

Recap: the SVM problem

- We solve the following constrained opt problem:

$$
\begin{aligned}
\max _{\alpha} & \mathcal{J}(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right) \\
\text { s.t. } & \alpha_{i} \geq 0, \quad i=1, \ldots, m \\
& \sum_{i=1}^{m} \alpha_{i} y_{i}=0 .
\end{aligned}
$$

- This is a quadratic programming problem.
- A global maximum of α_{i} can always be found.
- The solution:

$$
w=\sum_{i=1}^{m} \alpha_{i} y_{i} \mathbf{x}_{i}
$$

- How to predict:

$$
\mathbf{w}^{T} \mathbf{x}_{\text {new }}+b \lessgtr 0
$$

Non-linearly Separable Problems

- We allow "error" ξ_{i} in classification; it is based on the output of the discriminant function $\boldsymbol{w}^{\boldsymbol{T}} \boldsymbol{X}+b$
- ξ_{i} approximates the number of misclassified samples

Soft Margin Hyperplane

- Now we have a slightly different opt problem:

$$
\begin{aligned}
\min _{w, b} & \frac{1}{2} w^{T} w+C \sum_{i=1}^{m} \xi_{i} \\
& y_{i}\left(w^{T} x_{i}+b\right) \geq 1-\xi_{i}, \quad \forall i \\
\text { s.t } & \xi_{i} \geq 0, \quad \forall i
\end{aligned}
$$

- ξ_{i} are "slack variables" in optimization
- Note that $\xi_{\mathrm{i}}=0$ if there is no error for \mathbf{x}_{i}
- ξ_{i} is an upper bound of the number of errors
- C : tradeoff parameter between error and margin

The Optimization Problem

- The dual of this new constrained optimization problem is

$$
\begin{aligned}
\max _{\alpha} & \mathscr{J}(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right) \\
\text { s.t. } & 0 \leq \alpha_{i} \leq C, \quad i=1, \ldots, m \\
& \sum_{i=1}^{m} \alpha_{i} y_{i}=0
\end{aligned}
$$

- This is very similar to the optimization problem in the linear separable case, except that there is an upper bound C on α_{i} now
- Once again, a QP solver can be used to find α_{i}

The SMO algorithm

- Consider solving the unconstrained opt problem:

$$
\max _{\alpha} W\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)
$$

- We've already see three opt algorithms!
- Coordinate ascent
- Gradient ascent
- Newton-Raphson
- Coordinate ascend:

Sequential minimal optimization

- Constrained optimization:

$$
\begin{aligned}
\max _{\alpha} & \mathcal{J}(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right) \\
\text { s.t. } & 0 \leq \alpha_{i} \leq C, \quad i=1, \ldots, m \\
& \sum_{i=1}^{m} \alpha_{i} y_{i}=0 .
\end{aligned}
$$

- Question: can we do coordinate along one direction at a time (i.e., hold all $\alpha_{[-i]}$ fixed, and update α_{i} ?)

The SMO algorithm

Repeat till convergence

1. Select some pair α_{i} and α_{j} to update next (using a heuristic that tries to pick the two that will allow us to make the biggest progress towards the global maximum).
2. Re-optimize $\mathrm{J}(\alpha)$ with respect to α_{i} and α_{j}, while holding all the other α_{k} 's $(k \neq i ; j)$ fixed.

Will this procedure converge?

Convergence of SMO
$\max _{\alpha} \quad \mathscr{Z}(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)$
KKT:

$$
\begin{array}{ll}
\text { s.t. } & 0 \leq \alpha_{i} \leq C, \quad i=1, \ldots, k \\
& \sum_{i=1}^{m} \alpha_{i} y_{i}=0
\end{array}
$$

- Let's hold $\alpha_{3}, \ldots, \alpha_{m}$ fixed and reopt J w.r.t. α_{1} and α_{2}

Convergence of SMO

- The constraints:
$\alpha_{1} y_{1}+\alpha_{2} y_{2}=\xi$
$0 \leq \alpha_{1} \leq C$
$0 \leq \alpha_{2} \leq C$
- The objective:

$\mathcal{J}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)=\mathcal{J}\left(\left(\xi-\alpha_{2} y_{2}\right) y_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$
- Constrained opt:

Cross-validation error of SVM

- The leave-one-out cross-validation error does not depend on the dimensionality of the feature space but only on the \# of support vectors!

$$
\text { Leave - one - out CV error }=\frac{\# \text { support vectors }}{\# \text { of training examples }}
$$

Advanced topics in Max-Margin Learning

$$
\begin{gathered}
\max _{\alpha} \mathcal{J}(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right) \\
\mathbf{w}^{T} \mathbf{x}_{\text {new }}+b \lessgtr 0
\end{gathered}
$$

- Kernel
- Point rule or average rule
- Can we predict vec(y)?

Outline

- The Kernel trick
- Maximum entropy discrimination
- Structured SVM, aka, Maximum Margin Markov Networks

(1) Non-linear Decision Boundary

- So far, we have only considered large-margin classifier with a linear decision boundary
- How to generalize it to become nonlinear?
- Key idea: transform x_{i} to a higher dimensional space to "make life easier"
- Input space: the space the point \mathbf{x}_{i} are located
- Feature space: the space of $\phi\left(\mathbf{x}_{\mathrm{i}}\right)$ after transformation
- Why transform?
- Linear operation in the feature space is equivalent to non-linear operation in input space
- Classification can become easier with a proper transformation. In the XOR problem, for example, adding a new feature of $x_{1} x_{2}$ make the problem linearly separable (homework)

The Kernel Trick

- Recall the SVM optimization problem

$$
\begin{aligned}
\max _{\alpha} & \mathcal{Z}(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right) \\
\text { s.t. } & 0 \leq \alpha_{i} \leq C, \quad i=1, \ldots, m \\
& \sum_{i=1}^{m} \alpha_{i} y_{i}=0
\end{aligned}
$$

- The data points only appear as inner product
- As long as we can calculate the inner product in the feature space, we do not need the mapping explicitly
- Many common geometric operations (angles, distances) can be expressed by inner products
- Define the kernel function K by $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\phi\left(\mathbf{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{j}\right)$

An Example for feature mapping and kernels

- Consider an input $\mathbf{x}=\left[x_{1}, x_{2}\right]$
- Suppose $\phi($.$) is given as follows$

$$
\phi\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}
$$

- An inner product in the feature space is

$$
\left\langle\phi\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right), \phi\left(\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]\right)\right\rangle=
$$

- So, if we define the kernel function as follows, there is no need to carry out $\phi($.$) explicitly$

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(1+\mathbf{x}^{T} \mathbf{x}^{\prime}\right)^{2}
$$

More examples of kernel functions

- Linear kernel (we've seen it)

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{x}^{T} \mathbf{x}^{\prime}
$$

- Polynomial kernel (we just saw an example)

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(1+\mathbf{x}^{T} \mathbf{x}^{\prime}\right)^{p}
$$

where $p=2,3, \ldots$ To get the feature vectors we concatenate all p th order polynomial terms of the components of x (weighted appropriately)

- Radial basis kernel

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\frac{1}{2}\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}\right)
$$

In this case the feature space consists of functions and results in a nonparametric classifier.

The essence of kernel

- Feature mapping, but "without paying a cost"
- E.g., polynomial kernel

$$
K(x, z)=\left(x^{T} z+c\right)^{d}
$$

- How many dimensions we've got in the new space?
- How many operations it takes to compute K() ?
- Kernel design, any principle?
- $K(x, z)$ can be thought of as a similarity function between x and z
- This intuition can be well reflected in the following "Gaussian" function (Similarly one can easily come up with other $K()$ in the same spirit)

$$
K(x, z)=\exp \left(-\frac{\|x-z\|^{2}}{2 \sigma^{2}}\right)
$$

- Is this necessarily lead to a "legal" kernel?
(in the above particular case, $\mathrm{K}($) is a legal one, do you know how many dimension $\phi(x)$ is?

Kernel matrix

- Suppose for now that K is indeed a valid kernel corresponding to some feature mapping ϕ, then for $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}$, we can compute an $m \times m$ matrix $K=\left\{K_{i, j}\right\}_{\text {, }}$ where $K_{i, j}=\phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right)$
- This is called a kernel matrix!
- Now, if a kernel function is indeed a valid kernel, and its elements are dot-product in the transformed feature space, it must satisfy:
- Symmetry $K=K^{T}$
proof $\quad K_{i, j}=\phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right)=\phi\left(x_{j}\right)^{T} \phi\left(x_{i}\right)=K_{j, i}$
- Positive-semidefinite $\quad y^{T} K y \geq 0 \quad \forall y$
proof?

Theorem (Mercer): Let $K: \mathbb{R}^{n} \times \mathbb{R}^{n} \mapsto \mathbb{R}$ be given. Then for K to be a valid (Mercer) kernel, it is necessary and sufficient that for any $\left\{x_{i}, \ldots, x_{m}\right\},(m<\infty)$, the corresponding kernel matrix is symmetric positive semi-denite.

$4^{\text {th }}$ order polynomial
$8^{\text {th }}$ order polynomial

(2) Model averaging

- Inputs x, class $y=+1,-1$
- data $D=\left\{\left(x_{1}, y_{1}\right), \ldots .\left(x_{m}, y_{m}\right)\right\}$
- Point Rule:
- learn $f^{\circ p t}(x)$ discriminant function from $F=\{f\}$ family of discriminants

- classify $y=\operatorname{sign}$ fopt $^{\circ}(x)$
- E.g., SVM

$$
f^{o p t}(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}_{\text {new }}+b
$$

Model averaging

- There exist many f with near optimal performance
- Instead of choosing fopt, average over all f in F
$Q(f)=$ weight of f

$$
\begin{aligned}
y(x) & =\operatorname{sign} \int_{F} Q(f) f(x) d f \\
& =\operatorname{sign}\langle f(x)\rangle_{Q}
\end{aligned}
$$

- How to specify:
$F=\{f\}$ family of discriminant functions?
- How to learn $Q(f)$ distribution over F ?

Recall Bayesian Inference

- Bayesian learning:

$$
\text { Bayes Thrm : } p(\mathbf{w} \mid \mathcal{D})=\frac{p(\mathbf{w}) p(\mathcal{D} \mid \mathbf{w})}{p(\mathcal{D})}
$$

- Bayes Predictor (model averaging):

$$
h_{1}(\mathbf{x} ; p(\mathbf{w}))=\arg \max _{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} \int p(\mathbf{w}) f(\mathbf{x}, \mathbf{y} ; \mathbf{w}) d \mathbf{w}
$$

$$
\text { Recall in SVM: } \quad h_{0}(x ; w)=\arg \max _{y \in \mathcal{Y}(x)} \int(x, y ; w) \gamma w
$$

- What p_{0} ?

How to score distributions?

- Entropy
- Entropy $H(X)$ of a random variable X

$$
H(X)=-\sum_{i=1}^{N} P(x=i) \log _{2} P(x=i)
$$

- $H(X)$ is the expected number of bits needed to encode a randomly drawn value of X (under most efficient code)
- Why?

Information theory:
Most efficient code assigns $-\log _{2} P(X=i)$ bits to encode the message $X=1$, So, expected number of bits to code one random X is:

$$
-\sum_{i=1}^{N} P(x=i) \log _{2} P(x=i)
$$

Maximum Entropy Discrimination

- Given data set $\mathcal{D}=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{N}$ find

$$
\begin{array}{ll}
& Q_{\mathrm{ME}}=\arg \max \quad \mathrm{H}(Q) \\
\text { s.t. } & y^{i}\left\langle f\left(\mathrm{x}^{i}\right)\right\rangle_{Q_{\mathrm{ME}}} \geq \xi_{i}, \quad \forall i \\
& \xi_{i} \geq 0 \quad \forall i
\end{array}
$$

- solution $Q_{\text {ME }}$ correctly classifies \mathfrak{D}
- among all admissible $Q, Q_{\text {ME }}$ has max entropy
- max entropy \longrightarrow "minimum assumption" about f

Introducing Priors

- Prior $Q_{0}(f)$
- Minimum Relative Entropy Discrimination
$Q_{\mathrm{MRE}}=\arg \min \operatorname{KL}\left(Q \| Q_{0}\right)+U(\xi)$
s.t. $\quad y^{i}\left\langle f\left(\mathbf{x}^{i}\right)\right\rangle_{Q_{\mathrm{ME}}} \geq \xi_{i}, \quad \forall i$

$$
\xi_{i} \geq 0 \quad \forall i
$$

- Convex problem: $Q_{\text {MRE }}$ unique solution
- MER \longrightarrow "minimum additional assumption" over Q_{0} about f

Solution: $\mathbf{Q}_{\text {ME }}$ as a projection

- Convex problem: $Q_{M E}$ unique
- Theorem:
$Q_{\text {MRE }} \propto \exp \left\{\sum_{i=1}^{N} \alpha_{i} y_{i} f\left(x_{i} ; w\right)\right\} Q_{0}(w)$

$\alpha_{i} \geq 0$ Lagrange multipliers
- finding Q_{M} : start with $\alpha_{i}=0$ and follow gradient of unsatisfied constraints

Solution to MED

- Theorem (Solution to MED):

Posterior Distribution:

$$
Q(\mathbf{w})=\frac{1}{Z(\alpha)} Q_{0}(\mathbf{w}) \exp \left\{\sum_{i} \alpha_{i} y_{i}\left[f\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right]\right\}
$$

Dual Optimization Problem:

$$
\begin{array}{ll}
\text { D1: } \quad \max _{\alpha}-\log Z(\alpha)-U^{\star}(\alpha) \\
& \text { s.t. } \alpha_{i}(\mathbf{y}) \geq 0, \forall i,
\end{array}
$$

$U^{\star}(\cdot)$ is the conjugate of the $U(\cdot)$, i.e., $U^{\star}(\alpha)=\sup _{\xi}\left(\sum_{i, \mathrm{y}} \alpha_{i}(\mathrm{y}) \xi_{i}-U(\xi)\right)$

- Algorithm: to computer $\alpha_{t}, t=1, \ldots . \mathrm{T}$
- start with $\alpha_{t}=0$ (uniform distribution)
- iterative ascent on $J(\alpha)$ until convergence

Examples: SVMs

- Theorem

For $f(x)=w^{\mathrm{T}} x+b, Q_{0}(w)=\operatorname{Normal}(0, I), Q_{0}(b)=$ non-informative prior, the Lagrange multipliers α are obtained by maximizing $J(\alpha)$ subject to $0 \leq \alpha_{t} \leq C$ and $\sum_{t} \alpha_{t} y_{t}=0$, where

$$
J(\alpha)=\sum_{t}\left[\alpha_{t}+\log \left(1-\alpha_{t} / C\right)\right]-\frac{1}{2} \sum_{s, t} \alpha_{s} \alpha_{t} y_{s} y_{t} x_{s}^{T} x_{t}
$$

- Separable $D \longrightarrow$ SVM recovered exactly
- Inseparable $D \longrightarrow$ SVM recovered with different misclassification penalty

SVM extensions

 - 0.0 0.0 000- Example: Leptograpsus Crabs (5 inputs, $\mathrm{T}_{\text {train }}=80, \mathrm{~T}_{\text {test }}=120$)

(3) Structured Prediction

- Unstructured prediction

$$
\mathbf{x}=\left(\begin{array}{ccc}
\mathrm{x}_{11} & \mathrm{x}_{12} & \cdots \\
\mathrm{x}_{21} & \mathrm{x}_{22} & \cdots \\
\vdots & \vdots & \cdots
\end{array}\right)
$$

$$
\mathbf{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots
\end{array}\right)
$$

- Structured prediction
- Part of speech tagging

$$
\mathbf{x}=\text { "Do you want sugar in it?" } \Rightarrow \mathbf{y}=\text { verb pron verb noun prep pron> }
$$

- Image segmentation

$$
\mathbf{x}=\left(\begin{array}{ccc}
\mathrm{x}_{11} & \mathrm{x}_{12} & \ldots \\
\mathrm{x}_{21} & \mathrm{x}_{22} & \cdots \\
\vdots & \vdots & \ldots
\end{array}\right) \quad \mathbf{y}=\left(\begin{array}{ccc}
y_{11} & y_{12} & \ldots \\
y_{21} & y_{22} & \cdots \\
\vdots & \vdots & \ldots
\end{array}\right)
$$

OCR example

 - $0 \cdot 0$
 - 0

Sequential structure

Classical Classification Models

- Inputs:
- a set of training samples $\mathcal{D}=\left\{\left(\mathrm{x}_{i}, y_{i}\right)\right\}_{i=1}^{N}$, where
$\mathrm{x}_{i}=\left[x_{i}^{1}, x_{i}^{2}, \cdots, x_{i}^{d}\right]^{\top}$ and $y_{i} \in C \triangleq\left\{c_{1}, c_{2}, \cdots, c_{L}\right\}$
- Outputs:
- a predictive function $h(\mathrm{x}): \quad y^{\star}=h(\mathrm{x}) \triangleq \arg \max _{y} F(\mathrm{x}, y)$

$$
F(\mathrm{x}, y)=\mathbf{w}^{\top} \mathbf{f}(\mathrm{x}, y)
$$

- Examples:
- SVM:

$$
\max _{\mathbf{w}, \xi} \frac{1}{2} \mathbf{w}^{\top} \mathbf{w}+C \sum_{i=1}^{N} \xi_{i} ; \text { s.t. } \mathbf{w}^{\top} \Delta \mathbf{f}_{i}(y) \geq 1-\xi_{i}, \forall i, \forall y .
$$

- Logistic Regression: $\max _{\mathbf{w}} \mathcal{L}(\mathcal{D} ; \mathbf{w}) \triangleq \sum_{i=1}^{N} \log p\left(y_{i} \mid \mathrm{x}_{i}\right)$
where

$$
p(y \mid \mathbf{x})=\frac{\exp \left\{\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}, y)\right\}}{\sum_{y^{\prime}} \exp \left\{\mathbf{w}^{\top} \mathbf{f}\left(\mathbf{x}, y^{\prime}\right)\right\}}
$$

Structured Models

$$
h(\mathrm{x})=\underset{\substack{\mathbf{y} \in \mathcal{Y}(\mathrm{x})} \underset{\text { space of feasible outputs }}{\arg \max }}{ } F(\mathbf{x}, \mathrm{y})
$$

- Assumptions:

$$
F(\mathbf{x}, \mathbf{y})=\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{y})=\sum_{p} \mathbf{w}^{\top} \mathbf{f}\left(\mathbf{x}_{p}, \mathbf{y}_{p}\right)
$$

- Linear combinatıon of teatures
- Sum of partial scores: index p represents a part in the structure
- Random fields or Markov network features:

Discriminative Learning Strategies

- Max Conditional Likelihood
- We predict based on:

$$
\mathbf{y}^{*} \left\lvert\, \mathbf{x}=\arg \max _{\mathbf{y}} p_{\mathbf{w}}(\mathbf{y} \mid \mathbf{x})=\frac{1}{Z(\mathbf{w}, \mathbf{x})} \exp \left\{\sum_{c} w_{c} f_{c}\left(\mathbf{x}, \mathbf{y}_{c}\right)\right\}\right.
$$

- And we learn based on:

$$
\mathbf{w}^{*} \left\lvert\,\left\{\mathbf{y}_{i}, \mathbf{x}_{i}\right\}=\arg \max _{\mathbf{w}} \prod_{i} p_{\mathbf{w}}\left(\mathbf{y}_{i} \mid \mathbf{x}_{i}\right)=\prod_{i} \frac{1}{Z\left(\mathbf{w}, \mathbf{x}_{i}\right)} \exp \left\{\sum_{c} w_{c} f_{c}\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)\right\}\right.
$$

- Max Margin:
- We predict based on:

$$
\mathbf{y}^{*} \mid \mathbf{x}=\arg \max _{\mathbf{y}} \sum_{c} w_{c} f_{c}\left(\mathbf{x}, \mathbf{y}_{c}\right)=\arg \max _{y} \mathbf{w}^{T} f(\mathbf{x}, \mathbf{y})
$$

- And we learn based on:

$$
\mathbf{w}^{*} \mid\left\{\mathbf{y}_{i}, \mathbf{x}_{i}\right\}=\arg \max _{\mathbf{w}}\left(\min _{\mathbf{y} \neq \mathbf{y}^{i}, \forall i} \mathbf{w}^{T}\left(f\left(\mathbf{y}_{i}, \mathbf{x}_{i}\right)-f\left(\mathbf{y}, \mathbf{x}_{i}\right)\right)\right)
$$

E.g. Max-Margin Markov Networks

- Convex Optimization Problem:

$$
\begin{aligned}
\mathrm{P} 0\left(\mathrm{M}^{3} \mathrm{~N}\right): & \min _{\mathbf{w}, \xi} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{N} \xi_{i} \\
\text { s.t. } \forall i, \forall \mathbf{y} \neq \mathbf{y}_{i}: & \mathbf{w}^{\top} \Delta \mathbf{f}_{i}(\mathbf{x}, \mathbf{y}) \geq \Delta \ell_{i}(\mathbf{y})-\xi_{i}, \xi_{i} \geq 0,
\end{aligned}
$$

- Feasible subspace of weights:

$$
\mathcal{F}_{0}=\left\{\mathbf{w}: \mathbf{w}^{\top} \Delta \mathbf{f}_{i}(\mathbf{x}, \mathbf{y}) \geq \Delta \ell_{i}(\mathbf{y})-\xi_{i} ; \forall i, \forall \mathbf{y} \neq \mathbf{y}_{i}\right\}
$$

- Predictive Function:

$$
h_{0}(\mathbf{x} ; \mathbf{w})=\arg \max _{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} F(\mathbf{x}, \mathbf{y} ; \mathbf{w})
$$

OCR Example

- We want:

```
argmax word w' w( brace word) = "brace"
```

- Equivalently:

Min-max Formulation

 - 000 000 - 00 - 0- Brute force enumeration of constraints:

$$
\begin{aligned}
& \min \frac{1}{2}\|\mathbf{w}\|^{2} \\
& \mathbf{w}^{\top} \mathbf{f}\left(\mathbf{x}, \mathbf{y}^{*}\right) \geq \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{y})+\ell\left(\mathbf{y}^{*}, \mathbf{y}\right), \quad \forall \mathbf{y}
\end{aligned}
$$

- The constraints are exponential in the size of the structure
- Alternative: min-max formulation
- add only the most violated constraint

$$
\begin{aligned}
& \mathbf{y}^{\prime}=\arg \max _{\mathbf{y} \neq \mathbf{y *}}\left[\mathbf{w}^{\top} \mathbf{f}\left(\mathbf{x}_{i}, \mathbf{y}\right)+\ell\left(\mathbf{y}_{i}, \mathbf{y}\right)\right] \\
& \text { add to } \operatorname{QP}: \mathbf{w}^{\top} \mathbf{f}\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right) \geq \mathbf{w}^{\top} \mathbf{f}\left(\mathbf{x}_{i}, \mathbf{y}^{\prime}\right)+\ell\left(\mathbf{y}_{i}, \mathbf{y}^{\prime}\right)
\end{aligned}
$$

- Handles more general loss functions
- Only polynomial \# of constraints needed
- Several algorithms exist ...

- Maximum margin nonlinear separator
- Kernel trick
- Project into linearly separatable space (possibly high or infinite dimensional)
- No need to know the explicit projection function
- Max-entropy discrimination
- Average rule for prediction,
- Average taken over a posterior distribution of w who defines the separation hyperplane
- $\quad P(w)$ is obtained by max-entropy or min-KL principle, subject to expected marginal constraints on the training examples
- Max-margin Markov network
- Multi-variate, rather than uni-variate output Y
- Variable in the outputs are not independent of each other (structured input/output)
- Margin constraint over every possible configuration of Y (exponentially many!)

