Machine Learning

Reading: Bishop: Chap 1,2

Slides courtesy: Eric Xing, Andrew Moore, Tom Mitchell

Announcements

Homework 1 is out!

Due: Wednesday, Jan 20, 2010 (beginning of class)

$1^{\text {st }}$ Recitation

Jan 14, $2010 \quad$ 5:00-6:30 pm \quad NSH 1305 Probability

Probability in Machine Learning

Machine Learning tasks involve reasoning under uncertainity
Sources of uncertainity/randomness:
> Noise - variability in sensor measurements, partial observability, incorrect labels
> Finite sample size - Training and test data are randomly drawn instances

Hand-written digit recognition

Probability quantifies uncertainty!

Basic Probability Concepts

Conceptual or physical, repeatable experiment with random outcome at any trial

Nucleotide present at a DNA site

Time-space position of an aircraft on a radar screen

Sample space S - set of all possible outcomes. (can be finite or infinite.)

$$
\mathrm{S} \equiv\{1,2,3,4,5,6\} \quad S \equiv\{\mathrm{~A}, \mathrm{~T}, \mathrm{C}, \mathrm{G}\} \quad S \equiv\left\{0, R_{\max }\right\} \times\left\{0,360^{\circ}\right\} \times\{0,+\infty\}
$$

Event A - any subset of S :

$$
\text { See " } 2 \text { "," " } 4 \text { " or " } 6 \text { " in a roll observe a "G" at a site UA007 in angular location }\left\{45^{\circ}-60^{\circ}\right\}
$$

Definition

Classical: Probability of an event A is the relative frequency (limiting ratio of number of occurrences of event A to the total number of trials)

$$
\begin{gathered}
P(A)=\lim _{N \rightarrow \infty} \frac{N_{A}}{N} \\
\text { E.g. } P(\{1\})=1 / 6 \quad P(\{2,4,6\})=1 / 2
\end{gathered}
$$

$P(A)$ - area of the oval

Definition

Axiomatic (Kolmogorov): Probability of an event A is a number assigned to this event such that

- $0 \leq P(A) \leq 1 \quad$ all probabilities are between 0 and 1

Area of A can't be smaller than 0

Area of A can't be larger than 1

Definition

Axiomatic (Kolmogorov): Probability of an event A is a number assigned to this event such that

- $0 \leq P(A) \leq 1$
- $\quad P(\phi)=0$
all probabilities are between 0 and 1 probability of no outcome is 0

Area of A can't be smaller than 0

Definition

Axiomatic (Kolmogorov): Probability of an event A is a number assigned to this event such that

- $0 \leq P(A) \leq 1$
- $\quad P(\phi)=0$
- $\quad P(S)=1$
all probabilities are between 0 and 1 probability of no outcome is 0 probability of some outcome is 1

Area of A can't be larger than 1

Definition

Axiomatic (Kolmogorov): Probability of an event A is a number assigned to this event such that

- $0 \leq P(A) \leq 1$
- $\quad P(\phi)=0$
- $\quad P(S)=1$
all probabilities are between 0 and 1 no outcome has 0 probability
- $\quad P(A \cup B)=P(A)+P(B)-P(A \cap B)$
probability of union of two events

Area of $A U B=A r e a$ of $A+$ Area of $B-A r e a ~ o f ~ A \cap B$

Definition

Axiomatic (Kolmogorov): Probability of an event A is a number assigned to this event such that

- $0 \leq P(A) \leq 1 \quad$ all probabilities are between 0 and 1
- $\quad P(\phi)=0 \quad$ no outcome has 0 probability
- $\quad P(S)=1 \quad$ some outcome is bound to occur
- $\quad P(A \cup B)=P(A)+P(B)-P(A \cap B)$
probability of union of two events

Probability space is a sample space equipped with an assignment $P(A)$ to every event $A \subset S$ such that P satisfies the Kolmogorov axioms.

Theorems from the Axioms

- $0 \leq P(A) \leq 1$
- $\quad P(\phi)=0$
- $\quad P(S)=1$
- $\quad P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$P(\neg A)=1-P(A)$
Proof: $\quad P(A \cup \neg A)=P(S)=1$

$$
\begin{aligned}
& P(A \cap \neg A)=P(\phi)=0 \\
& 1=P(A)+P(\neg A)+0 \quad \Rightarrow \quad P(\neg A)=1-P(A)
\end{aligned}
$$

Theorems from the Axioms

- $0 \leq P(A) \leq 1$
- $\quad P(\phi)=0$
- $\quad P(S)=1$
- $\quad P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$P(A)=P(A \cap B)+P(A \cap \neg B)$
Proof: $\quad P(A)=P(A \cap S)=P(A \cap(B \cup \neg B))=P((A \cap B) \cup(A \cap \neg B))$
$=P(A \cap B)+P(A \cap \neg B)-P((A \cap B) \cap(A \cap \neg B))$
$=P(A \cap B)+P(A \cap \neg B)-P(\phi)$
$=P(A \cap B)+P(A \cap \neg B)$

Why use probability?

- There have been many other approaches to handle uncertainty:
- Fuzzy logic
- Qualitative reasoning (Qualitative physics)
- "Probability theory is nothing but common sense reduced to calculation"
- —Pierre Laplace, 1812.
- Any scheme for combining uncertain information really should obey these axioms
- Di Finetti 1931 - If you gamble based on "uncertain beliefs" that satisfy these axioms, then you can't be exploited by an opponent

Random Variable

- A random variable is a function that associates a unique numerical value $X(\omega)$ with every outcome $\omega \in S$ of an experiment.
(The value of the r.v. will vary from trial to trial as the experiment is repeated)

$$
P(X<2)=P(\{\omega: X(\omega)<2\})
$$

- Discrete r.v.:
- The outcome of a coin-toss $\mathrm{H}=1, \mathrm{~T}=0$ (Binary)
- The outcome of a dice-roll 1-6
- Continuous r.v.:
- The location of an aircraft
- Univariate r.v.:
- The outcome of a dice-roll 1-6
- Multi-variate r.v.:
- The time-space position of an aircraft on radar screen

$$
X=\left(\begin{array}{l}
R \\
\Theta \\
t
\end{array}\right)
$$

Discrete Probability Distribution

- In the discrete case, a probability distribution P on S (and hence on the domain of X) is an assignment of a non-negative real number $P(s)$ to each $s \in S$ (or each valid value of x) such that

$$
\begin{array}{rl}
0 \leq P(X=x) \leq 1 & x-\text { random variable } \\
\Sigma_{x} P(X=x)=1 & x \text { - value it takes }
\end{array}
$$

E.g. Bernoulli distribution with parameter θ

$$
P(x)=\left\{\begin{array}{ll}
1-\theta & \text { for } x=0 \\
\theta & \text { for } x=1
\end{array} \quad \Rightarrow \quad P(x)=\theta^{x}(1-\theta)^{1-x}\right.
$$

Discrete Probability Distribution

- In the discrete case, a probability distribution P on S (and hence on the domain of X) is an assignment of a non-negative real number $P(s)$ to each $s \in S$ (or each valid value of x) such that

$$
\begin{array}{rl}
0 \leq P(X=x) \leq 1 & X-\text { random variable } \\
\Sigma_{x} P(X=x)=1 & x \text { - value it takes }
\end{array}
$$

E.g. Multinomial distribution with parameters $\theta_{1}, \ldots, \theta$ k

$$
\begin{aligned}
& x= {\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{K}
\end{array}\right], \quad \text { where } \sum_{j} x_{j}=n } \\
& P(x)=\frac{n!}{x_{1}!x_{2}!\cdots x_{k}!} \theta_{1}^{x_{1}} \theta_{2}^{x_{2}} \cdots \theta_{K}{ }^{x_{K}}
\end{aligned}
$$

IIIDIEF	NEESIEXSL MILITM	CHII.IIR:		
,1r.N		womms	FIEMDENTELX	
+1.	SH0w(以). 5 HR	WBMI	Sthemex lis ricog	
표D		CHIII		
K		- Can S	Maknctmersuriner	
,	H1ヶ¢!	drm	THESII FEDET	
¢ A K	MUETETCC TEAL	W०\%		
WTEM		TARPM		
		gays	AOCSMITTTEW	
MIILY	FDEsiligat siati	Tsmint		
[LTM	younarity flav	wrin H		
		Ex	OHITCIE MCXI	
HCL		Mindece	TTUCFDDENTIOOGRA	
LITE		CAF		
		,	LIWIIT (

Continuous Prob. Distribution

- A continuous random variable X can assume any value in an interval on the real line or in a region in a high dimensional space
- X usually corresponds to a real-valued measurements of some property, e.g., length, position, ...
- It is not possible to talk about the probability of the random variable assuming a particular value --- $P(X=x)=0$
- Instead, we talk about the probability of the random variable assuming a value within a given interval, or half interval

$$
\begin{gathered}
P\left(X \in\left[x_{1}, x_{2}\right]\right) \\
P(X<x)=P(X \in[-\infty, x])
\end{gathered}
$$

Continuous Prob. Distribution

- The probability of the random variable assuming a value within some given interval from x_{1} to x_{2} is defined to be the area under the graph of the probability density function between x_{1} and x_{2}.
- Probability mass: $P\left(X \in\left[x_{1}, x_{2}\right]\right)=\int_{x_{1}}^{x_{2}} p(x) d x$,

$$
\text { note that } \int_{-\infty}^{+\infty} p(x) d x=1
$$

- Cumulative distribution function (CDF):

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} p\left(x^{\prime}\right) d x^{\prime}
$$

- Probability density function (PDF):

$$
\begin{aligned}
& p(x)=\frac{d}{d x} F(x) \\
& \int_{-\infty}^{+\infty} p(x) d x=1 ; \quad p(x) \geq 0, \forall x
\end{aligned}
$$

Car flow on Liberty Bridge (cooked up!)

What is the intuitive meaning of $p(x)$

- If

$$
p\left(x_{1}\right)=a \text { and } p\left(x_{2}\right)=b,
$$

then when a value X is sampled from the distribution with density $p(x)$, you are a / b times as likely to find that X is "very close to" X_{1} than that X is "very close to" x_{2}.

- That is:

$$
\lim _{h \rightarrow 0} \frac{P\left(x_{1}-h<X<x_{1}+h\right)}{P\left(x_{2}-h<X<x_{2}+h\right)}=\lim _{h \rightarrow 0} \frac{\int_{x_{1}-h}^{x_{1}+h} p(x) d x}{\int_{x_{2}-h}^{x_{2}+h} p(x) d x} \approx \frac{p\left(x_{1}\right) \times 2 h}{p\left(x_{2}\right) \times 2 h}=a / b
$$

Continuous Distributions

- Uniform Probability Density Function

$$
\begin{aligned}
p(x) & =1 /(b-a) & & \text { for } a \leq x \leq b \\
& =0 & & \text { elsewhere }
\end{aligned}
$$

- Normal (Gaussian) Probability Density Function

$$
p(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

- The distribution is symmetric, and is often illustrated as a bell-shaped curve.
- Two parameters, μ (mean) and σ (standard deviation), determine the location and shape of the distribution.
- Exponential Probability Distribution
density: $p(x)=\frac{1}{\mu} e^{-x / \mu}, \quad \operatorname{CDF}: P\left(x \leq x_{0}\right)=1-e^{-x_{0} / \mu}$

Statistical Characterizations

- Expectation: the centre of mass, mean value, first moment

$$
\mathrm{E}(\mathrm{X})= \begin{cases}\sum_{x} \operatorname{xp}(\mathrm{x}) & \text { discrete } \\ \int_{-\infty}^{\infty} \mathrm{xp}(\mathrm{x}) \mathrm{dx} & \text { continuous }\end{cases}
$$

- Variance: the spread

$$
\operatorname{Var}(X)= \begin{cases}\sum_{x}[x-E(X)]^{2} p(x) & \text { discrete } \\ \infty & \\ \int_{-\infty}^{\infty}[x-E(X)]^{2} p(x) d x & \text { continuous }\end{cases}
$$

Gaussian (Normal) density in 1D

- If $X \sim N\left(\mu, \sigma^{2}\right)$, the probability density function (pdf) of X is defined as

$$
p(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

- Here is how we plot the pdf in matlab

$$
\begin{aligned}
& \mathrm{E}(\mathrm{X})=\mu \\
& \operatorname{var}(\mathrm{X})=\sigma^{2}
\end{aligned}
$$ $x s=-3: 0.01: 3 ;$

plot(xs,normpdf(xs,mu,sigma))

Zero mean Large variance

Zero mean Small variance

Note that a density evaluated at a point can be bigger than 1 !

Gaussian CDF

- If $Z \sim N(0,1)$, the cumulative density function is defined as

$$
\begin{aligned}
\Phi(x) & =\int_{-\infty}^{x} p(z) d z \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-z^{2} / 2} d z
\end{aligned}
$$

- This has no closed form expression, but is built in to most software packages (eg. normcdf in matlab stats toolbox).

Central limit theorem

- If $\left(X_{1}, X_{2}, \ldots X_{n}\right)$ are i.i.d. (independent and identically distributed - to be covered next) random variables
- Then define
- As $n \rightarrow$ infinity,

$$
\overline{\mathrm{X}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}}
$$

$p(\bar{X}) \rightarrow$ Gaussian with mean $\mathrm{E}\left[X_{j}\right]$ and variance $\operatorname{Var}\left[X_{j}\right] / n$

- Somewhat of a justification for assuming Gaussian distribution

Independence

Training and test samples typically assumed to be i.i.d. (independent and identically distributed)

A and B are independent events if

$$
P(A \cap B)=P(A) * P(B)
$$

Outcome of A has no effect on the outcome of B (and vice versa).
E.g. Roll of two die

$$
P(\{1\},\{3\})=1 / 6 * 1 / 6=1 / 36
$$

Independence

A, B and C are pairwise independent events if

$$
\begin{aligned}
& P(A \cap B)=P(A))^{*} P(B) \\
& P(A \cap C)=P(A) * P(C) \\
& P(B \cap C)=P(B)^{*} P(C)
\end{aligned}
$$

A, B and C are mutually independent events if, in addition to pairwise independence,

$$
P(A \cap B \cap C)=P(A) * P(B) * P(C)
$$

Conditional Probability

- $P(A \mid B)=$ Probability of event A conditioned on event B having occurred
If $P(B)>0$, then $\quad P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
E.g. $\mathrm{H}=$ "having a headache"
$\mathrm{F}=$ "coming down with Flu"
- $\mathrm{P}(\mathrm{H})=1 / 10$
- $P(F)=1 / 40$
- $P(H \mid F)=1 / 2$

Fraction of people with flu that have a headache

Corollary: The Chain Rule

$$
P(A \cap B)=P(A \mid B) P(B)
$$

If A and B are independent, $P(A \mid B)=P(A)$

Conditional Independence

A and B are independent if

$$
P(A \cap B)=P(A) * P(B) \quad \equiv \quad P(A \mid B)=P(A)
$$

Outcome of B has no effect on the outcome of A (and vice versa).
A and B are conditionally independent given C if

$$
P(A \cap B \mid C)=P(A \mid C) * P(B \mid C) \equiv P(A \mid B, C)=P(A \mid C)
$$

Outcome of B has no effect on the outcome of A (and vice versa) if C is true.

Prior and Posterior Distribution

- Suppose that our propositions have a "causal flow" e.g.,

- Prior or unconditional probabilities of propositions e.g., $P(F / u)=0.025$ and $P($ DrinkBeer $)=0.2$ correspond to belief prior to arrival of any (new) evidence
- Posterior or conditional probabilities of propositions
e.g., $P($ Headache|Flu $)=0.5$ and $P($ Headache|Flu,DrinkBeer $)=0.7$ correspond to updated belief after arrival of new evidence Not always useful: P (Headache|Flu, Steelers win) $=0.5$

Probabilistic Inference

- $\mathrm{H}=$ "having a headache"
- $\mathrm{F}=$ "coming down with Flu"
- $P(H)=1 / 10$
- $P(F)=1 / 40$
- $P(H \mid F)=1 / 2$
- One day you wake up with a headache. You come with the following reasoning: "since 50% of flues are associated with headaches, so I must have a 50-50 chance of coming down with flu"

Is this reasoning correct?

Probabilistic Inference

- $\mathrm{H}=$ "having a headache"
- $\mathrm{F}=$ "coming down with Flu"
- $P(H)=1 / 10$
- $P(F)=1 / 40$
- $P(H \mid F)=1 / 2$
- The Problem:

$$
P(F \mid H)=?
$$

Probabilistic Inference

- $\mathrm{H}=$ "having a headache"
- $\mathrm{F}=$ " "coming down with Flu"
- $P(H)=1 / 10$
- $P(F)=1 / 40$
- $P(H \mid F)=1 / 2$
- The Problem:

$$
\begin{aligned}
P(F \mid H) & =\frac{P(F \cap H)}{P(H)} \\
& =\frac{P(H \mid F) P(F)}{P(H)} \\
& =1 / 8 \neq P(H \mid F)
\end{aligned}
$$

The Bayes Rule

- What we have just did leads to the following general expression:

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{~B} \mid \mathrm{A}) \mathrm{P}(\mathrm{~A})}{\mathrm{P}(\mathrm{~B})}
$$

This is Bayes Rule

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53:370-418

Quiz

- $P(H)=1 / 10$
- $P(F)=1 / 40$
- $P(H \mid F)=1 / 2$
- $P(F \mid H)=1 / 8$
- Which of the following statement is true?

$$
\begin{aligned}
& P(F \mid \neg H)=1-P(F \mid H) \\
& P(\neg F \mid H)=1-P(F \mid H) \\
& P(F \mid \neg H)=\frac{P(\neg H \mid F) P(F)}{P(\neg H)}=\frac{(1-P(H \mid F)) P(F)}{1-P(H)}
\end{aligned}
$$

More General Forms of Bayes Rule

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{~B} \mid \mathrm{A}) \mathrm{P}(\mathrm{~A})}{\mathrm{P}(\mathrm{~B})}
$$

- Law of total probability

$$
\begin{aligned}
P(B) & =P(B \cap A)+P(B \cap \neg A) \\
& =P(B \mid A) P(A)+P(B \mid \neg A) P(\neg A) \\
P(A \mid B) & =\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \neg A) P(\neg A)}
\end{aligned}
$$

More General Forms of Bayes Rule

$$
\begin{gathered}
P(Y=y \mid X)=\frac{P(X \mid Y) p(Y)}{\sum_{y} P(X \mid Y=y) p(Y=y)} \\
P(Y \mid X \wedge Z)=\frac{P(X \mid Y \wedge Z) p(Y \wedge Z)}{P(X \wedge Z)}=\frac{P(X \mid Y \wedge Z) p(Y \wedge Z)}{P(X \mid \neg Y \wedge Z) p(\neg Y \wedge Z)+P(X \mid Y \wedge Z) p(\neg Y \wedge Z)}
\end{gathered}
$$

E.g. P(Flu | Headhead \wedge DrankBeer)

Joint and Marginal Probabilities

A joint probability distribution for a set of RVs (say $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$) gives the probability of every atomic event $P\left(X_{1}, X_{2}, X_{3}\right)$

- $\mathbf{P}($ Flu,DrinkBeer $)=$ a 2×2 matrix of values:

	B	$\neg B$
F	0.005	0.02
$\neg F$	0.195	0.78

- $\mathbf{P}($ Flu, DrinkBeer, Headache $)=$?
- Every question about a domain can be answered by the joint distribution, as we will see later.

A marginal probability distribution is the probability of every value that a single $R V$ can take $P\left(X_{1}\right)$ $\mathrm{P}(\mathrm{Flu})=$?

Inference by enumeration

- Start with a Joint Distribution
- Building a Joint Distribution of $M=3$ variables
- Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have

F	B	H	Prob
0	0	0	0.4
0	0	1	0.1
0	1	0	0.17
0	1	1	0.2
1	0	0	0.05
1	0	1	0.05
1	1	0	0.015
1	1	1	0.015

- For each combination of values, say how probable it is.
- Normalized, i.e., sums to 1

Inference with the Joint

- One you have the JD you can ask for the probability of any atomic event consistent with you query

$$
P(E)=\sum_{i \in E} P\left(\text { row }_{i}\right)
$$

E.g. $E=\{(\neg F, \neg B, H),(\neg F, B, H)\}$

Inference with the Joint

- Compute Marginals

$\mathrm{P}(\mathrm{Flu} \wedge$ Headache)
$=P(\mathrm{~F} \wedge \mathrm{H} \wedge \mathrm{B})+\mathrm{P}(\mathrm{F} \wedge \mathrm{H} \wedge \neg \mathrm{B})$

$\neg \mathrm{F}$	$\neg \mathrm{B}$	$\neg \mathrm{H}$	0.4		
$\neg \mathrm{~F}$	$\neg \mathrm{~B}$	H	0.1		
$\neg \mathrm{~F}$	B	$\neg \mathrm{H}$	0.17		
$\neg \mathrm{~F}$	B	H	0.2		
F	$\neg B$	$\neg \mathrm{H}$	0.05		
F	$\neg B$	H	0.05		
F	B	$\neg \mathrm{H}$	0.015		
F	B	H	0.015		

Recall: Law of Total Probability

Inference with the Joint

- Compute Marginals

$$
\begin{aligned}
& \mathrm{P}(\text { Headache }) \\
& =\mathrm{P}(\mathrm{H} \wedge \mathrm{~F})+\mathrm{P}(\mathrm{H} \wedge \neg \mathrm{~F}) \\
& =\mathrm{P}(\mathrm{H} \wedge \mathrm{~F} \wedge \mathrm{~B})+\mathrm{P}(\mathrm{H} \wedge \mathrm{~F} \wedge \neg \mathrm{~B}) \\
& +\mathrm{P}(\mathrm{H} \wedge \neg \mathrm{~F} \wedge \mathrm{~B})+\mathrm{P}(\mathrm{H} \wedge \neg \mathrm{~F} \wedge \neg \mathrm{~B})
\end{aligned}
$$

Inference with the Joint

- Compute Conditionals

$$
\begin{aligned}
P\left(E_{1} \mid E_{2}\right)= & \frac{P\left(E_{1} \wedge E_{2}\right)}{P\left(E_{2}\right)} \\
& =\frac{\sum_{i \in E_{1} \cap E_{2}} P\left(\text { row }_{i}\right)}{\sum_{i \in E_{2}} P\left(\text { row }_{i}\right)}
\end{aligned}
$$

$\neg \mathrm{F}$	$\neg \mathrm{B}$	$\neg \mathrm{H}$	0.4		
$\neg \mathrm{~F}$	$\neg \mathrm{~B}$	H	0.1		
$\neg \mathrm{~F}$	B	$\neg \mathrm{H}$	0.17		
$\neg \mathrm{~F}$	B	H	0.2		
F	$\neg \mathrm{~B}$	$\neg \mathrm{H}$	0.05		
F	$\neg B$	H	0.05		
F	B	$\neg \mathrm{H}$	0.015		
F	B	H	0.015		

Inference with the Joint

- Compute Conditionals

$$
\begin{aligned}
\mathrm{P}(\text { Flu } \mid \text { Headache }) & =\frac{\mathrm{P}(\text { Flu } \wedge \text { Headache })}{\mathrm{P}(\text { Headache })} \\
& =
\end{aligned}
$$

General idea:
Compute distribution on query variable by fixing evidence variables and summing over hidden variables

Where do probability distributions come from?

- Idea One: Human, Domain Experts
- Idea Two: Simpler probability facts and some algebra

$$
\begin{array}{ll}
\text { e.g., } & P(F) \\
& P(B) \\
& P(H \mid \neg F, B) \\
& P(H \mid F, \neg B)
\end{array}
$$

$\neg \mathrm{F}$	$\neg \mathrm{B}$	$\neg \mathrm{H}$	0.4		
$\neg \mathrm{~F}$	$\neg \mathrm{~B}$	H	0.1		
$\neg \mathrm{~F}$	B	$\neg \mathrm{H}$	0.17		
$\neg \mathrm{~F}$	B	H	0.2		
F	$\neg \mathrm{~B}$	$\neg \mathrm{H}$	0.05		
F	$\neg \mathrm{~B}$	H	0.05		
F	B	$\neg \mathrm{H}$	0.015		
F	B	H	0.015		

Use chain rule and independence assumptions to compute joint distribution

Where do probability distributions come from?

- Idea Three: Learn them from data!
- A good chunk of this course is essentially about various ways of learning various forms of them!

Density Estimation

- A Density Estimator learns a mapping from a set of attributes to a Probability

- Often know as parameter estimation if the distribution form is specified
- Binomial, Gaussian ...
- Some important issues:
- Nature of the data (iid, correlated, ...)
- Objective function (MLE, MAP, ...)
- Algorithm (simple algebra, gradient methods, EM, ...)
- Evaluation scheme (likelihood on test data, predictability, consistency, ..)

Parameter Learning from iid data

- Goal: estimate distribution parameters θ from a dataset of N independent, identically distributed (iid), fully observed, training cases

$$
D=\left\{x_{1}, \ldots, x_{N}\right\}
$$

- Maximum likelihood estimation (MLE)

1. One of the most common estimators
2. With iid and full-observability assumption, write $L(\theta)$ as the likelihood of the data:

$$
\begin{aligned}
\mathrm{L}(\theta)=\mathrm{P}(\mathrm{D} ; \theta) & =\mathrm{P}\left(\mathrm{x}_{1,} \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}} ; \theta\right) \\
& =P(x ; \theta) P\left(x_{2} ; \theta\right), \ldots, P\left(x_{N} ; \theta\right) \\
& =\prod_{i=1}^{N} P\left(x_{i} ; \theta\right)
\end{aligned}
$$

3. pick the setting of parameters most likely to have generated the data we saw:

$$
\hat{\theta}_{\mathrm{MLE}}=\arg \max _{\theta} \mathrm{L}(\theta)=\arg \max _{\theta} \log L(\theta)
$$

Example 1: Bernoulli model

- Data:
- We observed N iid coin tossing: $D=\{1,0,1, \ldots, 0\}$
- Model:

$$
\mathrm{P}(\mathrm{x})=\left\{\begin{array}{ll}
1-\theta & \text { for } \mathrm{x}=0 \\
\theta & \text { for } \mathrm{x}=1
\end{array} \quad \Rightarrow \quad P(x)=\theta^{x}(1-\theta)^{1-x}\right.
$$

- How to write the likelihood of a single observation x_{i} ?

$$
P\left(x_{i}\right)=\theta^{x_{i}}(1-\theta)^{1-x_{i}}
$$

- The likelihood of dataset $D=\left\{x_{1}, \ldots, x_{N}\right\}$:

$$
\begin{aligned}
& \mathrm{L}(\theta)=\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}} ; \theta\right)=\prod_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}} ; \theta\right)=\prod_{i=1}^{\mathrm{N}}\left(\theta^{\mathrm{x}_{\mathrm{i}}}(1-\theta)^{1-\mathrm{x}_{\mathrm{i}}}\right) \\
&=\theta^{\sum_{i=1}^{N} x_{i}}(1-\theta)^{\sum_{i=1}^{N-1-x_{i}}}=\theta^{\text {\#head }}(1-\theta)^{\# \text { tails }}
\end{aligned}
$$

MLE

- Objective function:

$$
\ell(\theta)=\log L(\theta)=\log \theta^{\mathrm{n}_{\mathrm{h}}}(1-\theta)^{\mathrm{n}_{\mathrm{t}}}=\mathrm{n}_{\mathrm{h}} \log \theta+\left(\mathrm{N}-\mathrm{n}_{\mathrm{h}}\right) \log (1-\theta)
$$

- We need to maximize this w.r.t. θ
- Take derivatives wrt θ

$$
\frac{\partial \ell}{\partial \theta}=\frac{n_{h}}{\theta}-\frac{N-n_{h}}{1-\theta}=0 \quad \hat{\theta}_{M L E}=\frac{n_{h}}{N} \quad \text { or } \quad \underset{\substack{\text { Frequency as } \\ \text { sample mean }}}{\hat{\theta}_{M L E}}=\frac{1}{N} \sum_{i} x_{i}
$$

- Sufficient statistics
- The counts, n_{h}, where $\mathrm{n}_{\mathrm{h}}=\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$, are sufficient statistics of data D

Example 2: univariate normal

- Data:
- We observed Niid real samples:

$$
D=\{-0.1,10,1,-5.2, \ldots, 3\}
$$

- Model:

$$
P(x)=\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left\{-(x-\mu)^{2} / 2 \sigma^{2}\right\} \quad \theta=\left(\mu, \sigma^{2}\right)
$$

- Log likelihood:

$$
\ell(\theta)=\log L(\theta)=\prod_{i=1}^{N} P\left(x_{i}\right)=-\frac{N}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2} \sum_{\mathrm{i}=1}^{\mathrm{N}} \frac{\left(\mathrm{x}_{\mathrm{i}}-\mu\right)^{2}}{\sigma^{2}}
$$

- MLE: take derivative and set to zero:

$$
\begin{array}{ll}
\frac{\partial \ell}{\partial \mu}=\left(1 / \sigma^{2}\right) \sum_{n}\left(x_{n}-\mu\right) \\
\frac{\partial \boldsymbol{\ell}}{\partial \sigma^{2}}=-\frac{N}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{n}\left(x_{n}-\mu\right)^{2}
\end{array} \quad \begin{aligned}
& \mu_{\mathrm{MLE}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{n}} \mathrm{x}_{\mathrm{n}} \\
& \sigma_{\mathrm{MLE}}^{2}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}-\mu_{\mathrm{ML}}\right)^{2}
\end{aligned}
$$

Overfitting

- Recall that for Bernoulli Distribution, we have

$$
\hat{\theta}_{M L}^{\text {head }}=\frac{n^{\text {head }}}{n^{\text {head }}+n^{\text {tail }}}
$$

- What if we tossed too few times so that we saw zero head?

We have $\bar{\theta}_{M c}^{\text {head }}=0$, and we will predict that the probability of seeing a head next is zero!!!

- The rescue "smoothing":
- Where n 'is know as the pseudo- (imaginary) count

$$
\widehat{\theta}_{M L}^{\text {head }}=\frac{n^{\text {head }}+n^{\prime}}{n^{\text {head }}+n^{\text {tail }}+n^{\prime}}
$$

- But can we make this more formal?

Bayesian Learning

- The Bayesian Rule:

$$
P(\theta \mid \mathcal{D})=\frac{P(\mathcal{D} \mid \theta) P(\theta)}{P(\mathcal{D})}
$$

Or equivalently,

(Belief about coin toss probability)
MAP estimate: $\quad \hat{\theta}_{\text {MAP }}=\arg \max _{\theta} \mathrm{P}(\theta \mid \mathrm{D})$

If prior is uniform, MLE = MAP

Bayesian estimation for Bernoulli

- Beta (α, β) distribution:

$$
\mathrm{P}(\theta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1}=\mathrm{B}(\alpha, \beta) \theta^{\alpha-1}(1-\theta)^{\beta-1}
$$

- Posterior distribution of θ :

$$
\begin{aligned}
\mathrm{P}(\theta \mid \mathrm{D})=\frac{\mathrm{p}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{N}} \mid \theta\right) \mathrm{p}(\theta)}{\mathrm{p}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{N}}\right)} \propto \theta^{\mathrm{n}_{\mathrm{n}}}(1-\theta)^{\mathrm{n}_{\mathrm{t}}} \times \theta^{\alpha-1}(1-\theta)^{\beta-1}= & \theta^{\mathrm{n}_{\mathrm{h}}+\alpha-1}(1-\theta)^{\mathrm{n}_{\mathrm{t}}+\beta-1} \\
& \operatorname{Beta}\left(\alpha+\mathrm{n}_{\mathrm{n}}, \beta+n_{t}\right)
\end{aligned}
$$

- Notice the isomorphism of the posterior to the prior,
- such a prior is called a conjugate prior
- α and β are hyperparameters (parameters of the prior) and correspond to the number of "virtual" heads/tails (pseudo counts)

MAP

- Posterior distribution of θ :

$$
P\left(\theta \mid x_{1}, \ldots, x_{N}\right)=\frac{p\left(x_{1}, \ldots, x_{N} \mid \theta\right) p(\theta)}{p\left(x_{1}, \ldots, x_{N}\right)} \propto \theta^{n_{h}}(1-\theta)^{n_{t}} \times \theta^{\alpha-1}(1-\theta)^{\beta-1}=\theta^{n_{h}+\alpha-1}(1-\theta)^{n_{t}+\beta-1}
$$

- Maximum a posteriori (MAP) estimation:

$$
\hat{\theta}_{\mathrm{MAP}}=\arg \max _{\theta} \log \mathrm{P}\left(\theta \mid \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{N}}\right)
$$

- Posterior mean estimation:

$$
\hat{\theta}_{\mathrm{MAP}}=\frac{\mathrm{n}_{\mathrm{h}}+\alpha}{\mathrm{N}+\alpha+\beta}
$$

- With enough data, prior is forgotten

Dirichlet distribution

- number of heads in N flips of a two-sided coin
- follows a binomial distribution
- Beta is a good prior (conjugate prior for binomial)
- what it's not two-sided, but k-sided?
- follows a multinomial distribution
- Dirichlet distribution is the conjugate prior

$$
P\left(\theta_{1}, \theta_{2}, \ldots \theta_{K}\right)=\frac{1}{B(\alpha)} \prod_{i}^{K} \theta_{i}^{\left(\alpha_{1}-1\right)}
$$

Estimating the parameters of a distribution

- Maximum Likelihood estimation (MLE)

Choose value that maximizes the probability of observed data

$$
\hat{\theta}_{\text {MLE }}=\arg \max _{\theta} P(D \mid \theta)
$$

- Maximum a posteriori (MAP) estimation

Choose value that is most probable given observed data and prior belief

$$
\hat{\theta}_{\mathrm{MAP}}=\arg \max _{\theta} \mathrm{P}(\theta \mid \mathrm{D})=\arg \max _{\theta} \mathrm{P}(\mathrm{D} \mid \theta) \mathrm{P}(\theta)
$$

MLE vs MAP
 (Frequentist vs Bayesian)

Frequentist/MLE approach:

θ is unknown constant, estimate from data

Bayesian/MAP approach:

θ is a random variable, assume a probability distribution

Drawbacks

MLE: Overfits if dataset is too small

MAP: Two people with different priors will end up with different estimates

Bayesian estimation for normal distribution

- Normal Prior:

$$
P(\mu)=\left(2 \pi \tau^{2}\right)^{-1 / 2} \exp \left\{-\left(\mu-\mu_{0}\right)^{2} / 2 \tau^{2}\right\}
$$

- Joint probability:

$$
\begin{aligned}
P(x, \mu)= & \left(2 \pi \sigma^{2}\right)^{-N / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right\} \\
& \times\left(2 \pi \tau^{2}\right)^{-1 / 2} \exp \left\{-\left(\mu-\mu_{0}\right)^{2} / 2 \tau^{2}\right\}
\end{aligned}
$$

- Posterior:

$$
\begin{aligned}
& P(\mu \mid x)=\left(2 \pi \tilde{\sigma}^{2}\right)^{-1 / 2} \exp \left\{-(\mu-\tilde{\mu})^{2} / 2 \tilde{\sigma}^{2}\right\} \\
& \text { where } \tilde{\mu}=\frac{N / \sigma^{2}}{N / \sigma^{2}+1 / \tau^{2}} \bar{x}+\frac{1 / \tau^{2}}{\sum_{\text {Sample mean }}^{N / \sigma^{2}+1 / \tau^{2}}} \mu_{0}, \text { and } \tilde{\sigma}^{2}=\left(\frac{N}{\sigma^{2}}+\frac{1}{\tau^{2}}\right)^{-1}
\end{aligned}
$$

Probability Review

What you should know:

- Probability basics
- random variables, events, sample space, conditional probs, ...
- independence of random variables
- Bayes rule
- Joint probability distributions
- calculating probabilities from the joint distribution
- Point estimation
- maximum likelihood estimates
- maximum a posteriori estimates
- distributions - binomial, Beta, Dirichlet, ...

