Semi-Supervised Learning Aarti Singh Machine Learning 10-701/15-781 April 19, 2010 Slides Courtesy: Jerry Zhu # HW, Exam & Project - HW 5: out today, due April 26 (Monday) @ beginning of class - Project Poster Session: May 4 (Tuesday), 3-6 pm, NSH Atrium - Project Report: May 5 (Wednesday) @ midnight by email - Exam: May 7 (Friday), 5:30-8:30 pm, DH 2302 # **Supervised Learning** **Feature** Space \mathcal{X} **Label** Space \mathcal{Y} **Goal:** Construct a **predictor** $f: \mathcal{X} \to \mathcal{Y}$ to minimize $$R(f) \equiv \mathbb{E}_{XY} \left[loss(Y, f(X)) \right]$$ Optimal predictor (Bayes Rule) depends on unknown P_{XY} , so instead *learn* a good prediction rule from training data $\{(X_i, Y_i)\}_{i=1}^n \stackrel{\text{iid}}{\sim} P_{XY}(\text{unknown})$ Training data $$\square$$ Learning algorithm \square Prediction rule $\{(X_i,Y_i)\}_{i=1}^n$ Labeled ### Labeled and Unlabeled data "Crystal" "Needle" "Empty" Human expert/ Special equipment/ Experiment "0" "1" "2" ... "Sports" "News" "Science" Unlabeled data, X_i Labeled data, Y_i Cheap and abundant! Expensive and scarce! ## **Example: Hard to obtain labels** Task: speech analysis - Switchboard dataset - telephone conversation transcription - 400 hours annotation time for each hour of speech ``` film ⇒ f ih_n uh_gl_n m be all ⇒ bcl b iy iy_tr ao_tr ao l_dl ``` ## **Example: Hard to obtain labels** Task: natural language parsing - Penn Chinese Treebank - 2 years for 4000 sentences "The National Track and Field Championship has finished." ## Free-of-cost labels? Luis von Ahn: Games with a purpose (ReCaptcha) | Email address | | |--|---| | Password | | | STEDIA DOOD | | | Type the two words: Compared to wo | Word rejected by OCR (Optical Character Recogintion) You provide a free label! | | Log In | | # Semi-Supervised learning Training data $$\square$$ Learning algorithm \square Prediction rule $\{(X_i,Y_i)\}_{i=1}^n$ $\widehat{f}_{n,m}$ $\{X_i\}_{i=1}^m$ #### Supervised learning (SL) Labeled data $\{X_i, Y_i\}_{i=1}^n$ "Crystal" X_i Y_i #### Semi-Supervised learning (SSL) Labeled data $\{X_i, Y_i\}_{i=1}^n$ and Unlabeled data $\{X_i\}_{i=1}^m$ Goal: Learn a better prediction rule than based on labeled data alone. ## Semi-Supervised learning in Humans #### Cognitive science Computational model of how humans learn from labeled and unlabeled data. - concept learning in children: x=animal, y=concept (e.g., dog) - Daddy points to a brown animal and says "dog!" - Children also observe animals by themselves # Can unlabeled data help? - Positive labeled data - Negative labeled data - Unlabeled data Assume each class is a coherent group (e.g. Gaussian) Then unlabeled data can help identify the boundary more accurately. # Can unlabeled data help? Unlabeled Images Labels "0" "1" "2" ... "Similar" data points have "similar" labels # **Self-training** Our first SSL algorithm: Input: labeled data $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$. - 1. Initially, let $L = \{(\mathbf{x}_i, y_i)\}_{i=1}^l$ and $U = \{\mathbf{x}_j\}_{j=l+1}^{l+u}$. - 2. Repeat: - 3. Train f from L using supervised learning. - 4. Apply f to the unlabeled instances in U. - 5. Remove a subset S from U; add $\{(\mathbf{x}, f(\mathbf{x})) | \mathbf{x} \in S\}$ to L. #### Self-training is a wrapper method - the choice of learner for f in step 3 is left completely open - good for many real world tasks like natural language processing - ullet but mistake by f can reinforce itself # **Self-training Example** #### **Propagating 1-NN** Input: labeled data $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$, distance function d(). - 1. Initially, let $L = \{(\mathbf{x}_i, y_i)\}_{i=1}^l$ and $U = \{\mathbf{x}_j\}_{j=l+1}^{l+u}$. - 2. Repeat until U is empty: - 3. Select $\mathbf{x} = \operatorname{argmin}_{\mathbf{x} \in U} \min_{\mathbf{x}' \in L} d(\mathbf{x}, \mathbf{x}')$. - 4. Set $f(\mathbf{x})$ to the label of \mathbf{x} 's nearest instance in L. Break ties randomly. - 5. Remove \mathbf{x} from U; add $(\mathbf{x}, f(\mathbf{x}))$ to L. ### Propagating 1-Nearest-Neighbor: now it works ### Propagating 1-Nearest-Neighbor: now it doesn't But with a single outlier... ## **Some SSL Algorithms** Generative methods – assume a model for p(x,y) and maximize joint likelihood Mixture models - Multi-view methods multiple independent learners that agree on prediction for unlabeled data Co-training - Graph-based methods assume the target function p(y|x) is smooth wrt a graph or manifold Graph/Manifold Regularization # **Some SSL Algorithms** Generative methods – assume a model for p(x,y) and maximize joint likelihood Mixture models - Multi-view methods multiple independent learners that agree on prediction for unlabeled data Co-training - Graph-based methods assume the target function p(y|x) is smooth wrt a graph or manifold Graph/Manifold Regularization Labeled data (X_l, Y_l) : Assuming each class has a Gaussian distribution, what is the decision boundary? Model parameters: $\theta = \{w_1, w_2, \mu_1, \mu_2, \Sigma_1, \Sigma_2\}$ The GMM: $$p(x, y|\theta) = p(y|\theta)p(x|y, \theta)$$ $$= w_y \mathcal{N}(x; \mu_y, \Sigma_y)$$ Classification: $p(y|x,\theta) = \frac{p(x,y|\theta)}{\sum_{y'} p(x,y'|\theta)} \ge 1/2$ The most likely model, and its decision boundary: Adding unlabeled data: With unlabeled data, the most likely model and its decision boundary: They are different because they maximize different quantities. #### Assumption knowledge of the model form $p(X, Y|\theta)$. joint and marginal likelihood $$p(X_l, Y_l, X_u | \theta) = \sum_{Y_u} p(X_l, Y_l, X_u, Y_u | \theta)$$ - find the maximum likelihood estimate (MLE) of θ , the maximum a posteriori (MAP) estimate, or be Bayesian - common mixture models used in semi-supervised learning: - Mixture of Gaussian distributions (GMM) image classification - Mixture of multinomial distributions (Naïve Bayes) text categorization - Hidden Markov Models (HMM) speech recognition - Learning via the Expectation-Maximization (EM) algorithm (Baum-Welch) ### **Gaussian Mixture Models** Binary classification with GMM using MLE. - with only labeled data - ▶ MLE for θ trivial (sample mean and covariance) - with both labeled and unlabeled data $$\log p(X_l, Y_l, X_u | \theta) = \sum_{i=1}^l \log p(y_i | \theta) p(x_i | y_i, \theta)$$ $$+ \sum_{i=l+1}^{l+u} \log \left(\sum_{y=1}^2 p(y | \theta) p(x_i | y, \theta) \right)$$ ► MLE harder (hidden variables): EM ### **EM for Gaussian Mixture Models** - Start from MLE $\theta = \{w, \mu, \Sigma\}_{1:2}$ on (X_l, Y_l) , - w_c =proportion of class c - μ_c =sample mean of class c - Σ_c =sample cov of class c #### repeat: - ② The E-step: compute the expected label $p(y|x,\theta) = \frac{p(x,y|\theta)}{\sum_{y'} p(x,y'|\theta)}$ for all $x \in X_u$ - ▶ label $p(y = 1|x, \theta)$ -fraction of x with class 1 - ▶ label $p(y = 2|x, \theta)$ -fraction of x with class 2 - **3** The M-step: update MLE θ with (now labeled) X_u ## **Assumption for GMMs** - **Assumption**: the data actually comes from the mixture model, where the number of components, prior p(y), and conditional $p(\mathbf{x}|y)$ are all correct. - When the assumption is wrong: # **Assumption for GMMs** ## **Assumption for GMMs** Heuristics to lessen the danger - Carefully construct the generative model, e.g., multiple Gaussian distributions per class - Down-weight the unlabeled data ($\lambda < 1$) $$\log p(X_l, Y_l, X_u | \theta) = \sum_{i=1}^{l} \log p(y_i | \theta) p(x_i | y_i, \theta)$$ $$+ \frac{\lambda}{\lambda} \sum_{i=l+1}^{l+u} \log \left(\sum_{y=1}^{2} p(y | \theta) p(x_i | y, \theta) \right)$$ Other issues: Identifiability, EM local optima ### Related: Cluster and Label **Input**: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l), \mathbf{x}_{l+1}, \dots, \mathbf{x}_{l+u},$ a clustering algorithm \mathcal{A} , a supervised learning algorithm \mathcal{L} - 1. Cluster $\mathbf{x}_1, \ldots, \mathbf{x}_{l+u}$ using \mathcal{A} . - 2. For each cluster, let S be the labeled instances in it: - 3. Learn a supervised predictor from S: $f_S = \mathcal{L}(S)$. - 4. Apply f_S to all unlabeled instances in this cluster. **Output**: labels on unlabeled data y_{l+1}, \ldots, y_{l+u} . But again: **SSL** sensitive to assumptions—in this case, that the clusters coincide with decision boundaries. If this assumption is incorrect, the results can be poor. ### Cluster-and-label: now it works, now it doesn't Example: A=Hierarchical Clustering, $\mathcal{L}=$ majority vote. ## **Some SSL Algorithms** Generative methods – assume a model for p(x,y) and maximize joint likelihood Mixture models Multi-view methods – multiple independent learners that agree on prediction for unlabeled data Co-training Graph-based methods – assume the target function p(y|x) is smooth wrt a graph or manifold Graph/Manifold Regularization ### Two views of an Instance Example: named entity classification Person (Mr. Washington) or Location (Washington State) ``` instance 1: ... headquartered in (Washington State) ... instance 2: ... (Mr. Washington), the vice president of ... ``` - ullet a named entity has two views (subset of features) ${f x}=[{f x}^{(1)},{f x}^{(2)}]$ - ullet the words of the entity is ${f x}^{(1)}$ - the context is $\mathbf{x}^{(2)}$ ### Two views of an Instance ``` instance 1: ... headquartered in (Washington State)^L ... instance 2: ... (Mr. Washington)^P, the vice president of ... test: ... (Robert Jordan), a partner at ... test: ... flew to (China) ... ``` ### Two views of an Instance ``` With more unlabeled data instance 1: ... headquartered in (Washington State)^L ... instance 2: ... (Mr. Washington)^P, the vice president of ... instance 3: ... headquartered in (Kazakhstan) ... instance 4: ... flew to (Kazakhstan) ... instance 5: ... (Mr. Smith), a partner at Steptoe & Johnson ... test: ... (Robert Jordan), a partner at ... test: ... flew to (China) ... ``` ## **Co-training Algorithm** Blum & Mitchell'98 **Input**: labeled data $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$ each instance has two views $\mathbf{x}_i = [\mathbf{x}_i^{(1)}, \mathbf{x}_i^{(2)}]$, and a learning speed k. - 1. let $L_1 = L_2 = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l)\}.$ - 2. Repeat until unlabeled data is used up: - 3. Train view-1 $f^{(1)}$ from L_1 , view-2 $f^{(2)}$ from L_2 . - 4. Classify unlabeled data with $f^{(1)}$ and $f^{(2)}$ separately. - Add $f^{(1)}$'s top k most-confident predictions $(\mathbf{x}, f^{(1)}(\mathbf{x}))$ to L_2 . Add $f^{(2)}$'s top k most-confident predictions $(\mathbf{x}, f^{(2)}(\mathbf{x}))$ to L_1 . Remove these from the unlabeled data. Like self-training, but with two classifiers teaching each other. # **Co-training** #### Assumptions - feature split $x = [x^{(1)}; x^{(2)}]$ exists - ullet $x^{(1)}$ or $x^{(2)}$ alone is sufficient to train a good classifier - \bullet $x^{(1)}$ and $x^{(2)}$ are conditionally independent given the class # Multi-view learning #### Extends co-training. - Loss Function: $c(\mathbf{x}, y, f(\mathbf{x})) \in [0, \infty)$. For example, - squared loss $c(\mathbf{x}, y, f(\mathbf{x})) = (y f(\mathbf{x}))^2$ - ▶ 0/1 loss $c(\mathbf{x}, y, f(\mathbf{x})) = 1$ if $y \neq f(\mathbf{x})$, and 0 otherwise. - Empirical risk: $\hat{R}(f) = \frac{1}{l} \sum_{i=1}^{l} c(\mathbf{x}_i, y_i, f(\mathbf{x}_i))$ - Regularizer: $\Omega(f)$, e.g., $||f||^2$ - \bullet Regularized Risk Minimization $f^* = \operatorname{argmin}_{f \in \mathcal{F}} \hat{R}(f) + \lambda \Omega(f)$ # Multi-view learning A special regularizer $\Omega(f)$ defined on unlabeled data, to encourage agreement among multiple learners: Each of the k learners is good $$\underset{f_1, \dots, f_k}{\operatorname{argmin}} \sum_{v=1}^k \left(\sum_{i=1}^l c(\mathbf{x}_i, y_i, f_v(\mathbf{x}_i)) + \lambda_1 \Omega_{SL}(f_v) \right) + \lambda_2 \sum_{i=1}^k \sum_{i=l+1}^{l+u} c(\mathbf{x}_i, f_u(\mathbf{x}_i), f_v(\mathbf{x}_i)) \right)$$ The k learners agree on unlabeled data ## **Some SSL Algorithms** Generative methods – assume a model for p(x,y) and maximize joint likelihood Mixture models - Multi-view methods multiple independent learners that agree on prediction for unlabeled data Co-training - Graph-based methods assume the target function p(y|x) is smooth wrt a graph or manifold Graph/Manifold Regularization **Assumption:** Similar unlabeled data have similar labels. Handwritten digits recognition with pixel-wise Euclidean distance Similarity Graphs: Model local neighborhood relations between data points - Nodes: $X_l \cup X_u$ - Edges: similarity weights computed from features, e.g., - k-nearest-neighbor graph - fully connected graph, weight decays with distance $w_{ij} = \exp\left(-\|x_i x_j\|^2/\sigma^2\right)$ - ightharpoonup ϵ -radius graph Graph Prior: $$p(f) \propto e^{-\sum_{i,j} w_{ij} (f_i - f_j)^2}$$ If data points i and j are similar (i.e. weight w_{ij} is large), then their labels are similar $f_i = f_i$ $$\min_{f} \sum_{i \in l} (y_i - f_i)^2 + \lambda \sum_{i,j \in l,u} w_{ij} (f_i - f_j)^2$$ Loss on labeled data (mean square,0-1) Graph based smoothness prior on labeled and unlabeled data $$\min_{f} \sum_{i \in l} (y_i - f_i)^2 + \lambda \sum_{i,j \in l,u} w_{ij} (f_i - f_j)^2$$ Loss on labeled data Graph based smoothness prior on labeled and unlabeled data From previous lecture, recall the second term is simply the min-cut objective. If binary label, can be solved by min-cut on a modified graph - add source and sink nodes with large weight to labeled examples. # **Semi-Supervised Learning** - Generative methods Mixture models - Multi-view methods Co-training - Graph-based methods Manifold Regularization - Semi-Supervised SVMs assume unlabeled data from different classes have large margin - Many other methods SSL algorithms can use unlabeled data to help improve prediction accuracy if data satisfies appropriate assumptions