t}} \psi\left(y_{t}, y_{t+1}\right) \mu_{t-1 \rightarrow t}\left(y_{t}\right) \mu_{t \uparrow}\left(y_{t+1}\right) \\
& =\sum_{y_{t}} p\left(y_{t+1} \mid y_{t}\right) \mu_{t-1 \rightarrow t}\left(y_{t}\right) p\left(x_{t+1} \mid y_{t+1}\right) \\
& =p\left(x_{t+1} \mid y_{t+1}\right) \sum_{y_{t}} a_{y_{t}, y_{t+1}} \mu_{t-1 \rightarrow t}\left(y_{t}\right)
\end{aligned}
$$

- This is exactly the forward algorithm!
$\mu_{t-1 \rightarrow t}\left(y_{t}\right) \psi\left(y_{t}, y_{t+1}\right) \quad \mu_{t \rightarrow t+1}\left(y_{t+1}\right)$

- Leftward pass ...

$$
\begin{aligned}
\mu_{t-1 \leftarrow t}\left(y_{t}\right) & =\sum_{y_{t+1}} \psi\left(y_{t}, y_{t+1}\right) \mu_{t \leftarrow t+1}\left(y_{t+1}\right) \mu_{t \uparrow}\left(y_{t+1}\right) \\
& =\sum_{y_{t+1}} p\left(y_{t+1} \mid y_{t}\right) \mu_{t \leftarrow t+1}\left(y_{t+1}\right) p\left(x_{t+1} \mid y_{t+1}\right)
\end{aligned}
$$

- This is ${ }^{\frac{1}{+1} \text { exactly the backward algorithm! }}$
\cdots
© Eric Xing @ CMU, 2006-2010

Summary	?

- Represent dependency structure with a directed acyclic graph
- Node <-> random variable
- Edges encode dependencies
- Absence of edge -> conditional independence
- Plate representation
- A BN is a database of prob. Independence statement on variables

- The factorization theorem of the joint probability
- Local specification \rightarrow globally consistent distribution
- Local representation for exponentially complex state-space
- Support efficient inference and learning

