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Data Clustering

e [wo different criteria

« Compactness, e.g., k-means, mixture models
« Connectivity, e.g., spectral clustering
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Graph Clustering

Goal: Given data points X1, ..., Xn and similarities w(Xi, X)), partition the data into
groups so that points in a group are similar and points in different groups are
dissimilar.

Similarity Graph: G(V,E) V — Vertices (Data points, pixels)
E — Edge if similarity > 0, Edge weights = similarities
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Data Similarities Similarity graph

Partition the graph so that edges within a group have large weights and
edges across groups have small weights.




Similarity graph construction

Similarity Graphs: Model local neighborhood relations between data points

G(V,E) V — Vertices (Data points, pixels)

(1) E — Edge if similarity > 0O, Edge weights = similarities w(xi,x;)
E.g. Gaussian kernel similarity function
=11
Wi =e 202 ———> Controls size of neighborhood
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Similarity graph construction

Similarity Graphs: Model local neighborhood relations between data points
G(V,E) V — Vertices (Data points, pixels)

(2) E—Edge if e-NN |[xi — xj|| =€, Edge weights =1 (e-NN ~ equi-distant)



Similarity graph construction

Similarity Graphs: Model local neighborhood relations between data points

G(V,E) V — Vertices (Data points, pixels)

(2) E—Edgeif e-NN ||xi — xj|| <€, Edge weights =1

(3) E — Edge if k-NN,

yields directed graph
connect A with B if

(e-NN ~ equi-distant)

Edge weights = similarities w(xi,x;)

A—-B OR A<—B

connectAwithBif A—-BANDA—B
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Directed nearest neighbors

(symmetric) kNN graph

(symmetric KNN graph)
(mutual KNN graph)
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Some Graph Notation

e W = (w;) adjacency matrix of the graph

e d = Zj w;; degree of a vertex

e D =diag(di,....d,) degree matrix

e |A| = number of vertices in A
e vol(A) =>"._,di



Partitioning a graph into two clusters

Min-cut: Partition graph into two sets A and B such that weight of edges
connecting vertices in A to vertices in B is minimum.

cut(A, B) := Z;EAJ.EB Wi

» Easy to solve O(VE) algorithm
* Not satisfactory partition — often isolates vertices
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Partitioning a graph into two clusters

Partition graph into two sets A and B such that weight of edges connecting
vertices in A to vertices in B is minimum & size of A and B are very similar.

cut(A, B) =3 icajea W

Balanced Min-cut: miny g cut(A, B) s.t. |A| = |B|
Ratio cut: RatioCut(A, B) := cut(A, B)(%I |1§|)
Normalized cut: Ncut(A, B) := cut(A, B)(W&A} B ml}B})

But NP-hard to solve!!
Spectral clustering is a relaxation of these.



Graph cut

cut(A, B) := ¥ engen Wi

1 if Xi € A
Choose f = (f,..., f,)" with f; = ' =
—1 f X; € B

Cl_lt(.iq._. B) — ZFEAJEB W.:_,r — %Z,J W{j(ﬁ T f{)z =fT(D'W)f

RHS = fI(D-W) f = fIOf - fWf =) dif? = fifiw;
i iJ
1 5
e (Z(Z wilf? =23 fifowy+ 3 (3 wg}ﬁz)
) J ] b I
1 -
ij




Graph cut and Graph Laplacian

cut(A, B) ==} icaicB Wi

=f(D-W)f =fLf

8 ST Unnormalized Graph Laplacian

Spectral properties of L:

e Smallest eigenvalue of L is 0, corresponding eigenvector is 1
e Thus eigenvalues 0 = Ay < A < ... < A,

[ dy Do W1

I1=Dl-W1= d:2 Zj:w%

_dn_ _ijnj_



Balanced min-cut

miny g cut(A, B) s.t. |Al = |B|

N

min fILf st. fl1=0
fef-1,1)

(sinceyfi=31,,-1,5,=0)

Above formulation is still NP-Hard, so we relax f not to be binary:

min fILf st. fl1=0, fff=n

feRn

mir: filLf st. fl1=0
PR fif




Relaxation of Balanced min-cut

mirl filLf st. fl1=0
PR fif

\ J
|

I
Ain(L) - smallest eigenvalue of L (Rayleigh-Ritz theorem)

If fis eigenvector of L, then
fLf A,
ff f'f

Recall that smallest eigenvalue of L is 0 with corresponding eigenvector 1

But f can’t be 1 according to constraint f11 =0

Therefore, solution fis the eigenvector of L corresponding to second
smallest eigenvalue, aka second eigenvector.



Approximation of Balanced min-cut

miny g cut(A, B) s.t. |A| = |B|

Let f be the second eigenvector of the unnormalized graph Laplacian L.

Recover binary partition as follows: i€A if fiz20
i€eB if fi<O0
|ldeal solution Relaxed solution
e 'CDUD%
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Similar relaxations work for other cut problems:

RatioCut - second eigenvector of unnormalized graph Laplacian L =D - W
Normalized cut — second eigenvector of normalized Laplacian L’ = /- DWW



Example

Xing et al 2001

input affinity matrix affinity maftrix reordered according to solution vector
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How to partition a graph into k
clusters?



Spectral Clustering Algorithm

Input: Similarity matrix W, number k of clusters to construct

e Build similarity graph

e Compute the first k eigenvectors vy, ..., v, of the matrix
i for unnormalized spectral clustering
L’ for normalized spectral clustering

e Build the matrix V € R™* with the eigenvectors as columns

e Interpret the rows of V as new data points Z; € R*
Vi Vo V3

Zy | vi1 vi2 vi3 Dimensionality Reduction

nxn —-nxk

Z n Vil Vo Vi3

e Cluster the points Z; with the k-means algorithm in RX.



Eigenvectors of Graph Laplacian
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Histogram of the sample

« 1st Eigenvector is the all ones vector 1
« 2" Eigenvector thresholded at 0 separates first two clusters from last two

» k-means clustering of the 4 eigenvectors identifies all clusters
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Why does it work?

Data are projected into a lower-dimensional space (the spectral/eigenvector
domain) where they are easily separable, say using k-means.
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Why does it work?

e Block matrices have block eigenvectors:

=2 hy=2
T ] 1]0]0 I
1 [ 1]0] 0 71 0
oo |1]1 0 71
o |o|1]1 0 71

e Near-block matrices have near-block eigenvectors:

M=202 A,=2.02
1 1 2 0 1 0
1|1 ]o0]-2 69 14
20 1|1 14 69
0 -2 1 1 0 .

hy=0
?'..4: 0

hy=-0.02
hg=-0.02



Why does it work?

e Can put items into blocks by eigenvectors:

| 1 -2
2 1 1

q

71
69 -.14
| | o]
71
e — —

C

€]

€

e Clusters clear regardless of row ordering:




k-means vs Spectral clustering

Applying k-means to laplacian eigenvectors allows us to find cluster with
non-convex boundaries.
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k-means vs Spectral clustering

Applying k-means to laplacian eigenvectors allows us to find cluster with
non-convex boundaries.
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k-means vs Spectral clustering

Applying k-means to laplacian eigenvectors allows us to find cluster with

non-convex boundaries.
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Examples

Ng et al 2001

nips, 8 clusters
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Examples (Choice of k)

Ng et al 2001

fhirescircizs—oined, 3 clustars threscircles—|alned, 2 clusters




Some Issues

» Choice of number of clusters k
Most stable clustering is usually given by the value of k that
maximizes the eigengap (difference between consecutive
eigenvalues)

Ay = V’k - ﬂk—l‘

Eigenvalues
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Some Issues

» Choice of number of clusters k
» Choice of similarity

choice of kernel
for Gaussian kernels, choice of o

input affinity matrix affinity matrix reordered according to solution vector input affinity matrix
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Some Issues

» Choice of number of clusters k
» Choice of similarity
choice of kernel
for Gaussian kernels, choice of o

» Choice of clustering method — k-way vs. recursive bipartite



Spectral clustering summary

Algorithms that cluster points using eigenvectors of matrices derived from
the data

Useful in hard non-convex clustering problems

Obtain data representation in the low-dimensional space that can be
easily clustered

Variety of methods that use eigenvectors of unnormalized or normalized
Laplacian, different, how to derive clusters from eigenvectors, k-way vs
repeated 2-way

Empirically very successful



Comparison Chart

Decision Naive | Logistic SVM Boosting Bayes
Trees Bayes | regression Net
Gen/Disc
Loss

functions
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Loss functions

y; = 1 square loss

log loss exp loss

0/1 loss \ 1

-2 -1 0 1 2 f(iUz'):




