Machine Learning

10-701/15-781, Spring 2010

Support Vector Machines

Reading: Chap. 6&7, C.B book, and listed papers

© Eric Xing @ CMU, 2006-2010 1

- . . [ X X ]
What is a good Decision sels
Boundary? '
e Consider a binary classification
task with y = +1 labels (not 0/1 as
before). Class 2
o
e When the training examples are o ass
linearly separable, we can set the - o
parameters of a linear classifier o
so that all the training examples = ©
are classified correctly = =
e Many decision boundaries! B =
e Generative classifiers Class 1

e Logistic regressions ...

e Are all decision boundaries
equally good?
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What is a good Decision
Boundary?
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Not All Decision Boundaries Are
Equal!
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e Why we may have such boundaries?
e Irregular distribution
e Imbalanced training sizes
e outliners
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Classification and Margin

e Parameterzing decision boundary

e Letw denote a vector orthogonal to the decision boundary, and » denote a scalar
"offset" term, then we can write the decision boundary as:

wx+b=0
o W
= o)
m o Class 2
O
= = .
Class 1 d/ ‘/d'+
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Classification and Margin o

e Parameterzing decision boundary

e Letw denote a vector orthogonal to the decision boundary, and » denote a scalar
"offset" term, then we can write the decision boundary as:

wx+b=0
e Margin
o A'\%
wlx+b>+c  forally;in class 2
wlxtb<—c  forallx;in class 1
= ®
= @Class2 o more compactly:
= (W +b)y, >c
= m )
Class 1 d/ '/d'+ The margin between any two
— points

—_ J- + —
m=d +d=
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Maximum Margin Classification '
e The "minimum" permissible margin is:
w' 2c
m=-—\Xs —X . |=7
w( ) [
e Here is our Maximum Margin Classification problem:
2c
max,,
[
sty (wWx +b)>c, Vi
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Maximum Margin Classification, sess
con'd. o

e The optimization problem:
c

maxwvb M

y.(W'x, +b)>c, Vi

e But note that the magnitude of ¢ merely scales w and b, and does

not change the classification boundary at all! (why?)
e So we instead work on this cleaner problem:

1

.

y.(W'x, +b)>1, Vi
e The solution to this leads to the famous

max

-- believed by many to be the best "off-the-shelf" supervised learning

algorithm
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Support vector machine :
-
e A convex quadratic programming problem H1 '.
I . ]
with linear constrains: Hz\ \}\, 5
max S 2 < .\\0
I MO
y’.(WTx,.-f-b)Zl, 1Vi . 0, Wex—b=0
o The attained margin is now given by M s

e Only a few of the classification constraints are relevant = support vectors

e Constrained optimization
e We can directly solve this using commercial quadratic programming (QP) code

e But we want to take a more careful investigation of Lagrange duality, and the
solution of the above in its dual form.

=>» deeper insight: support vectors, kernels ...
=> more efficient algorithm
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Digression to Lagrangian Duality | :¢

e The Primal Problem
min,  f(w)
s.t. gw) <0, i=1,...k
h(w)=0, i=1,...,1

The generalized Lagrangian:

L0na B)=F(0)+ a8+ BhW)

the o's («20) and f's are called the Lagarangian multipliers

Primal:

Lemma:

f(w) if wsatisfies primal constraints
max, 4, so L(wa,p)=

) o/w

A re-written Primal:
mlnw maxa,ﬂ,alzo .é)(W, o, ﬁ)
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Lagrangian Duality, cont.

e Recall the Primal Problem:

min max,, 5, -0 L(w,a,p)

e The Dual Problem:
max,, 4 .o Min,, L(w,a, f)

e Theorem (weak duality):

d* = maxa,ﬁ,alzo minn‘ ’B(W’alﬂ) < minn‘ maxa,ﬁ,alzo ,L)(M/,O{,ﬁ) = p*

e Theorem (strong duality):
Iff there exist a saddle point of £(w,«, ), we have
d* — p*
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A sketch of strong and weak
duality s

e Now, ignoring A(x) for simplicity, let's look at what's happening
graphically in the duality theorems.

d = max,, .o min,, f(w) +a’g(w) < min, max,, .o fwW)+agw)=p"

J(w)

g(w)
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A sketch of strong and weak
duality

!
e Now, ignoring /(x) for simplicity, let's look at what's happening
graphically in the duality theorems.
d = max,, .o min,, f(w) +a’g(w) < min, max,, .o fW)+a'gw)y=p"

S(w)

g(W)‘
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A sketch of strong and weak
duality s

e Now, ignoring A(x) for simplicity, let's look at what's happening
graphically in the duality theorems.

d” =max,_,min, f(w)+a'g(w) < min max,., f(w)+a'g(w)=p’

10 7o

2(w) gw)
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The KKT conditions

|
e |If there exists some saddle point of .£ then the saddle point

satisfies the following "Karush-Kuhn-Tucker" (KKT)
conditions:

i£(w,0¢,ﬂ):O, i=1...,k
ow,

i

O pwa, f)=0, i=1...0

p,
0,g,(w)=0, i=1...m Complementary slackness
gw)<0, i=1...,m Primal feasibility
a,20, i=1...,m Dual feasibility

e Theorem: If w*, " and f* satisfy the KKT condition, then it is also a
solution to the primal and the dual problems.
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Solving optimal margin classifier |z

e Recall our opt problem:
1

w,b H"VH

y.(W'x, +b) =21, Vi

max

e This is equivalent to
,
w,b SWw
T2 (*)
l—yi(wrxi +b)<0, Vi
e Write the Lagrangian:

min
S.t

L(w,b,a)= ; wiw— iai [y,. (w'x, +b) —1]
i=1

e Recall that (*) can be reformulated as min, , max, ., £(w,b,a)
Now we solve its dual problem: max, ., min,, £(w,b,a)

w,b
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The Dual Problem &
max, .o min,, , £(w,b, )
e We minimize .£ with respect to w and b first:
Vu,f(w,b,a):wfiaiyixi =0, (*)
i=1
vV, L(wb,a)= ia[yi =0, (*%)
i=1
Note that (*) implies: W= ial_y[x[ (%)
i=1
e Plus (***) back to .£ , and using (**), we have:
m 1 m »_
L(w,b,a) = leai 3 Z:laia_l.y,.y/.(x,.’x/.)
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The Dual problem, cont. &

e Now we have the following dual opt problem:

m 1 m i
max, 7 (a) = leai ) _Zlaiaiyfy/' (x/x,)
i= i,j=
st. 20, i=1..k

m

Z a.y, =0.
i=1

e This s, (again,) a quadratic programming problem.
e A global maximum of g can always be found.
e But what's the big deal??
e Note two things:

m

1. wcanberecovered by = Zaiy,X, See next ...
i=1

.
2. The "kernel" X; X; More later ...

© Eric Xing @ CMU, 2006-2010 18




Support vectors

¢ Note the KKT condition --- only a few ¢;'s can be nonzero!!

o,g,(w)=0, i=1...,m

Class 2 Call the training data points
15=0.6 @0=0 whose ¢;'s are nonzero the
o / support vectors (SV)
W =0
=0 _
;=0 a8 dxz—O
B @, =0.8
o,=0 @
m - og=1.4 wlx +bh=1
ag=0 - T —
Class 1 03=0 _ wx+b=20
wix+b=-1
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Support vector machines

e Once we have the Lagrange multipliers {«;}, we can
reconstruct the parameter vector w as a weighted combination
of the training examples:

w= Zaiyixi

ieSV

e For testing with a new data z

e Compute T T
wz+b= Za[yl.(xi Z)+b

ieSV

and classify z as class 1 if the sum is positive, and class 2 otherwise

e Note: w need not be formed explicitly

© Eric Xing @ CMU, 2006-2010 20

10



Interpretation of support vector
machines

e The optimal W is a linear combination of a small number of
data points. This “sparse” representation can be viewed as
data compression as in the construction of kNN classifier

e To compute the weights {«;}, and to use support vector
machines we need to specify only the inner products (or
kernel) between the examples X; X,

e We make decisions by comparing each new example z with
only the support vectors:

y*= sign( > ay, (X,.TZ)+ bj
ieSV

© Eric Xing @ CMU, 2006-2010 21
[ X X ]
esce

. [ X0

Non-linearly Separable Problems | 3¢

&5 ©
‘/ O Class 2
X
W e
= X o
] @ g
’L T
O wix+b=1
T —
Class 1 — wix+b=0
w"x—l—b: -1

o We allow “error” & in classification; it is based on the output of
the discriminant function w’x-+b

e ¢ approximates the number of misclassified samples
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Soft Margin Hyperplane 5
e Now we have a slightly different opt problem:
. 1 ’ m
min,,, SV w+CY &
i=1
ot y(wW'x, +b)21-¢, Vi
©£20, Vi
e ¢ are “slack variables” in optimization
e Note that =0 if there is no error for x;
e ¢ is an upper bound of the number of errors
e C: tradeoff parameter between error and margin
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The Optimization Problem o

e The dual of this new constrained optimization problem is

m 1 m
max, Jf(a)= Zai 2 Zafa/yfy/'(xfrx/')
i=1

i,j=1

st. 0<¢g,<C, i=1....m

ia,y, =0.
i=1

e This is very similar to the optimization problem in the linear
separable case, except that there is an upper bound C on o;
now

e Once again, a QP solver can be used to find o
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The SMO algorithm

e Consider solving the unconstrained opt problem:

max W(ay, ag,...,a.n)
o

e We've already see three opt algorithms!
o« ?
o« ?
o« ?

e Coordinate ascend:
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Coordinate ascend °e

L
2 15 -1 -05 1} 05 1 15 2 25
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Sequential minimal optimization

e Constrained optimization:

m 1 m )
max, J(a)=2. e 2 D ey, (X X))
i=1

ij=1

st. 0<¢,<C, i=1...,m

m

Z a,y, =0.
i1

e Question: can we do coordinate along one direction at a time
(i.e., hold all «;; fixed, and update «,?)
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The SMO algorithm o

Repeat till convergence

1. Select some pair ; and ¢; to update next (using a heuristic that tries
to pick the two that will allow us to make the biggest progress
towards the global maximum).

2. Re-optimize J(a) with respect to ¢; and «;, while holding all the other
a,'s (k= i; j) fixed.

Will this procedure converge?
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Convergence of SMO :
m l m T
maxa j(a):Zai_izaia/yiy_/(xix/')
i=1 i,j=1
KKT st. 0<eg, <C, i=1..k
] ia,y,. =0.
i=1
e Let'shold ¢; ,..., @, fixed and reopt J w.rt. ; and «,
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Convergence of SMO :
e The constraints: c
aryr + agys = §
0<a; <C % ot
0<a,<C
e The objective: L L -
Jlay, ag,. .., am) = J((§ — azy2)y1, s, .., )
e Constrained opt:
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Cross-validation error of SVM

\
e The leave-one-out cross-validation error does not depend on

the dimensionality of the feature space but only on the # of
support vectors!

# support vectors
# of training examples

Leave-one-out CV error =
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Summary .
e Max-margin decision boundary
e Constrained convex optimization
e Duality
e The KTT conditions and the support vectors
e Non-separable case and slack variables
e The SMO algorithm
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