Spectral Clustering

Aarti Singh

Machine Learning 10-701/15-781 Apr 7, 2010

Slides Courtesy: Eric Xing, M. Hein & U.V. Luxburg

Data Clustering

- Two different criteria
 - Compactness, e.g., k-means, mixture models
 - Connectivity, e.g., spectral clustering

Compactness

Connectivity

Graph Clustering

Goal: Given data points $X_1, ..., X_n$ and similarities $w(X_i, X_j)$, partition the data into groups so that points in a group are similar and points in different groups are dissimilar.

Similarity Graph: G(V,E) V – Vertices (Data points, pixels)

E – Edge if similarity > 0, Edge weights = similarities

Partition the graph so that edges within a group have large weights and edges across groups have small weights.

Similarity graph construction

Similarity Graphs: Model local neighborhood relations between data points

G(V,E) V – Vertices (Data points, pixels)

(1) E – Edge if similarity > 0, Edge weights = similarities $w(x_i,x_j)$

E.g. Gaussian kernel similarity function

$$W_{ij} = e^{\frac{\|x_i - x_j\|^2}{2\sigma^2}} \longrightarrow \text{Controls size of neighborhood}$$

Similarity graph construction

Similarity Graphs: Model local neighborhood relations between data points

```
G(V,E) V – Vertices (Data points, pixels)
```

```
(2) E – Edge if \varepsilon-NN ||xi – xj|| \leq \varepsilon, Edge weights = 1 (\varepsilon-NN ~ equi-distant)
```

Similarity graph construction

Similarity Graphs: Model local neighborhood relations between data points

G(V,E) V – Vertices (Data points, pixels)

(2) E – Edge if
$$\varepsilon$$
-NN ||xi – xj|| $\leq \varepsilon$, Edge weights = 1 (ε -NN ~ equi-distant)

(3) E – Edge if k-NN, Edge weights = similarities $w(x_i,x_j)$

yields directed graph

connect A with B if $A \rightarrow B$ OR $A \leftarrow B$ connect A with B if $A \rightarrow B$ AND $A \leftarrow B$

(symmetric kNN graph) (mutual kNN graph)

Directed nearest neighbors

(symmetric) kNN graph

mutual kNN graph

Some Graph Notation

• $W = (w_{ij})$ adjacency matrix of the graph

- $d_i = \sum_i w_{ij}$ degree of a vertex
- $D = diag(d_1, \ldots, d_n)$ degree matrix

- |A| = number of vertices in A
- $\operatorname{vol}(A) = \sum_{i \in A} d_i$

Partitioning a graph into two clusters

Min-cut: Partition graph into two sets A and B such that weight of edges connecting vertices in A to vertices in B is minimum.

$$\operatorname{cut}(A,B) := \sum_{i \in A, j \in B} w_{ij}$$

- Easy to solve O(VE) algorithm
- Not satisfactory partition often isolates vertices

Partitioning a graph into two clusters

Partition graph into two sets A and B such that weight of edges connecting vertices in A to vertices in B is minimum & size of A and B are very similar.

$$\operatorname{\mathsf{cut}}(A,B) := \sum_{i \in A, j \in B} w_{ij}$$

Balanced Min-cut: $\min_{A,B} \operatorname{cut}(A,B)$ s.t. |A| = |B|

Ratio cut: Ratio Cut(A, B) := cut(A, B)($\frac{1}{|A|} + \frac{1}{|B|}$)

Normalized cut: $\operatorname{Ncut}(A, B) := \operatorname{cut}(A, B)(\frac{1}{\operatorname{vol}(A)} + \frac{1}{\operatorname{vol}(B)})$

But NP-hard to solve!!

Spectral clustering is a relaxation of these.

Graph cut

$$\operatorname{\mathsf{cut}}(A,B) := \sum_{i \in A, j \in B} w_{ij}$$

Choose
$$f = (f_1, ..., f_n)'$$
 with $f_i = \begin{cases} 1 & \text{if } X_i \in A \\ -1 & \text{if } X_i \in B \end{cases}$

$$cut(A, B) = \sum_{i \in A, j \in B} w_{ij} = \frac{1}{4} \sum_{i,j} w_{ij} (f_i - f_j)^2 = f^T(D-W) f$$

RHS =
$$f^{T}(D-W)f = f^{T}Df - f^{T}Wf = \sum_{i} d_{i}f_{i}^{2} - \sum_{i,j} f_{i}f_{j}w_{ij}$$

$$= \frac{1}{2} \left(\sum_{i} (\sum_{j} w_{ij})f_{i}^{2} - 2 \sum_{ij} f_{i}f_{j}w_{ij} + \sum_{j} (\sum_{i} w_{ij})f_{j}^{2} \right)$$

$$= \frac{1}{2} \sum_{ij} w_{ij}(f_{i} - f_{j})^{2} = LHS$$

Graph cut and Graph Laplacian

$$\operatorname{cut}(A,B) := \sum_{i \in A, j \in B} w_{ij}$$
$$= f^{\mathsf{T}}(D\text{-}W) f = f^{\mathsf{T}} L f$$

$$L = D - W$$

Unnormalized Graph Laplacian

Spectral properties of *L*:

- Smallest eigenvalue of L is 0, corresponding eigenvector is $\mathbb{1}$
- Thus eigenvalues $0 = \lambda_1 \le \lambda_2 \le ... \le \lambda_n$.

$$L\mathbf{1} = D\mathbf{1} - W\mathbf{1} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{bmatrix} - \begin{bmatrix} \sum_j w_{1j} \\ \sum_j w_{2j} \\ \vdots \\ \sum_j w_{nj} \end{bmatrix} = \mathbf{0}$$

Balanced min-cut

$$\min_{A,B} \operatorname{cut}(A,B) \text{ s.t. } |A| = |B|$$

$$\min_{f \in \{-1,1\}^n} f^T L f \text{ s.t. } f^T 1 = 0$$

$$(\operatorname{since } \sum f_i = \sum 1_{i \in A} - 1_{i \in B} = 0)$$

Above formulation is still NP-Hard, so we relax f not to be binary:

$$\min_{f \in R^n} f^T L f \quad \text{s.t.} \quad f^T 1 = 0, \quad f^T f = n$$

$$\min_{f \in R^n} \frac{f^T L f}{f^T f} \quad \text{s.t.} \quad f^T 1 = 0$$

Relaxation of Balanced min-cut

$$\min_{f \in R^n} \frac{f^T L f}{f^T f} \quad \text{s.t.} \quad f^T 1 = 0$$

$$\lambda_{\min}(L) \quad - \text{ smallest eigenvalue of } L \quad \text{(Rayleigh-Ritz theorem)}$$

If *f* is eigenvector of *L*, then

$$\frac{f^T L f}{f^T f} = \frac{f^T \lambda f}{f^T f} = \lambda$$

Recall that smallest eigenvalue of \boldsymbol{L} is $\boldsymbol{0}$ with corresponding eigenvector $\boldsymbol{1}$ But \boldsymbol{f} can't be $\boldsymbol{1}$ according to constraint $\boldsymbol{f}^T\boldsymbol{1}=\boldsymbol{0}$

Therefore, solution *f* is the eigenvector of *L* corresponding to second smallest eigenvalue, aka second eigenvector.

Approximation of Balanced min-cut

$$\min_{A,B} \operatorname{cut}(A,B)$$
 s.t. $|A| = |B|$

Let f be the second eigenvector of the unnormalized graph Laplacian L.

Recover binary partition as follows: $i \in A$ if $f_i \ge 0$ $i \in B$ if $f_i < 0$

Ideal solution	Relaxed solution		
00000000	, , , , , , , , , , , , , , , , , , ,		
000000000000000000000000000000000000000	poor of the second of the seco		

Similar relaxations work for other cut problems:

RatioCut - second eigenvector of unnormalized graph Laplacian L = D - WNormalized cut - second eigenvector of normalized Laplacian $L' = I - D^{-1}W$

Example

Xing et al 2001

How to partition a graph into k clusters?

Spectral Clustering Algorithm

Input: Similarity matrix W, number k of clusters to construct

- Build similarity graph
- Compute the first k eigenvectors v_1, \ldots, v_k of the matrix

$$\begin{cases} L & \text{for unnormalized spectral clustering} \\ L' & \text{for normalized spectral clustering} \end{cases}$$

- Build the matrix $V \in \mathbb{R}^{n \times k}$ with the eigenvectors as columns
- Interpret the rows of V as new data points $Z_i \in \mathbb{R}^k$

• Cluster the points Z_i with the k-means algorithm in \mathbb{R}^k .

Eigenvectors of Graph Laplacian

- 1st Eigenvector is the all ones vector 1
- 2nd Eigenvector thresholded at 0 separates first two clusters from last two
- k-means clustering of the 4 eigenvectors identifies all clusters

Why does it work?

Data are projected into a lower-dimensional space (the spectral/eigenvector domain) where they are easily separable, say using k-means.

Why does it work?

Block matrices have block eigenvectors:

$$\lambda_2 = 2$$

0

0

.71

.71

$$\lambda_3 = 0$$
 $\lambda_4 = 0$

Near-block matrices have near-block eigenvectors:

٠.		
	.71	
	.69	
	.14	
	0	

2	
0	
14	
.69	
.71	

$\lambda_1 = 2.02$		7	$\lambda_2 = 2.02$	$\lambda_3 = -0.02$
	.71		0	$\lambda_4 = -0.02$
	.69		14	

 $\lambda_2 = -0.02$

Why does it work?

Can put items into blocks by eigenvectors:

Clusters clear regardless of row ordering:

k-means vs Spectral clustering

Applying k-means to laplacian eigenvectors allows us to find cluster with non-convex boundaries.

k-means vs Spectral clustering

Applying k-means to laplacian eigenvectors allows us to find cluster with non-convex boundaries.

k-means output

Spectral clustering output

k-means vs Spectral clustering

Applying k-means to laplacian eigenvectors allows us to find cluster with non-convex boundaries.

Examples

Ng et al 2001

Examples (Choice of k)

Ng et al 2001

Some Issues

Choice of number of clusters k

Most stable clustering is usually given by the value of k that maximizes the eigengap (difference between consecutive eigenvalues)

$$\Delta_k = \left| \lambda_k - \lambda_{k-1} \right|$$

Some Issues

- Choice of number of clusters k
- Choice of similarity
 choice of kernel
 for Gaussian kernels, choice of σ

Some Issues

- Choice of number of clusters k
- Choice of similarity
 choice of kernel
 for Gaussian kernels, choice of σ
- ➤ Choice of clustering method k-way vs. recursive bipartite

Spectral clustering summary

- □ Algorithms that cluster points using eigenvectors of matrices derived from the data
- ☐ Useful in hard non-convex clustering problems
- □ Obtain data representation in the low-dimensional space that can be easily clustered
- □ Variety of methods that use eigenvectors of unnormalized or normalized Laplacian, different, how to derive clusters from eigenvectors, k-way vs repeated 2-way
- Empirically very successful

Comparison Chart

	Decision Trees	K-NN	Naïve Bayes	Logistic regression	SVM	Boosting	Neural Nwks	НММ	Bayes Net
Gen/Disc									
Loss functions									
Decision boundary									
Output									
Assumpti ons									
Structure d version									
Algorithm									
Converge nce									

Loss functions

