
1

Advanced Machine LearningAdvanced Machine Learning

Learning Graphical Learning Graphical Models Models 
StructureStructure
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Eric Eric XingXing

Lecture 22, April 12, 2010

Reading:

Inference and Learning
A BN M describes a unique probability distribution P

T i l t kTypical tasks:

Task 1: How do we answer queries about P?

We use inference as a name for the process of computing answers to such 
queries
So far we have learned several algorithms for exact and approx. inference

Task 2: How do we estimate a plausible model M from data D?
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Task 2: How do we estimate a plausible model M from data D?

i. We use learning as a name for the process of obtaining point estimate of M.

ii. But for Bayesian, they seek p(M |D), which is actually an inference problem.

iii. When not all variables are observable, even computing point estimate of M 
need to do inference to impute the missing data.
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The goal:

Learning Graphical Models

Given set of independent samples (assignments of 
random variables), find the best (the most likely?) 
graphical model (both the graph and the CPDs)
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(B,E,A,C,R)=(T,F,F,T,F)
(B,E,A,C,R)=(T,F,T,T,F)
……..

(B,E,A,C,R)=(F,T,T,T,F)
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Structural Search
How many graphs over n nodes? )(

22nO

How many trees over n nodes?

But it turns out that we can find exact solution of an optimal 
tree (under MLE)!

Trick: in a tree each node has only one parent!
Chow liu algorithm

)!(nO
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Chow-liu algorithm
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Information Theoretic 
Interpretation of ML
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From sum over data points to sum over count of variable states  

Information Theoretic 
Interpretation of ML (con'd)
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Decomposable score and a function of the graph structure
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Chow-Liu tree learning algorithm
Objection function:

GDDG )|(ˆl)( θθl

Chow-Liu:
For each pair of variable xi and xj

Compute empirical distribution:
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Compute mutual information:

Define a graph with node x1,…, xn

Edge (I,j) gets weight 
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Chow-Liu algorithm (con'd)
Objection function:

GDDG )|(ˆl)( θθl

Chow-Liu:
Optimal tree BN

Compute maximum weight spanning tree
Direction in BN: pick any node as root do breadth-first-search to define directions
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Direction in BN: pick any node as root, do breadth-first-search to define directions
I-equivalence:
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Structure Learning for general 
graphs

Theorem:
The problem of learning a BN structure with at most d parents is p g p
NP-hard for any (fixed) d≥2

Most structure learning approaches use heuristics
Exploit score decomposition 
Two heuristics that exploit decomposition in different ways

Greedy search through space of node-orders
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Local search of graph structures

Gene Expression Profiling by 
Microarrays

R t A R t BR t A R t BR t A R t B
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Microarray Data
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1hr
2hr

3hr

4hr

…

Structural EM (Friedman 1998)

Structure Learning Algorithms

Expression data

The original algorithm

Sparse Candidate Algorithm 
(Friedman et al.)

Discretizing array signals
Hill-climbing search using local operators: add/delete/swap of a 
single edge
Feature extraction: Markov relations order relations
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E

R

B

A

C

Learning Algorithm

Feature extraction: Markov relations, order relations
Re-assemble high-confidence sub-networks from features

Module network learning (Segal et al.)
Heuristic search of structure in a "module graph"
Module assignment
Parameter sharing
Prior knowledge: possible regulators (TF genes) 
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E B

Scoring Networks

D resample
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D2 .
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Dm

...
Learn

E

R
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Learning GM structure
Learning of best CPDs given DAG is easy

collect statistics of values of each node given specific assignment to its parents

A BA B

g p g p

Learning of the graph topology (structure) is NP-hard
heuristic search must be applied, generally leads to a locally optimal network

Overfitting
It turns out, that richer structures give higher likelihood P(D|G) to the data (adding 
an edge is always preferable)
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A
C

BA
C

B

),|(≤)|( BACPACP
more parameters to fit => more freedom => always exist more "optimal" CPD(C)

We prefer simpler (more explanatory) networks
Practical scores regularize the likelihood improvement complex networks.
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Gaussian Graphical Model
Multivariate Gaussian density:
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WOLG:  let

{ })-()-(-exp
)(

),|( //
µµ

π
µ xxx 1

2
1

2122
1 −Σ
Σ

=Σ T
n

p

( )
⎭
⎬
⎫

⎩
⎨
⎧

−== ∑∑ jiijiiinp xxqxq
Q

Qxxxp 2
2
1

2/

2/1

21 -exp
)2(

),0|,,,(
π

µL

© Eric Xing @ CMU, 2005-2009 15

We can view this as a continuous Markov Random Field with 
potentials defined on every node and edge:
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The covariance and the precision 
matrices  

Covariance matrix

Graphical model interpretation?

Precision matrix

© Eric Xing @ CMU, 2005-2009 16

Graphical model interpretation?

How to prove the later?
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Sparse precision vs. sparse 
covariance in GGM
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Another example

How to estimate this MRF?
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What if p >> n
MLE does not exist in general!
What about only learning a “sparse” graphical model?

This is possible when s=o(n)
Very often it is the structure of the GM that is more interesting …
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Learning (sparse) GGM
Multivariate Gaussian over all continuous expressions 
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The precision matrix K=Σ−1 reveals the topology of the 
(undirected) network
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j
Edge ~ |Kij| > 0

Learning Algorithm: Covariance selection
Want a sparse matrix

Regression for each node with degree constraint (Dobra et al.)
Regression for each node with hierarchical Bayesian prior (Li, et al)
Graphical Lasso (we will describe it shortly)

Learning Ising Model 
(i.e. pairwise MRF)

Assuming the nodes are discrete, and edges are weighted, 
then for a sample xd, we have p d,

Graph lasso has been used to obtain a sparse estimate of E 
with continuous X
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We can use graphical L_1 regularized logistic regression to 
obtain a sparse estimate of with discrete X
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Recall lasso 
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Graph Regression

Eric Xing © Eric Xing @ CMU, 2006-2009 22

Lasso:Neighborhood selection
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Graph Regression

Eric Xing © Eric Xing @ CMU, 2006-2009 23

Neighborhood selection

Graph Regression

Eric Xing © Eric Xing @ CMU, 2006-2009 24

Neighborhood selection
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Why this is reasonable?

© Eric Xing @ CMU, 2005-2009 25

Single-node Conditional 
The conditional dist. of a single node i given the rest of the 
nodes can be written as:

WOLG: let 

© Eric Xing @ CMU, 2005-2009 26
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Conditional auto-regression 
From 

We can write the following conditional auto-regression 
function for each node:
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Neighborhood est. based on auto-regression coefficient

Conditional independence
From

Given an estimate of the neighborhood si, we have:

© Eric Xing @ CMU, 2005-2009 28

Thus the neighborhood si defines the Markov blanket of node i
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Consistency

Theorem: for the graphical regression algorithm, under 
certain verifiable conditions (omitted here for simplicity):certain verifiable conditions (omitted here for simplicity):

Note the from this theorem one should see that the regularizer is not actually 
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g y
used to introduce an “artificial” sparsity bias, but a devise to ensure consistency 
under finite data and high dimension condition.

Recent trends in GGM:
Covariance selection (classical 
method) 

L1-regularization based 
method (hot !)

Dempster [1972]: 
Sequentially pruning smallest 
elements in precision matrix

Drton and Perlman [2008]: 
Improved statistical tests for 
pruning

Meinshausen and Bühlmann [Ann. 
Stat. 06]: 

Used LASSO regression for 
neighborhood selection

Banerjee [JMLR 08]: 
Block sub-gradient algorithm for 
finding precision matrix

Friedman et al. [Biostatistics 08]: 

© Eric Xing @ CMU, 2005-2009 30

Efficient fixed-point equations 
based on a sub-gradient 
algorithm

…

Serious limitations in 
practice: breaks down when 
covariance matrix is not 
invertible

Structure learning is possible 
even when # variables ＞ # 
samples



16

Learning GM
Learning of best CPDs given DAG is easy

collect statistics of values of each node given specific assignment to its parentsg p g p

Learning of the graph topology (structure) is NP-hard
heuristic search must be applied, generally leads to a locally optimal network

We prefer simpler (more explanatory) networks
Regularized graph regression
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Regularized graph regression

New Problem: 
Evolving Social Networks

Can I get his vote?

CorporativityCorporativity, 

Antagonism,

Cliques,
…

over time?

© Eric Xing @ CMU, 2005-2009 32

March 2005 January 2006 August 2006
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Time-Varying Gene Regulations

© Eric Xing @ CMU, 2005-2009 33

Departing from invariant GM est.
Existing work:

Assuming networks or network time series are observable and giveng g

Then model/analyze the generative and/or dynamic mechanisms

© Eric Xing @ CMU, 2005-2009 34

We assume:
Networks are not observable
So we need to INFER the networks 
from nodal attributes before analyzing them 
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t*

Reverse engineer temporal/spatial-
specific "rewiring" gene networks

T0 TN

…
n=1 or some small #

© Eric Xing @ CMU, 2005-2009 35

Drosophila developmentDrosophila development

Challenges

Very small sample size
observations are scarce and costlyy

Noisy data

Large dimensionality of the data
usually 
complexity regularization is required to avoid curse of dimensionality, 

© Eric Xing @ CMU, 2005-2009 36

e.g. sparsity

And now the data are non-iid since underlying probability distribution 
is changing !
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KELLER: Kernel Weighted L1-regularized Logistic Regression

Inference I [Song, Kolar and Xing, Bioinformatics 09]
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Constrained convex optimization
Estimate time-specific one by one
Could scale to ~104 genes, but under stronger smoothness assumptions

Conditional likelihood

Algorithm - neighborhood selection

Neighborhood:

Estimate at

© Eric Xing @ CMU, 2005-2009 38

Where

and
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Structural consistency of 
KELLER

Assumptions
Define: 

A1: Dependency Condition

A2: Incoherence Condition

© Eric Xing @ CMU, 2005-2009 39

A3: Smoothness Condition

A4: Bounded Kernel

Theorem [Kolar and Xing, 09]

© Eric Xing @ CMU, 2005-2009 40
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TESLA: Temporally Smoothed L1-regularized logistic regression

Inference II [Ahmed and Xing, PNAS 09]

© Eric Xing @ CMU, 2005-2009 41

Constrained convex optimization
Scale to ~5000 nodes, does not need smoothness assumption, can 
accommodate abrupt changes. 

Modified estimation procedure

estimate block partition on which the coefficient functions are 
constant

estimate the coefficient functions on each block of the 
partition

(*)

(**)

© Eric Xing @ CMU, 2005-2009 42

(**)
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Structural Consistency of TESLA

I. It can be shown that, by applying the results for model
selection of the randomized Lasso on a temporal difference 

[Kolar and Xing, NIPS2009]

p
transformation of (*), the the blockblock are estimated consistentlyare estimated consistently

II. Then it can be further shown that, by applying Lasso on (**),
thethe neighborhoodneighborhood of each node of each node on each of the on each of the 
estimated blocksestimated blocks consistentlyconsistently
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Further advantages of the two step procedure
choosing parameters easier
faster optimization procedure

Two Scenarios 

© Eric Xing @ CMU, 2005-2009 44

Smoothly evolving graphsSmoothly evolving graphs Abruptly evolving graphsAbruptly evolving graphs
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Comparison of KELLER and 
TESLA

© Eric Xing @ CMU, 2005-2009 45

Smoothly varying Abruptly varying

Senate network – 109th congress

Voting records from 109th congress (2005 - 2006)
There are 100 senators whose votes were recorded on the 
542 bills, each vote is a binary outcome

© Eric Xing @ CMU, 2005-2009 46

Estimating parameters:
KELLER: bandwidth parameter to be hn = 0.174, and the penalty parameter λ1 = 
0.195
TESLA: λ1 = 0.24 and λ2 = 0.28
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Senate network – 109th congress

© Eric Xing @ CMU, 2005-2009 47

March 2005 January 2006 August 2006

Senator Chafee

© Eric Xing @ CMU, 2005-2009 48
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Senator Ben Nelson

© Eric Xing @ CMU, 2005-2009 49

T=0.2 T=0.8

Drosophila life cycle
From Arbeitman et al. (2002)

Four stages: 
embryo, larva, pupa, adult

66 microarray measured
across full life cycle

© Eric Xing @ CMU, 2005-2009 50

Focus on 588 development
related genes
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Dynamic Gene Interactions Networks 
of Drosophila Melanogaster

biological biological 
processprocess

© Eric Xing @ CMU, 2005-2009 51

molecular molecular 
functionfunction

cellular cellular 
componentcomponent

Summary
Graphical Gaussian Model

The precision matrix encode structure
Not estimatable when p >> n

Neighborhood selection:
Conditional dist under GGM
Graphical lasso
Sparsistency

© Eric Xing @ CMU, 2005-2009 52

Time-varying GGM
Kernel reweighting est.
Total variation est.


