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Learning parameters
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Assume each variable xi is discrete and can take on Ki values.

The parameters of this model can be represented as 4 tables: θ1 has K1 entries, θ2 has
K1 ×K2 entries, etc.

These are called conditional probability tables (CPTs) with the following semantics:

p(x1 = k) = θ1,k p(x2 = k′|x1 = k) = θ2,k,k′

If node i has M parents, θi can be represented either as an M + 1 dimensional table, or as

a 2-dimensional table with
(∏

j∈pa(i) Kj

)
×Ki entries by collapsing all the states of the

parents of node i. Note that
∑

k′ θi,k,k′ = 1.

Assume a data set D = {x(n)}Nn=1. How do we learn θ from D?



Learning parameters

Assume a data set D = {x(n)}Nn=1. How do we learn θ from D?
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p(x|θ) = p(x1|θ1)p(x2|x1, θ2)p(x3|x1, θ3)p(x4|x2, θ4)

Likelihood:
p(D|θ) =

N∏
n=1

p(x(n)|θ)

Log Likelihood:
log p(D|θ) =

N∑
n=1

∑
i

log p(x(n)
i |x

(n)
pa(i), θi)

This decomposes into sum of functions of θi. Each θi can be optimized separately:

θ̂i,k,k′ =
ni,k,k′∑
k′′ ni,k,k′′

where ni,k,k′ is the number of times in D where xi = k′ and xpa(i) = k, where k represents
a joint configuration of all the parents of i (i.e. takes on one of

∏
j∈pa(i) Kj values)

ML solution: Simply calculate frequencies!

2 3 0

3 1 6
x1

x2n2
0.4 0.6 0

0.3 0.1 0.6
x1

x2θ2

⇒



Deriving the Maximum Likelihood Estimate

p(y|x, θ) =
∏
k,`

θ
δ(x,k)δ(y,`)
k,`

x

y
θ

Dataset D = {(x(n), y(n)) : n = 1 . . . , N}

L(θ) = log
∏
n

p(y(n)|x(n), θ)

= log
∏
n

∏
k,`

θ
δ(x(n),k)δ(y(n),`)
k,`

=
∑
n,k,`

δ(x(n), k)δ(y(n), `) log θk,`

=
∑
k,`

(∑
n

δ(x(n), k)δ(y(n), `)

)
log θk,` =

∑
k,`

nk,` log θk,`

Maximize L(θ) w.r.t. θ subject to
∑

` θk,` = 1 for all k.



Maximum Likelihood Learning with Hidden Variables
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Assume a model parameterised by θ with
observable variables Y and hidden variables X

Goal: maximize parameter log likelihood given observed data.

L(θ) = log p(Y |θ) = log
∑
X

p(Y, X|θ)



Maximum Likelihood Learning with Hidden Variables:
The EM Algorithm
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Goal: maximise parameter log likelihood given observables.

L(θ) = log p(Y |θ) = log
∑
X

p(Y, X|θ)

The Expectation Maximization (EM) algorithm (intuition):

Iterate between applying the following two steps:

• The E step: fill-in the hidden/missing variables

• The M step: apply complete data learning to filled-in data.



Maximum Likelihood Learning with Hidden Variables:
The EM Algorithm

Goal: maximise parameter log likelihood given observables.

L(θ) = log p(Y |θ) = log
∑
X

p(Y, X|θ)

The EM algorithm (derivation):

L(θ) = log
∑
X

q(X)
p(Y, X|θ)

q(X)
≥
∑
X

q(X) log
p(Y, X|θ)

q(X)
= F(q(X), θ)

• The E step: maximize F(q(X), θ[t]) wrt q(X) holding θ[t] fixed:

q(X) = p(X|Y, θ[t])

• The M step: maximize F(q(X), θ) wrt θ holding q(X) fixed:

θ[t+1] ← argmaxθ

∑
X

q(X) log p(Y, X|θ)

The E-step requires solving the inference problem, finding the distribution over the hidden
variables p(X|Y, θ[t]) given the current model parameters. This can be done using belief
propagation or the junction tree algorithm.



Maximum Likelihood Learning without and with Hidden Variables

ML Learning with Complete Data (No Hidden Variables)

Log likelihood decomposes into sum of functions of θi. Each θi can be optimized separately:

θ̂ijk ←
nijk∑
k′ nijk′

where nijk is the number of times in D where xi = k and xpa(i) = j.

Maximum likelihood solution: Simply calculate frequencies!

ML Learning with Incomplete Data (i.e. with Hidden Variables)

Iterative EM algorithm

E step: compute expected counts given previous settings of parameters E[nijk|D,θ[t]].

M step: re-estimate parameters using these expected counts

θ
[t+1]
ijk ← E[nijk|D,θ[t]]∑

k′ E[nijk′|D,θ[t]]



Bayesian Learning

Apply the basic rules of probability to learning from data.

Data set: D = {x1, . . . , xn} Models: m, m′ etc. Model parameters: θ

Prior probability of models: P (m), P (m′) etc.
Prior probabilities of model parameters: P (θ|m)
Model of data given parameters (likelihood model): P (x|θ, m)

If the data are independently and identically distributed then:

P (D|θ, m) =
n∏

i=1

P (xi|θ, m)

Posterior probability of model parameters:

P (θ|D,m) =
P (D|θ, m)P (θ|m)

P (D|m)

Posterior probability of models:

P (m|D) =
P (m)P (D|m)

P (D)



Bayesian Occam’s Razor and Model Comparison

Compare model classes, e.g. m and m′, using posterior probabilities given D:

p(m|D) =
p(D|m) p(m)

p(D)
, p(D|m) =

∫
p(D|θ,m) p(θ|m) dθ

Interpretations of the Marginal Likelihood (“model evidence”):

• The probability that randomly selected parameters from the prior would generate D.

• Probability of the data under the model, averaging over all possible parameter values.

• log2

(
1

p(D|m)

)
is the number of bits of surprise at observing data D under model m.

Model classes that are too simple are unlikely
to generate the data set.

Model classes that are too complex can
generate many possible data sets, so again,
they are unlikely to generate that particular
data set at random.

too simple

too complex

"just right"

All possible data sets of size n

P
(D

|m
)

D



Model structure and overfitting:
A simple example: polynomial regression
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Bayesian Model Comparison: Occam’s Razor at Work
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Model Evidence

For example, for quadratic polynomials (m = 2): y = a0 + a1x + a2x
2 + ε, where

ε ∼ N (0, σ2) and parameters θ = (a0 a1 a2 σ)

demo: polybayes



Learning Model Structure

How many clusters in the data?

What is the intrinsic dimensionality of the data?

Is this input relevant to predicting that output?

What is the order of a dynamical system?

How many states in a hidden Markov model?
SVYDAAAQLTADVKKDLRDSWKVIGSDKKGNGVALMTTY

How many auditory sources in the input?

Which graph structure best models the data? A

D

C

B

Edemo: run simple



Bayesian parameter learning with no hidden variables

Let nijk be the number of times (x
(n)
i = k and x

(n)
pa(i) = j) in D.

For each i and j, θij· is a probability vector of length Ki × 1.

Since xi is a discrete variable with probabilities given by θi,j,·, the likelihood is:

p(D|θ) =
∏
n

∏
i

p(x(n)
i |x

(n)
pa(i),θ) =

∏
i

∏
j

∏
k

θ
nijk

ijk

If we choose a prior on θ of the form:

p(θ) = c
∏

i

∏
j

∏
k

θ
αijk−1

ijk

where c is a normalization constant, and
∑

k θijk = 1 ∀i, j, then the posterior distribution
also has the same form:

p(θ|D) = c′
∏

i

∏
j

∏
k

θ
α̃ijk−1

ijk

where α̃ijk = αijk + nijk.

This distribution is called the Dirichlet distribution.



Dirichlet Distribution

The Dirichlet distribution is a distribution over the K-dim probability simplex.

Let θ be a K-dimensional vector s.t. ∀j : θj ≥ 0 and
∑K

j=1 θj = 1

p(θ|α) = Dir(α1, . . . , αK) def=
Γ(
∑

j αj)∏
j Γ(αj)

K∏
j=1

θ
αj−1

j

where the first term is a normalization constant1 and E(θj) = αj/(
∑

k αk)

The Dirichlet is conjugate to the multinomial distribution. Let

x|θ ∼ Multinomial(·|θ)

That is, p(x = j|θ) = θj. Then the posterior is also Dirichlet:

p(θ|x = j, α) =
p(x = j|θ)p(θ|α)

p(x = j|α)
= Dir(α̃)

where α̃j = αj + 1, and ∀` 6= j : α̃` = α`
1Γ(x) = (x − 1)Γ(x − 1) =

R ∞
0 tx−1e−tdt. For integer n, Γ(n) = (n − 1)!



Dirichlet Distributions

Examples of Dirichlet distributions over θ = (θ1, θ2, θ3) which can be plotted in 2D since
θ3 = 1− θ1 − θ2:



Example

Assume αijk = 1 ∀i, j, k.

This corresponds to a uniform prior distribution over parameters θ. This is not a very
strong/dogmatic prior, since any parameter setting is assumed a priori possible.

After observed data D, what are the parameter posterior distributions?

p(θij·|D) = Dir(nij· + 1)

This distribution predicts, for future data:

p(xi = k|xpa(i) = j,D) =
nijk + 1∑

k′(nijk′ + 1)

Adding 1 to each of the counts is a form of smoothing called “Laplace’s Rule”.



Bayesian parameter learning with hidden variables

Notation: let D be the observed data set, X be hidden variables, and θ be model
parameters. Assume discrete variables and Dirichlet priors on θ

Goal: to infer p(θ|D) =
∑

X p(X ,θ|D)

Problem: since (a)

p(θ|D) =
∑
X

p(θ|X ,D)p(X|D),

and (b) for every way of filling in the missing data, p(θ|X ,D) is a Dirichlet distribution,
and (c) there are exponentially many ways of filling in X , it follows that p(θ|D) is a mixture
of Dirichlets with exponentially many terms!

Solutions:

• Find a single best (“Viterbi”) completion of X (Stolcke and Omohundro, 1993)

• Markov chain Monte Carlo methods

• Variational Bayesian (VB) methods (Beal and Ghahramani, 2006)



Summary of parameter learning

Complete (fully observed) data Incomplete (hidden /missing) data

ML calculate frequencies EM

Bayesian update Dirichlet distributions MCMC / Viterbi / VB

• For complete data Bayesian learning is not more costly than ML

• For incomplete data VB ≈ EM time complexity

• Other parameter priors are possible but Dirichlet is pretty flexible and intuitive.

• For non-discrete data, similar ideas but generally harder inference and learning.



Structure learning

Given a data set of observations of (A,B, C, D, E) can we learn the structure of the
graphical model?
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Let m denote the graph structure = the set of edges.



Structure learning
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Constraint-Based Learning: Use statistical tests of marginal and conditional
independence. Find the set of DAGs whose d-separation relations match the results of
conditional independence tests.

Score-Based Learning: Use a global score such as the BIC score or Bayesian marginal
likelihood. Find the structures that maximize this score.



Score-based structure learning for complete data

Consider a graphical model with structure m, discrete observed data D, and parameters θ.
Assume Dirichlet priors.

The Bayesian marginal likelihood score is easy to compute:

score(m) = log p(D|m) = log
∫

p(D|θ, m)p(θ|m)dθ

score(m) =
X

i

X
j

"
log Γ(

X
k

αijk)−
X

k

log Γ(αijk)− log Γ(
X

k

α̃ijk) +
X

k

log Γ(α̃ijk)

#
where α̃ijk = αijk + nijk. Note that the score decomposes over i.

One can incorporate structure prior information p(m) as well:

score(m) = log p(D|m) + log p(m)

Greedy search algorithm: Start with m. Consider modifications m→ m′ (edge deletions,
additions, reversals). Accept m′ if score(m′) > score(m). Repeat.

Bayesian inference of model structure: Run MCMC on m.



Bayesian Structural EM for incomplete data

Consider a graph with structure m, observed data D, hidden variables X and parameters θ

The Bayesian score is generally intractable to compute:

score(m) = p(D|m) =
∫ ∑

X

p(X , θ,D|m)dθ

Bayesian Structure EM (Friedman, 1998):

1. compute MAP parameters θ̂ for current model m using EM

2. find hidden variable distribution p(X|D, θ̂)

3. for a small set of candidate structures compute or approximate

score(m′) =
∑
X

p(X|D, θ̂) log p(D,X|m′)

4. m← m′ with highest score

Alternatively we can use variational Bayesian learning (Beal and Ghahramani, 2006).



Directed Graphical Models and Causality

Causal relationships are a fundamental component of cognition and scientific discovery.

Even though the independence relations are identical, there is a causal difference between

• “smoking” → “yellow teeth”

• “yellow teeth” → “smoking”

Key idea: interventions and the do-calculus:

p(S|Y = y) 6= p(S|do(Y = y))

p(Y |S = s) = p(Y |do(S = s))
Causal relationships are robust to interventions on the parents.

The key difficulty in learning causal relationships from observational data is the presence
of hidden common causes:

A
H

B A BA B



Learning parameters and structure in undirected graphs
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p(x|θ) = 1
Z(θ)

∏
j gj(xCj

;θj) where Z(θ) =
∑

x

∏
j gj(xCj

;θj).

Problem: computing Z(θ) is computationally intractable for general (non-tree-structured)
undirected models. Therefore, maximum-likelihood learning of parameters is generally
intractable, Bayesian scoring of structures is intractable, etc.

Solutions:

• directly approximate Z(θ) and/or its derivatives (cf. Boltzmann machine learning;
contrastive divergence; pseudo-likelihood)

• use approx inference methods (e.g. loopy belief propagation, bounding methods, EP).

See: (Murray and Ghahramani, 2004; Murray et al, 2006) for Bayesian learning in undirected models.



Summary

• Parameter learning in directed models:

– complete and incomplete data;
– ML and Bayesian methods

• Bayesian model comparison and Occam’s Razor

• Structure learning in directed models: complete and incomplete data

• Causality

• Parameter and Structure learning in undirected models
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