Machine Learning

10-701/15-781, Spring 2010

Probability 101

Reading: Bishop: Chap 1,2
Slides courtesy: Eric Xing, Andrew Moore, Tom Mitchell
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Announcements

Homework 1 is out!

Due: Wednesday, Jan 20, 2010 (beginning of class)

Jan 14, 2010

1st Recitation

5:00-6:30 pm NSH 1305

Probability




Probability in Machine Learning os

Machine Learning tasks involve reasoning under uncertainity

Sources of uncertainity/randomness:

» Noise — variability in sensor measurements, partial observability,
incorrect labels

» Finite sample size - Training and test data are randomly drawn instances

2 & L 2 Z

Hand-written digit recognition

Probability quantifies uncertainty!



Basic Probability Concepts o

Conceptual or physical, repeatable experiment with random outcome at
any trial

Roll of dice Nucleotide present Time-space position of an
at a DNA site aircraft on a radar screen

Sample space S - set of all possible outcomes. (can be finite or infinite.)

S=1{1,2,3,4,5,6} 5={A,T,C,G} 5={0,R._}x{0,360°}x{0,+00}

max

Event A - any subset of 5.

See “2“74” or “6” in a roll observe a "G" at a site UAOO7 in angular location {45°-60°}
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Definition

Classical: Probability of an event A is the relative frequency (limiting
ratio of number of occurrences of event A to the total number of trials)

P(A) = lim Na
N —® N m
Eg. P{1) = 1/6  P({2,4,6}) = 1/2 \.3“3?

Sample space S

. P(A) - area of the oval
Its areais 1, P(S) =1




Definition

Axiomatic (Kolmogorov): Probability of an event A is a number assigned to
this event such that

- O<PA) <1 all probabilities are between 0 and 1

Area of A can’t be smaller than 0 Area of A can’t be larger than 1



Definition

Axiomatic (Kolmogorov): Probability of an event A is a number assigned to
this event such that

- O<PA) <1 all probabilities are between 0 and 1
- P(p) =0 probability of no outcome is 0

Area of A can’t be smaller than 0



000
0000
o006
Y 0000
Definition T
Axiomatic (Kolmogorov): Probability of an event A is a number assigned to
this event such that
- O0<PA)<1 all probabilities are between 0 and 1
- P(¢) =0 probability of no outcome is O
- P(S) =1 probability of some outcome is 1

Area of A can’t be smaller than 0 Area of A can’t be larger than 1



Definition

Axiomatic (Kolmogorov): Probability of an event A is a number assigned to
this event such that

- O<PA) <1 all probabilities are between 0 and 1
: P(¢) =0 no outcome has 0 probability
: P(S) =1 some outcome is bound to occur

P(AUB) =P(A) + P(B) — P(AN B)
probability of union of two events

Areaof AUB=Areaof A+ Areaof B-Areaof ANB



Definition

Axiomatic (Kolmogorov): Probability of an event A is a number assigned to
this event such that

- O0<PA) <1 all probabilities are between 0 and 1
i P(¢) =0 no outcome has 0 probability
i P(S) =1 some outcome is bound to occur

P(AUB)=P(A) + P(B)— P(ANB)
probability of union of two events

Probability space is a sample space equipped with an assignment P(A) to
every event ACS such that P satisfies the Kolmogorov axioms.
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Theorems from the Axioms

0<P(A) < 1
P($) = 0
P(S) = 1
P(AU B) = P(A) + P(B) - P(AN B)

P~A)=1-P(A)
Proof: P(AU " A)=P(S) =1
PAN-A)=P(¢)=0
1=PA)+P~A)+0 => P(HA)=1-PA)
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Theorems from the Axioms

0<P(A) < 1
P($) = 0
P(S) = 1
P(AU B) = P(A) + P(B) - P(AN B)

P(A) = P(AN B) + P(AN - B)

Proof: P(A)=P(ANS)=PAN(BU-B))=P(ANB)U(AN-B))
=P(ANB)+PAN-B)-P(ANB)N(AN-B)
= P(ANB) +P(AN-B)—P($)
=P(ANB)+PAN-B)
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Why use probability?

e There have been many other approaches to handle uncertainty:
e Fuzzylogic
e Qualitative reasoning (Qualitative physics)

e “Probability theory is nothing but common sense reduced to
calculation”
e — Pierre Laplace, 1812.

e Any scheme for combining uncertain information
really should obey these axioms

e DiFinetti 1931 - If you gamble based on “uncertain beliefs”
that satisfy these axioms, then you can’t be exploited by an
opponent




Random Variable

e A random variable is a function that associates a unique numerical
value X(w) with every outcome we S of an experiment.

(The value of the r.v. will vary from trial to trial as the experiment is repeated)

X(o) P(X < 2) = P({w: X(w) < 2})
e Discreter.v.: e Univariater.v.:
e The outcome of a coin-toss H=1, T = 0 (Binary) e The outcome of a dice-roll 1-6

e The outcome of a dice-roll 1-6
e Multi-variate r.v.:

e Continuous r.v.: e The time-space position of an
e The location of an aircraft aircraft on radar sRcreen
X =

C]
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Discrete Probability Distribution

e In the discrete case, a probability distribution P on S (and hence
on the domain of X') is an assignment of a non-negative real
number P(s) to each s S (or each valid value of x) such that

0<P(X=x) <1 X — random variable

L PX=x)=1 x — value it takes

E.g. Bernoulli distribution with parameter 6

P(x) 1-0 forx=0 |
X)= —0%(1— —X
0 forx =1 = P(x)=067(1-0)




Discrete Probability Distribution

e In the discrete case, a probability distribution P on S (and hence
on the domain of X') is an assignment of a non-negative real
number P(s) to each s S (or each valid value of x) such that

0<P(X=x) <1 X — random variable

L PX=x)=1 x — value it takes
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Continuous Prob. Distribution

e A continuous random variable X can assume any value in an
iInterval on the real line or in a region in a high dimensional
space

e X usually corresponds to a real-valued measurements of some property,
e.g., length, position, ...

e Itis not possible to talk about the probability of the random variable
assuming a particular value --- P(X=x) =0

e Instead, we talk about the probability of the random variable assuming a
value within a given interval, or half interval

P(Xe[x1,x2])

P(X < x) = P(Xe[—=,X])
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Continuous Prob. Distribution

e The probability of the random variable assuming a value within
some given interval from x; to x; is defined to be the area under
the graph of the probability density function between x; and x..

o Probability mass: £(X e[x;, x,]) I p(x)dx

100

note that f:P(X)dX =1. Q0th percentile _ ] \

&0
Tath percentile

e Cumulative distribution function (CDF): i

Median -

F(x)=P(X <x)= ijp(x')dx' 0]

20

e Probability density function (PDF):

d 1]
p(X) = & F(X)
Car flow on Liberty Bridge (cooked up!)

f:p(x)dx =1; p(x)>0,Vx o



What is the intuitive meaning of

p(x)

o If
p(x;) =aand p(x;) = b,
then when a value X is sampled from the distribution with density p(x),
you are a/b times as likely to find that X is “very close to” x, than that X
is “very close to” x,.

e Thatis:

x;+h
i PO —h<X<x+h) Jpeade oy on o/
SOP(x, ~h <X <x,+h) 00 g plx;)x2h /b
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Continuous Distributions

e Uniform Probability Density Function

p(x)=1/(b-a) fora<x<b

=0 elsewhere

e Normal (Gaussian) Probability Density Function

(X) e—(X—,u)‘Z/ZO'2

J_a

e The distribution is symmetric, and is often illustrated as a bell-shaped curve.

e Two parameters, u (mean) and o (standard deviation), determine the location and shape of
the distribution.

fix)
e Exponential Probability Distribution .4-k
34 P(x <2) = area = .4866
2
density: p(x)=—e ™,  CDF: P(x<x,)=1-e™'* 1 —J T
2 12345678910

Time Between Successive Arrivals %ns.)



Statistical Characterizations °°

e Expectation: the centre of mass, mean value, first moment

rz xp(X) discrete

E(X) =1«
pr(x)dx continuous

\_—0

e Variance: the spread

(Z [x —E(X)]’p(x) discrete

X

Var(X) =<

T[X ~EX)p(x)dx continuous

\_—

21
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Gaussian (Normal) density in1D | ¢
o If X ~N(u, 02), the probability density function (pdf) of Xis
defined as
—(X—,U)Z/ZO'Z E(X) =
p(x) = \/70 (X)=n
var(X) =6”
e Here is how we plot the pdf in matlab
xs=-3:0.01:3;
plot(xs,normpdf(xs,mu,sigma))
Zero mean Zero mean
Large variance .. Small variance

-2

Note that a density evaluated at a point can be bigger than 1!
22



Gaussian CDF

o If Z~N(O, 1), the cumulative density function is defined as
(x) =" p(z)dz

1 X _z%/2
=——| e '°dz
72 -
e This has no closed form expression, but is built in to most
software packages (eg. normcdf in matlab stats toolbox).

Gaussian cof

1
cdf ™|
o5k

23



Central limit theorem

o If (X, ,X,, ... X )arei.i.d. (independent and identically
distributed — to be covered next) random variables

e [hen define

X =lzr1:><i
e As n > infinity, o
p()7) -~ Gaussian with mean E[X]] and variance Var[X]/n

- 1 " 3, : 3
.| n=1 . n=2 | ;
I IJIIIIII.IL.‘ |
[l 0} |h

i ih5 1 1] L5 I |

e Somewhat of a justification for assuming Gaussian distribution

n=10

) 0.5 I
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Independence -

Training and test samples typically assumed to be i.i.d. (independent and identically

distributed) ‘;5 Z ‘2 52 2

A and B are independent events if
P(ANB)=P(A) *P(B)
Outcome of A has no effect on the outcome of B (and vice versa).
E.Q. Roll of two die v ‘_
P({1},{3}) = 1/6*1/6 = 1/36 5 ) 4 o
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Independence

A, B and C are pairwise independent events if

P(ANB) =P(A) * P(B)
PANC)=P(A) *P(C)
PBNC)=P(B)*P(C)

A, B and C are mutually independent events if, in addition to
pairwise independence,

PAANBNC)=PA) *PB) *P(C)

26




Conditional Probability

e P(A|B) = Probability of event A conditioned on event B having
occurred
fP(B)>0,then  P(A|B)= ~ANB)

P(B)

E.g. H = "having a headache"

F = "coming down with Flu"
e P(H)=1/10
e P(F)=1/40
e P(H|F)=1/2 Fraction of people with flu
that have a headache

Corollary: The Chain Rule
P(A N B)=P(A|B) P(B)

If A and B are independent, P(A|B) = P(A)

27



Conditional Independence

A and B are independent if
P(ANB)=P(A) *P(B) = P(A|B) = P(A)

Outcome of B has no effect on the outcome of A (and vice versa).

A and B are conditionally independent given C if
P(A N B|C) = P(A|C) *P(B|IC) = P(A|B,C) = P(A|C)

Outcome of B has no effect on the outcome of A (and vice versa) if
C is true.

28




Prior and Posterior Distribution

e Suppose that our propositions have a "causal flow"

e.g.,

e Prior or unconditional probabilities of propositions
e.g., P(Flu) = 0.025 and P(DrinkBeer ) = 0.2

correspond to belief prior to arrival of any (new) evidence

e Posterior or conditional probabilities of propositions
e.q., P(Headache|Flu) = 0.5 and P(Headache|Flu,DrinkBeer ) = 0.7

correspond to updated belief after arrival of new evidence

Not always useful: P(Headache|Flu, Steelers win) = 0.5

29




Probabilistic Inference

e H ="having a headache"
e F ="coming down with Flu"

P(H)=1/10
P(F)=1/40
P(HIF)=1/2

e One day you wake up with a headache. You come with the
following reasoning: "since 50% of flues are associated with
headaches, so | must have a 50-50 chance of coming down
with flu”

Is this reasoning correct?

30



Probabilistic Inference

e H ="having a headache"

e F ="coming down with Flu"
o P(H)=1/10
o P(F)=1/40
o P(HIF)=1/2

e The Problem:

P(FIH) = ?

31



Probabilistic Inference

e H ="having a headache"

e F ="coming down with Flu"
o P(H)=1/10
o P(F)=1/40
o P(HIF)=1/2

e The Problem:

P(F|H) = P(E(E)H)

P(H|F) P(F)
P(H)

1/8 # P(H|F)

32




The Bayes Rule

e \What we have just did leads to the following general
expression:

P(B|A)P(A)
P(B)

P(A|B) =

This is Bayes Rule

Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
London, 53:370-418

33




Quiz

e Which of the following statement is true?
P(FI~H) =1-P(FH) €
PFIH) =1-P(FIH)  §/

P(F| = H) =P H|F) P(F) =(1-P(H|F)) P(F)
P(~ H) 1 - P(H)

34



More General Forms of Bayes
Rule

P(B|A)P(A)

P(A|B) = P(B)

e Law of total probability

P(B) = P(B N A) + P(B N -A)
= P(B|A) P(A) + P(B|7A) P(7A)

P(B|A)P(A)
P(B| A)P(AWP(B|—=A)P(—A)

P(A|B)=

35



000
More General Forms of Bayes selt.
Rule HE
P(X | Y)p(Y)
P(Y=y|X)=
Y S X Y =yp(Y =)
P(Y‘XAZ)_P(X|YAZ)p(YAZ): P(X|Y AZ)p(Y AZ)
- P(XAZ) P(X| =Y AZ)Pp(=Y AZ)+P(X|Y AZ)p(—=Y A Z)

E.g. P(Flu | Headhead A DrankBeer)
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Joint and Marginal Probabilities

A joint probability distribution for a set of RVs (say X1,X2,X3)
gives the probability of every atomic event P(X1,X2,X3)

e P(Flu,DrinkBeer) = a 2 x 2 matrix of values:

B B
F 0.005 |0.02
-F 0.195 |0.78

e P(Flu,DrinkBeer, Headache) = ?
e Every question about a domain can be answered by the joint distribution,

as we will see later.

A marginal probability distribution is the probability of every
value that a single RV can take P(X1) P(Flu) =2
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Y XX
00
Inf b ti o
nrterence oy enumeration o
e Start with a Joint Distribution [F B H Prob
e Building a Joint Distribution |9 0 0 0.4
, 0 0 1 0.1
of M=3 variables 0 1 5 017
0 1 1 0.2
e Make a truth table listing all 1 0 0 0.05
combinations of values of your 1 0 1 0.05
variables (if there are M Boolean 1 1 0 0.015
variables then the table will have 1 1 1 0.015

2M rows).

e For each combination of values,
say how probable it is.

-

e Normalized, i.e., sums to 1




Inference with the Joint

e One you have the JD you can

ask for the probability of any

atomic event consistent with you

query

P(EY=) P(row,)

ek

-F |-B |-H |04
-F -8 |H o

-F B |[-H [047

-F B [H |02

F |8 |-+ o005

F |8 |H o005

F |8 |-+ o015

F B |H [0015 |

E.g. E={(F, °B,H),(F,B,H)}
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Inference with the Joint

e Compute Marginals -F |[-B |[-H |04

-F |[-B |H |01

-F |B  |[-H [o017
P(Flu A Headache) F 18 |n loz

F |8 |-H [o005

F |8 |[H o005

F B |-H [o0o015

F |B |H |oo15 |

=P(FAHAB)+P(FAHA—-B)

Recall: Law of Total Probability

40



Inference with the Joint

e Compute Marginals -F |-B |-H |04
—F B H 0.1
—F B —“H 0.17
—F B H 0.2
P(Headache) F |-B |-H |005
F B H 0.05
=P(HAF)+P(H A —=F) F|B [-H 0015
F |B |H |oo15 |
=P(HAFAB)+P(HAFA—B)

+P(HA—-FAB)+P(HA —-F A—B)

41




Inference with the Joint

e Compute Conditionals -F |-B |-H |04
F B H 0.1
F B “H 0.17
PE E F B H 0.2
A - -
PUE|E) =Tt — e
P(Ez) '
F B “H 0.015
ZP(rowl.) F |8 |H Joots |
_ieEE;

- Z P(row,)

iEEZ

42




Inference with the Joint

e Compute Conditionals -F |-B |-H |04
-F B H 0.1
-F B -H 0.17

P(FlunHeadache) [Zr 5 15 1oz
P(Headache)

P(Flu‘Headache) =

-8B |-H |[005

-8 |H |o005

B |-H |o0o015

B [H [o0015 |

General idea:
Compute distribution on query variable
by fixing evidence variables and
summing over hidden variables
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Where do probability cece

distributions come from? °°

e |dea One: Human, Domain Experts
e Idea Two: Simpler probability facts and some algebra

€.g., P(F) -F -B -H 0.4
P(B) -F |-B |H |01

-F |B  |-H [o017

P(H|~F,B) - |B |[H o2
e ) sl

F B |-H [0015

F B |H 0015

Use chain rule and independence assumptions to compute joint
distribution

44



Where do probability
distributions come from?

e |dea Three: Learn them from data!

e A good chunk of this course is essentially about various ways of learning
various forms of them!

45



Density Estimation

e A Density Estimator learns a mapping from a set of attributes
to a Probability

Input
Attributes

Density |

» Probabili
Estimator v

Y YYvYYVwY

e Often know as parameter estimation if the distribution form is
specified
e Binomial, Gaussian ...

e Some important issues:

e Nature of the data (iid, correlated, ...)
e Objective function (MLE, MAP, ...)
e Algorithm (simple algebra, gradient methods, EM, ...)

e Evaluation scheme (likelihood on test data, predictability, consistency,
) 46



Parameter Learning from iid data

e Goal: estimate distribution parameters ¢ from a dataset of N
independent, identically distributed (iid), fully observed,
training cases

e Maximum likelihood estimation (MLE)

1. One of the most common estimators
2. With iid and full-observability assumption, write L(6) as the likelihood of the data:

L(0) =P(D;0) =P(x, X,,...,Xy;0)
= P(x;0)P(x,;0),...,P(x,;0)

-[1. P(x:0)

3. pick the setting of parameters most likely to have generated the data we saw:
AN

OmLE = arg max L(06) =arg max log L(6)

47



000
0000
( X X X
- 43
Example 1: Bernoulli model 5
e Data:
e We observed Niid coin tossing: O={1,0, 1, ..., 0}
e Model:
P(x) — 1-0 forx=0 } .
(X) = 6 forx—1 =  P(x)=6"(1-6)
e How to write the likelihood of a single observation x,?
P(x)=0%(1-6)""
e The likelihood of dataset D = {x,, ..., x\}:
L(8) = P(X,, X, .., X} 0) = ﬁP(xi;O) :ﬁ (0~ 1-0))
in Nl—xi .
— 9; (1 . 9); — H#head (1_ 9)#talls 48



MLE

e Obijective function:
/(0) =loglL(0) =logf6™ (1-6)" =n, log6+(N—n,)log(l1-06)
e \We need to maximize this w.r.t.

e Take derivatives wrt @

——h_ =0 I::> _h
o 6 1-6 0

Frequency as
sample mean

e Sufficient statistics
o Thecounts, n,,wheren, = Z.Xi , are sufficient statistics of data D

49




3352
Example 2: univariate normal oo
e Data:
e We observed Niid real samples:
0={-0.1,10, 1,-5.2, ..., 3}
e Model: P(x)= (27[0'2 )_1/2 exp{— (X — 1)’ /20'2} 0 = (u,0%)

e Log likelihood:

£(6)=logL(0) =ﬁP(xi>=—§1og<zmz>—%i("i )

2
=1

e MLE: take derivative and set to zero:

ol 1
a:(l/GZ)Zn(Xn _/u) HmLe zﬁznxn

ot N 1 1 5
Py = 252 T 254 Z,, (Xn _,U)Z c512\4LE = EZH (Xn _HML)

50



Overfitting

e Recall that for Bernoulli Distribution, we have

head
Nhead __ n

ML nheaa’ n ﬂfa/'/

e \What if we tossed too few times so that we saw zero head?

We have @/ =0, and we will predict that the probability of
seeing a head next is zero!!!

e The rescue “smoothing™:
e Where n'is know as the pseudo- (imaginary) count

head '
N head n +hN

ML ;
nhead+ﬂfa//+ﬂv

e But can we make this more formal? 51



Bayesian Learning

e The Bayesian Rule:

P(D | 6)P(6)
P(D)

Ple | D) =
Or equivalently,

PO | D) « P(D|0)P(H)

l J J\ J

| I
posterior likelihood prior

(Belief about coin toss
probability)

MAP estimate: Ovar =argmax P(0] D)

If prior is uniform, MLE = MAP

52




Bayesian estimation for Bernoulli

X ™ T T v T
24 x=f . - |4
| 4
|
[ 4

B 1 4 1 : H I\l‘w_ I | | :HE
e Beta(a,B) distribution é\ aiE
|.&:II'- .I',/ \\ o

[ \

_T(@+B) qo1,q Bl _ alr_ oyl el | \
T Trgy . 0 TRERETO L

L% |

LiX 3 rll

ad M
|

- LA,

- -]

1

5
1
5
2
5

B

1%

o POSterIOF dlStrlbutlon Of e B @1 02 B3 04 05 0e 07 0% 08 |
P(e | D) — p(Xla-.., XN | e)p(e) oC enh (1 _ e)nt % eoc—l (1 _ G)B_l — enh+a—1 (1 . e)nt+[3_1
P(X,5eeer Xy)
Beta(a+nn,3+nt)

Notice the isomorphism of the posterior to the prior,

e such a prior is called a conjugate prior
a and S are hyperparameters (parameters of the prior) and correspond to the
number of “virtual” heads/tails (pseudo counts) 53



MAP

e Posterior distribution of 4:

PO |x,....x,) = P15, Xy | 0) p(0) o 0" (1-6)" x 9% (I—Q)ﬁ_l _ th+a—1(1_‘9)nt+ﬂ—1

p(x19~--9xN)

e Maximum a posteriori (MAP) estimation:

Omap = arg max logP(0 | x,,...,Xy)

e Posterior mean estimation:

Omar =
N+o+p

e With enough data, prior is forgotten

Beta parameters
can be understood
as pseudo-counts
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Dirichlet distribution
e

Lejeune Dirichlet

e number of heads in N flips of a two-sided coin
o follows a binomial distribution
e Beta is a good prior (conjugate prior for binomial)

Johann Peter Gustav Lejeune Dirichlet

e what it's not two-sided, but k-sided? . ourn Fronh Enoes
Died 5 May 1859 (aged 54)
o follows a multinomial distribution N S
 Dirichlet distribution is the conjugate prior 2 cw i
Institutions University of Berlin
University of Breslau
University of Géttingen
Alma mater University of Bonn

K
1 -
P(91192,-..91{) — mng‘f 1—1)

(]

Doctoral advisor

Doctoral students

Known for

Simeon Poiason
Joseph Fourier

Ferdinand Eisenstein
Leopolkd Kronecker
Rudol Lipschitz

Carl Wilhelm Borchardt

Dirichiet functicn
Dirichlet eta function



Estimating the parameters of a i
distribution 4+

e Maximum Likelihood estimation (MLE)
Choose value that maximizes the probability of observed data

OmLE = arg max P(D|0)

e Maximum a posteriori (MAP) estimation

Choose value that is most probable given observed data and
prior belief

Orar = arg max P(8| D) = argmax P(D | 0)P(0)
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MLE vs MAP
(Frequentist vs Bayesian)

Frequentist/MLE approach:
0 is unknown constant, estimate from data

Bayesian/MAP approach:
0 is a random variable, assume a probability distribution

Drawbacks

MLE: Overfits if dataset is too small

MAP: Two people with different priors will end up with different
estimates
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Bayesian estimation for normal
distribution

e Normal Prior:

P(u)=@re® | exple (- o) 122%

e Joint probability:

/2 Al 2
P(x, 1) = (27[0'2 )_N exp{— 2(1)_2 E (X,7 — ,u) }
n=1

X (27[72 )_1/2 exp{— (1~ py)° 1 27° }

e Posterior:

P(u|x)=(2752)"" expl-(u—)? 1262}
N/c® _ 1/7°

X + :
N/c?+1/7° %02+1/72 Ho oc° T
Sample mean

where 1=
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Probability Review

What you should know:

e Probability basics
e random variables, events, sample space, conditional probs, ...
independence of random variables
Bayes rule
Joint probability distributions
calculating probabilities from the joint distribution

¢ Point estimation
¢ maximum likelihood estimates

e maximum a posteriori estimates
o distributions — binomial, Beta, Dirichlet, ...




