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Probability 101Probability 101

Aarti Singh

Lecture 2, January 13, 2010

Reading: Bishop: Chap 1,2



Announcements

Homework 1 is out!

Due: Wednesday, Jan 20, 2010 (beginning of class)
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1st Recitation

Jan 14, 2010 5:00-6:30 pm NSH 1305 Probability



Probability in Machine Learning

Machine Learning tasks involve reasoning under uncertainity

Sources of uncertainity/randomness: 

� Noise – variability in sensor measurements, partial observability, 

incorrect labels

� Finite sample size - Training and test data are randomly drawn instances

Probability quantifies uncertainty!
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� Finite sample size - Training and test data are randomly drawn instances

Hand-written digit recognition



Basic Probability Concepts

Conceptual or physical, repeatable experiment with random outcome at 

any trial

Sample space S - set of all possible outcomes. (can be finite or infinite.)

Event A - any subset of S :
See “2“,”4” or “6” in a roll observe a "G" at a site     UA007 in angular location {45°-60°}

{ }GC,T,A,≡S{ }61,2,3,4,5,S ≡ },{},{},{ o

max +∞××≡ 036000 RS
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Roll of dice Nucleotide present

at a DNA site
Time-space position of an 

aircraft on a radar screen



Definition

Classical: Probability of an event A is the relative frequency (limiting 

ratio of number of occurrences of event A to the total number of trials)

P(A) =   lim NA

NN →∞
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E.g. P({1})  =  1/6        P({2,4,6}) = 1/2

A

Complement of A

P(A) - area of the oval 

Sample space S

Its area is 1, P(S) = 1



Definition

Axiomatic (Kolmogorov): Probability of an event A is a number assigned to 

this event such that

� 0 ≤ P(A) ≤ 1 all probabilities are between 0 and 1
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A

Area of A can’t be smaller than 0

A

Area of A can’t be larger than 1



Definition

Axiomatic (Kolmogorov): Probability of an event A is a number assigned to 

this event such that

� 0 ≤ P(A) ≤ 1 all probabilities are between 0 and 1

� P(ϕ) = 0 probability of no outcome is 0
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A

Area of A can’t be smaller than 0



Definition

Axiomatic (Kolmogorov): Probability of an event A is a number assigned to 

this event such that

� 0 ≤ P(A) ≤ 1 all probabilities are between 0 and 1

� P(ϕ) = 0 probability of no outcome is 0 

� P(S) = 1 probability of some outcome is 1
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� P(S) = 1 probability of some outcome is 1

A

Area of A can’t be smaller than 0

A

Area of A can’t be larger than 1



Definition

Axiomatic (Kolmogorov): Probability of an event A is a number assigned to 

this event such that

� 0 ≤ P(A) ≤ 1 all probabilities are between 0 and 1

� P(ϕ) = 0 no outcome has 0 probability

� P(S) = 1 some outcome is bound to occur
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� P(S) = 1 some outcome is bound to occur

� P(A U B) = P(A) + P(B) – P(A ∩ B)   

probability of union of two events

A B

Area of A U B = Area of A + Area of B – Area of A ∩ B



Definition

Axiomatic (Kolmogorov): Probability of an event A is a number assigned to 

this event such that

� 0 ≤ P(A) ≤ 1 all probabilities are between 0 and 1

� P(ϕ) = 0 no outcome has 0 probability

� P(S) = 1 some outcome is bound to occur
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� P(S) = 1 some outcome is bound to occur

� P(A U B) = P(A) + P(B) – P(A ∩ B)   

probability of union of two events

Probability space is a sample space equipped with an assignment P(A) to 

every event A   S such that P satisfies the Kolmogorov axioms.∩



Theorems from the Axioms

� 0 ≤ P(A) ≤ 1

� P(ϕ) = 0 

� P(S) = 1

� P(A U B) = P(A) + P(B) – P(A ∩ B)

P(¬ A) = 1 - P(A)
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P(¬ A) = 1 - P(A)

Proof: P(A U ¬ A) = P(S) =1

P(A ∩ ¬ A) = P(ϕ) = 0

1 = P(A) + P(¬ A) + 0        

A

¬A

=>      P(¬ A) = 1- P(A)



Theorems from the Axioms

� 0 ≤ P(A) ≤ 1

� P(ϕ) = 0 

� P(S) = 1

� P(A U B) = P(A) + P(B) – P(A ∩ B)

P(A) = P(A ∩ B) + P(A ∩ ¬ B)
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P(A) = P(A ∩ B) + P(A ∩ ¬ B)

Proof:   P(A) = P(A ∩ S) = P(A ∩ (B U ¬ B)) = P((A ∩ B) U (A ∩ ¬ B))

= P(A ∩ B) + P(A ∩ ¬ B) – P((A ∩ B) ∩ (A ∩ ¬ B))

= P(A ∩ B) + P(A ∩ ¬ B) – P(ϕ)

= P(A ∩ B) + P(A ∩ ¬ B)

A∩BA∩¬B

A



Why use probability?

� There have been many other approaches to handle uncertainty:
� Fuzzy logic

� Qualitative reasoning (Qualitative physics)

� “Probability theory is nothing but common sense reduced to 

calculation”
� — Pierre Laplace, 1812.

� Any scheme for combining uncertain information                          

really should obey these axioms
� Di Finetti 1931 - If you gamble based on “uncertain beliefs” 

that satisfy these axioms, then you can’t be exploited by an 

opponent
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Random Variable

� A random variable is a function that associates a unique numerical 

value X(ω) with every outcome ω∈S of an experiment. 

(The value of the r.v. will vary from trial to trial as the experiment is repeated) 

SS X(ωωωω) P(X < 2 ) = P({ω: X(ω) < 2})

ωωωωωωωω

SS X(ωωωω)
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� Discrete r.v.:

� The outcome of a coin-toss H = 1, T = 0 (Binary)

� The outcome of a dice-roll 1-6

� Continuous r.v.:

� The location of an aircraft

P(X < 2 ) = P({ω: X(ω) < 2})

� Univariate r.v.:

� The outcome of a dice-roll 1-6

� Multi-variate r.v.:

� The time-space position of an 

aircraft on radar screen 

X =  
R

Θ

t



Discrete Probability Distribution

� In the discrete case, a probability distribution P on S (and hence 

on the domain of X ) is an assignment of a non-negative real 

number P(s) to each s∈S (or each valid value of x) such that 

0≤P(X=x) ≤1 X – random variable

Σ P(X = x) = 1         ΣxP(X = x) = 1         x – value it takes 
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E.g. Bernoulli distribution with parameter θ





=θ

=θ−
=

1xfor         

0xfor    1
)x(P x1x )1()x(P −θ−θ=⇒



Discrete Probability Distribution

� In the discrete case, a probability distribution P on S (and hence 

on the domain of X ) is an assignment of a non-negative real 

number P(s) to each s∈S (or each valid value of x) such that 

0≤P(X=x) ≤1 X – random variable

Σ P(X = x) = 1         ΣxP(X = x) = 1         x – value it takes 
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E.g. Multinomial distribution with parameters θ1, N,θk
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Continuous Prob. Distribution

� A continuous random variable X can assume any value in an 

interval on the real line or in a region in a high dimensional 

space

� X usually corresponds to a real-valued measurements of some property, 

e.g., length, position, N

It is not possible to talk about the probability of the random variable � It is not possible to talk about the probability of the random variable 

assuming a particular value --- P(X=x) = 0

� Instead, we talk about the probability of the random variable assuming a 

value within a given interval, or half interval

P(X∈[x1,x2])

P(X < x) = P(X∈[−∞,x])
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Continuous Prob. Distribution

� The probability of the random variable assuming a value within 

some given interval from x1 to x2 is defined to be the area under 

the graph of the probability density function between x1 and x2.

� Probability mass:                                             [ ]( ) , )( , ∫=∈
2

1
21

x

x
dxxpxxXP

note that 

� Cumulative distribution function (CDF):

� Probability density function (PDF): 

( ) ∫ ∞−
=≤=

x

'dx)'x(pxXP)x(F

1

( )xF
dx

d
)x(p =

. 1 )( =∫
+∞

∞−
dxxp

Car flow on Liberty Bridge (cooked up!)

x,0)x(p     ; 1 dx)x(p ∀≥=∫
+∞
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What is the intuitive meaning of 

p(x)

� If 

p(x1) = a and p(x2) = b, 

then when a value X is sampled from the distribution with density p(x), 

you are a/b times as likely to find that X is “very close to” x than that X you are a/b times as likely to find that X is “very close to” x1 than that X 

is “very close to” x2.

� That is:

b
a

h2)x(p

h2)x(p

dx)x(p

dx)x(p
lim

)hxXhx(P

)hxXhx(P
lim

2

1
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hx

0h
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� Uniform Probability Density Function

� Normal (Gaussian) Probability Density Function

Continuous Distributions

elsewhere                 

for      )/()(

0

1

=

≤≤−= bxaabxp

ff((xx))ff((xx))

� Normal (Gaussian) Probability Density Function

� The distribution is symmetric, and is often illustrated as a bell-shaped curve. 

� Two parameters, µ (mean) and σ (standard deviation), determine the location and shape of 

the distribution.

� Exponential Probability Distribution

22 2

2

1 σµ

σπ
/)()( −−= xexp

µµ
xx

µµ
xx

,)(  :density /µ

µ
xexp −=

1 µ/o)(   :CDF
xexxP −−=≤ 10 xx

f(x)f(x)

.1.1

.3.3

.4.4

.2.2

1    2    3    4    5    6    7    8    9   101    2    3    4    5    6    7    8    9   10

P(x < 2) = area = .4866P(x < 2) = area = .4866

Time Between Successive Arrivals (mins.)

xx

f(x)f(x)

.1.1

.3.3

.4.4

.2.2

1    2    3    4    5    6    7    8    9   101    2    3    4    5    6    7    8    9   10

P(x < 2) = area = .4866P(x < 2) = area = .4866

Time Between Successive Arrivals (mins.)
20



� Expectation: the centre of mass, mean value, first moment







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=

∫
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discrete        x(xp
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x

)

Statistical Characterizations

� Variance: the spread
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Gaussian (Normal) density in 1D

� If X ∼ N(µ, σ2), the probability density function (pdf) of X is 

defined as

� Here is how we plot the pdf in matlab

xs=-3:0.01:3; 

22 2

2

1 σµ

σπ
/)()( −−= xexp µ=)X(E

2)Xvar( σ=

xs=-3:0.01:3; 

plot(xs,normpdf(xs,mu,sigma))

Note that a density evaluated at a point can be bigger than 1!
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Zero mean

Large variance
Zero mean

Small variance



Gaussian CDF

� If Z ∼ N(0, 1), the cumulative density function is defined as 

This has no closed form expression, but is built in to most 

∫

∫

∞−

−

∞−

=

=

x z

x
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dzzpxΦ
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π
� This has no closed form expression, but is built in to most 

software packages (eg. normcdf in matlab stats toolbox).
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Central limit theorem

� If (X1 ,X2, N Xn) are i.i.d. (independent and identically 

distributed – to be covered next) random variables

� Then define

� As n � infinity, 
∑
=

=
n

1i

iX
n

1
X

� As n � infinity, 

�Gaussian with mean E[Xi] and variance Var[Xi]/n

� Somewhat of a justification for assuming Gaussian distribution

=1in

( )Xp
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n=1 n=2 n=10



Independence

Training and test samples typically assumed to be i.i.d. (independent and identically 

distributed) 

A and B are independent events if 

25

A and B are independent events if 

P(A ∩ B) = P(A) * P(B)

Outcome of A has no effect on the outcome of B (and vice versa). 

E.g. Roll of two die

P({1},{3})  =  1/6*1/6 = 1/36



Independence

A, B and C are pairwise independent events if 

P(A ∩ B) = P(A) * P(B)

P(A ∩ C) = P(A) * P(C)

P(B ∩ C) = P(B) * P(C)
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P(B ∩ C) = P(B) * P(C)

A, B and C are mutually independent events if, in addition to 

pairwise independence,

P(A ∩ B ∩ C) = P(A) * P(B) * P(C)



Conditional Probability 

� P(A|B) = Probability of event A conditioned on event B having 

occurred

If P(B) > 0, then          P(A|B) =

E.g. H = "having a headache"

P(A ∩ B)

P(B)

F = "coming down with Flu"

� P(H)=1/10

� P(F)=1/40

� P(H|F)=1/2         Fraction of people with flu 

that have a headache

Corollary: The Chain Rule

P(A ∩ B) = P(A|B) P(B)

If A and B are independent, P(A|B) = P(A)

A

B

A ∩ B

27



Conditional Independence

A and B are independent if 

P(A ∩ B) = P(A) * P(B)             ≡         P(A|B) = P(A)

Outcome of B has no effect on the outcome of A (and vice versa). 
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Outcome of B has no effect on the outcome of A (and vice versa). 

A and B are conditionally independent given C if

P(A ∩ B|C) = P(A|C) * P(B|C) ≡ P(A|B,C) = P(A|C)

Outcome of B has no effect on the outcome of A (and vice versa) if 

C is true. 



Prior and Posterior Distribution

� Suppose that our propositions have a "causal flow"

e.g.,

F B

H

� Prior or unconditional probabilities of propositions

e.g., P(Flu) = 0.025 and P(DrinkBeer ) = 0.2

correspond to belief prior to arrival of any (new) evidence

� Posterior or conditional probabilities of propositions

e.g., P(Headache|Flu) = 0.5 and P(Headache|Flu,DrinkBeer ) = 0.7

correspond to updated belief after arrival of new evidence

Not always useful: 
29

P(Headache|Flu, Steelers win) = 0.5 



Probabilistic Inference 

� H = "having a headache"

� F = "coming down with Flu"

� P(H)=1/10

� P(F)=1/40

� P(H|F)=1/2

� One day you wake up with a headache. You come with the 

following reasoning: "since 50% of flues are associated with 

headaches, so I must have a 50-50 chance of coming down 

with flu”

Is this reasoning correct?

30



Probabilistic Inference 

� H = "having a headache"

� F = "coming down with Flu"

� P(H)=1/10

� P(F)=1/40

� P(H|F)=1/2

� The Problem:

P(F|H) = ?
H

F

F ∩ H

31



Probabilistic Inference 

� H = "having a headache"

� F = "coming down with Flu"

� P(H)=1/10

� P(F)=1/40

� P(H|F)=1/2

� The Problem:

P(F|H) = 

=

=  1/8 ≠  P(H|F)

H

F

F ∩ H

32

P(F ∩ H)

P(H)

P(H|F) P(F)

P(H)



The Bayes Rule

� What we have just did leads to the following general 

expression:

)B(P

)A(P)A|B(P
)B|A(P =

This is Bayes Rule

)B(P
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Quiz

� P(H)=1/10

� P(F)=1/40

� P(H|F)=1/2

� P(F|H) = 1/8

� Which of the following statement is true?� Which of the following statement is true?

P(F| ¬ H)  = 1 – P(F|H)

P(¬ F|H) = 1 – P(F|H)

P(F| ¬ H) = P(¬ H|F) P(F) = (1 – P(H|F)) P(F)

P(¬ H) 1 – P(H)

34



More General Forms of Bayes

Rule

� Law of total probability

)B(P

)A(P)A|B(P
)B|A(P =

P(B)  = P(B ∩ A) + P(B ∩ ¬A)

= P(B|A) P(A) + P(B|¬A) P(¬A)
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)A(P)A|B(P)A(P)A|B(P

)A(P)A|B(P
)B|A(P

¬¬+
=



More General Forms of Bayes

Rule

)ZY(p)ZY|X(P)ZY(p)ZY|X(P
)ZXY(P

∧∧
=

∧∧
=∧

∑ ==
==

y
)yY(p)yY|X(P

)Y(p)Y|X(P
)X|yY(P

E.g. P(Flu | Headhead ∧ DrankBeer)

)ZY(p)ZY|X(P)ZY(p)ZY|X(P

)ZY(p)ZY|X(P

)ZX(P

)ZY(p)ZY|X(P
)ZXY(P

∧¬∧+∧¬∧¬
∧∧

=
∧

∧∧
=∧

H

F

F∩H

B

H

F

F∩H

B
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Joint and Marginal Probabilities

A joint probability distribution for a set of RVs (say X1,X2,X3) 

gives the probability of every atomic event P(X1,X2,X3)

� P(Flu,DrinkBeer) = a 2 × 2 matrix of values:

B ¬B

F 0.005 0.02

� P(Flu,DrinkBeer, Headache) = ?  

� Every question about a domain can be answered by the joint distribution, 

as we will see later.

F 0.005 0.02

¬F 0.195 0.78
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A marginal probability distribution is the probability of every 

value that a single RV can take P(X1) P(Flu) = ?  



Inference by enumeration

� Start with a Joint Distribution 

� Building a Joint Distribution 

of M=3 variables

� Make a truth table listing all

F B H Prob

0 0 0 0.4

0 0 1 0.1

0 1 0 0.17

0 1 1 0.2

1 0 0 0.05� Make a truth table listing all

combinations of values of your

variables (if there are M Boolean

variables then the table will have

2M rows).

� For each combination of values, 

say how probable it is.

� Normalized, i.e., sums to 1
H

F

B

1 0 0 0.05

1 0 1 0.05

1 1 0 0.015

1 1 1 0.015
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Inference with the Joint

� One you have the JD you can

ask for the probability of any

atomic event consistent with you 

query

¬F ¬B ¬H 0.4

¬F ¬B H 0.1

¬F B ¬H 0.17

¬F B H 0.2

F ¬B ¬H 0.05

F ¬B H 0.05

E.g.   E = {(¬F, ¬B,H),(¬F,B,H)}

F ¬B H 0.05

F B ¬H 0.015

F B H 0.015∑
∈

=
Ei

irowPEP )()(

H

F

B

39



Inference with the Joint

� Compute Marginals

)HeadacheFlu(P ∧

¬F ¬B ¬H 0.4

¬F ¬B H 0.1

¬F B ¬H 0.17

¬F B H 0.2

F ¬B ¬H 0.05

F ¬B H 0.05)BHF(P)BHF(P ¬∧∧+∧∧=

H

F

B

F ¬B H 0.05

F B ¬H 0.015

F B H 0.015

40

)BHF(P)BHF(P ¬∧∧+∧∧=

Recall: Law of Total Probability



Inference with the Joint

� Compute Marginals

)Headache(P

¬F ¬B ¬H 0.4

¬F ¬B H 0.1

¬F B ¬H 0.17

¬F B H 0.2

F ¬B ¬H 0.05

F ¬B H 0.05

H

F

B

F ¬B H 0.05

F B ¬H 0.015

F B H 0.015

41
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Inference with the Joint

� Compute Conditionals

∧
=

2

21
21

EP

EEP
EEP

)(

)(
)(

¬F ¬B ¬H 0.4

¬F ¬B H 0.1

¬F B ¬H 0.17

¬F B H 0.2

F ¬B ¬H 0.05

F ¬B H 0.05

∑

∑

∈

∈=

2

21

2

Ei

i

EEi

i

rowP

rowP

EP

)(

)(

)(

I

H

F

B

F ¬B H 0.05

F B ¬H 0.015

F B H 0.015
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Inference with the Joint

� Compute Conditionals

=

∧
=

)Headache(P

)HeadacheFlu(P
)HeadacheFlu(P

¬F ¬B ¬H 0.4

¬F ¬B H 0.1

¬F B ¬H 0.17

¬F B H 0.2

F ¬B ¬H 0.05

F ¬B H 0.05
=

H

F

B

F ¬B H 0.05

F B ¬H 0.015

F B H 0.015
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General idea: 

Compute distribution on query variable 

by fixing evidence variablesevidence variables and 

summing over hidden variableshidden variables



Where do probability 

distributions come from?

� Idea One: Human, Domain Experts 

� Idea Two: Simpler probability facts and some algebra

e.g., P(F)

P(B)

P(H|¬F,B)
0.17¬HB¬F

0.1H¬B¬F

0.4¬H¬B¬F

0.17¬HB¬F

0.1H¬B¬F

0.4¬H¬B¬F

P(H|¬F,B)

P(H|F,¬B)

N

Use chain rule and independence assumptions to compute joint 

distribution

0.015HBF

0.015¬HBF

0.05H¬BF

0.05¬H¬BF

0.2HB¬F

0.17¬HB¬F

0.015HBF

0.015¬HBF

0.05H¬BF

0.05¬H¬BF

0.2HB¬F

0.17¬HB¬F
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Where do probability 

distributions come from?

� Idea Three: Learn them from data!

� A good chunk of this course is essentially about various ways of learning 

various forms of them! 
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Density Estimation

� A Density Estimator learns a mapping from a set of attributes 

to a Probability

� Often know as parameter estimation if the distribution form is � Often know as parameter estimation if the distribution form is 

specified

� Binomial, Gaussian N

� Some important issues:

� Nature of the data (iid, correlated, N)

� Objective function (MLE, MAP, N)

� Algorithm (simple algebra, gradient methods, EM, N)

� Evaluation scheme (likelihood on test data, predictability, consistency, 

N) 46



Parameter Learning from iid data

� Goal: estimate distribution parameters θθθθ from a dataset of �

independent, identically distributed (iid), fully observed, 

training cases

D = {x1, . . . , x�}

Maximum likelihood estimation (MLE)� Maximum likelihood estimation (MLE)

1. One of the most common estimators

2. With iid and full-observability assumption, write L(θ) as the likelihood of the data:

3. pick the setting of parameters most likely to have generated the data we saw:

);x,,xx(P);D(P)(L N2,1 θ=θ=θ K

∏ =
=

=
�

i i

�

xP

xPxPxP

1

2

);(

);(,),;();(

θ

θθθ K

)(LmaxargMLE θ=θ
θ

∧
)(logmaxarg θ

θ
L=
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Example 1: Bernoulli model

� Data: 

� We observed N iid coin tossing: D = {1, 0, 1, N, 0}

� Model: 





=θ

=θ−
=

1xfor         

0xfor    1
)x(P xxxP −−= 11 )()( θθ⇒

� How to write the likelihood of a single observation xi ? 

� The likelihood of dataset D = {x1, …,xN}:

ii xx

ixP
−−= 11 )()( θθ

( )∏∏
=

−

=

θ−θ=θ=θ=θ
N

1i

x1x
N

1i

iN21
ii )1();x(P);x,...,x,x(P)(L

tails#head# )()( θθθθ −=
∑

−
∑

= ==

−

11 11

1
�

i

i

�

i

i xx




=θ
=

1xfor         
)x(P xP −= 1 )()( θθ⇒
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MLE

� Objective function: 

� We need to maximize this w.r.t. θ

)1log()nN(logn)1(log)(Llog)( hh

nn th θ−−+θ=θ−θ=θ=θl

� Take derivatives wrt θ

� Sufficient statistics

� The counts,                                          are sufficient statistics of data D

0
1

=
−
−

−=
∂
∂

θθθ
hh n�nl

�

nh
MLE =θ
)

∑=
i

iMLE x
�

1
θ
)

or

Frequency as 

sample mean 

,xn  where,n
i ihh ∑=
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Example 2: univariate normal

� Data: 

� We observed N iid real samples: 

D={-0.1, 10, 1, -5.2, N, 3}

� Model: ( ) { }22212 22 σµπσ /)(exp)(
/

−−=
−

xxP θ = (µ,σ ) 
2

� Log likelihood:

� MLE: take derivative and set to zero:

( )
∑
=

= σ
µ−

−πσ−=Π=θ=θ
N

1i
2

2

i2

i

N

1i

x

2

1
)2log(

2

N
)x(P)(Llog)(l

( )

( )∑

∑

−+−=
∂
∂

−=
∂
∂

n n

n n

x
N

x

2

422

2

2

1

2

1

µ
σσσ

µσ
µ
l

l
)/(

( )∑

∑

µ−=σ

=µ

n

2

MLn

2

MLE

n nMLE

x
N

1

x
N

1
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Overfitting

� Recall that for Bernoulli Distribution, we have

� What if we tossed too few times so that we saw zero head?

tailhead

head
head
ML nn

n
+

=θ
)

� What if we tossed too few times so that we saw zero head?

We have                   and we will predict that the probability of 

seeing a head next is zero!!! 

� The rescue “smoothing”: 

� Where n' is know as the pseudo- (imaginary) count

� But can we make this more formal?

 ,0=head
MLθ
)

'

'

nnn
nn

tailhead

head
head
ML ++

+
=θ

)
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Bayesian Learning

� The Bayesian Rule:

Or equivalently,

posterior likelihood prior

MAP estimate: 

If prior is uniform, MLE = MAP
52

(Belief about coin toss

probability)

)D|(PmaxargMAP θ=θ
θ

∧



Bayesian estimation for Bernoulli 

� Beta(α,β) distribution:  

1111 )1(),(B)1(
)()(

)(
)(P −β−α−β−α θ−θβα=θ−θ

βΓαΓ
β+αΓ

=θ

� Posterior distribution of θ : 

� Notice the isomorphism of the posterior to the prior, 

� such a prior is called a conjugate prior

� α and β are hyperparameters (parameters of the prior) and correspond to the 

number of “virtual” heads/tails (pseudo counts)

1n1n11nn

N1

N1 thth )1()1()1(
)x,...,x(p

)(p)|x,...,x(p
)D|(P

−β+−α+−β−α θ−θ=θ−θ×θ−θ∝
θθ

=θ
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MAP

� Posterior distribution of θ :

� Maximum a posteriori (MAP) estimation: 

1111

1

1
1 111 −+−+−− −=−×−∝= βαβα θθθθθθ

θθ
θ thth nnnn

�

�
�

xxp

pxxp
xxP )()()(

),...,(

)()|,...,(
),...,|(

� Posterior mean estimation:

� With enough data, prior is forgotten

β+α+
α+

=θ
∧

N

n h
MAP

Beta parameters 

can be understood 

as pseudo-counts

)x,...,x|(Plogmaxarg N1MAP θ=θ
θ

∧
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Dirichlet distribution
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Estimating the parameters of a 

distribution

� Maximum Likelihood estimation (MLE)

Choose value that maximizes the probability of observed data

)|D(PmaxargMLE θ=θ
θ

∧
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� Maximum a posteriori (MAP) estimation

Choose value that is most probable given observed data and 

prior belief

)(P)|D(Pmaxarg)D|(PmaxargMAP θθ=θ=θ
θθ

∧



MLE vs MAP 

(Frequentist vs Bayesian)

Frequentist/MLE approach:

θ is unknown constant, estimate from data 

Bayesian/MAP approach:

θ is a random variable, assume a probability distribution 

57

θ is a random variable, assume a probability distribution 

Drawbacks

MLE: Overfits if dataset is too small

MAP: Two people with different priors will end up with different 

estimates



Bayesian estimation for normal 

distribution 

� Normal Prior:  

� Joint probability: 

( ) { }22
0

212 22 τµµπτµ /)(exp)(
/

−−=
−

P

( ) 1  N

� Posterior:

1

22
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022

2

22

2 1

1

1
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−






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+
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=
τσ
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τσ

τ
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σ
µ

N
N

x
N
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/
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/~      where

Sample mean
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( ) { }22
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1

2
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22
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1
2

τµµπτ

µ
σ
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
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
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∑
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N
xxP
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−−=
−
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Probability Review

What you should know:


