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HW, Exam & Project

HW 5: out today, due April 26 (Monday) @ beginning of class
Project Poster Session: May 4 (Tuesday), 3-6 pm, NSH Atrium
Project Report: May 5 (Wednesday) @ midnight by email

Exam: May 7 (Friday), 5:30-8:30 pm, DH 2302



Supervised Learning
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Feature Space X

N\

Label Space Y

Goal: Construct a predictor f: X — Y to minimize

R(f) = Exy [loss(Y, f(X))]

~
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Optimal predictor (Bayes Rule) depends on unknown P, so instead learn a

iid

good prediction rule from training data{(X;,Y;)}}—1 ~ Pxy(unknown)

Training data |:>
Labeled

Learning algorithm

|:> Prediction rule
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Labeled and Unlabeled data

“Crystal” “Needle” “Empty”

/\Z - “0” 1" 2" ...

A
Human expert/ “Sports”
Special equipment/ News
Experiment Science
Unlabeled data, X; Labeled data, Y;

Cheap and abundant ! Expensive and scarce !



Example: Hard to obtain labels

Task: speech analysis
@ Switchboard dataset
e telephone conversation transcription
@ 400 hours annotation time for each hour of speech
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Example: Hard to obtain labels

Task: natural language parsing
@ Penn Chinese Treebank

@ 2 years for 4000 sentences
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“The National Track and Field Championship has finished.”



Free-of-cost labels?

Luis von Ahn: Games with a purpose (ReCaptcha)

Email address

Fassword
: - Word rejected by OCR
Type the two words: :“ @APTEHA : (Optical Character Recogintion)
‘ o ‘=adftok= | You provide a free label!

Log In



Semi-Supervised learning

Training data |:> Learning algorithm |:> Prediction rule

{(Xfiayi)}?zl fn,m
{Xi}tizq
Supervised learning (SL) i
Labeled data {X;, Y;}7 /in crystal
X Y;

Semi-Supervised learning (SSL)

Labeled data {X;,Y;}!*; and Unlabeled data {X;}™ @

Goal: Learn a better prediction rule than based on labeled data alone.




Semi-Supervised learning in Humans

Cognitive science

Computational model of how humans learn from labeled and unlabeled
data.

@ concept learning in children: x=animal, y=concept (e.g., dog)
@ Daddy points to a brown animal and says “dog!”

@ Children also observe animals by themselves




Can unlabeled data help?

@® Positive labeled data
@® Negative labeled data
Unlabeled data

Supervised Decision Boundary

Assume each class is a coherent group (e.g. Gaussian)

Then unlabeled data can help identify the boundary more accurately.



Can unlabeled data help?

Unlabeled Images

“Similar” data points have “similar” labels

Labels uon uln u2n



Self-training

Our first SSL algorithm:

[+u

Input: labeled data {(x;.y:)}._;, unlabeled data %5} 0041

1. Initially, let L = {(x;. y:)}—y and U = {x;}.77, ;.
2. Repeat:
3. Train f from L using supervised learning.

4 Apply f to the unlabeled instances in U.
5 Remove a subset S from U; add {(x, f(x))|x € S} to L.

Self-training I1s a wrapper method
@ the choice of learner for f in step 3 is left completely open
@ good for many real world tasks like natural language processing

@ but mistake by f can reinforce itself



Self-training Example

Propagating 1-NN

Input: labeled data {(x;.%:)}'_;, unlabeled data {Xj};z"‘ﬂ
distance function d().

L. Initially, let L = {(x;, y:)}—y and U = {x;}/1}, .

2. Repeat until U i1s empty:

3. Select X = argming .y ming/cy, d(x,x’).

4. Set f(x) to the label of x's nearest instance in L.

Break ties randomly.
5. Remove x from U; add (x, f(x)) to L.



Propagating 1-Nearest-Neighbor: now it works
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Propagating 1-Nearest-Neighbor: now it doesn't

But with a single outlier...
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Some SSL Algorithms

= Generative methods — assume a model for p(x,y) and maximize

joint likelihood
Mixture models

= Multi-view methods — multiple independent learners that agree

on prediction for unlabeled data
Co-training

» Graph-based methods — assume the target function p(y|x) is

smooth wrt a graph or manifold
Graph/Manifold Regularization
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Mixture Models

Labeled data (X}, Y}):

Assuming each class has a Gaussian distribution, what is the decision
boundary?



Mixture Models

Model parameters: 6 = {wy, wo, ji1, po, X1, Lo}
The GMM:

p(x,yld) = pyl@)p(zly, o)
= wyN (3 1y, Xy)

Classification: p(y|xz,0) = Zﬁ(ifﬂglﬂ) > 1/2
y 2



Mixture Models

The most likely model, and its decision boundary:

5




Mixture Models

Adding unlabeled data:




Mixture Models

With unlabeled data, the most likely model and its decision boundary:

5 T T T T T T T




Mixture Models

They are different because they maximize different quantities.

p(X1. Y;16) p(X1. Y, X, |6)
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Mixture Models

Assumption
knowledge of the model form p(X,Y'|6).

@ joint and marginal likelihood

p(X1. Y1 Xulf) =) p(X;. Y7 X, Ya6)
Yy
@ find the maximum likelihood estimate (MLE) of ¢, the maximum a
posteriori (MAP) estimate, or be Bayesian

@ common mixture models used in semi-supervised learning:
» Mixture of Gaussian distributions (GMM) — image classification

» Mixture of multinomial distributions (Naive Bayes) — text
categorization

» Hidden Markov Models (HMM) — speech recognition

@ Learning via the Expectation-Maximization (EM) algorithm
(Baum-Welch)



Gaussian Mixture Models

Binary classification with GMM using MLE.
@ with only labeled data

» logp(Xy,Y7|0) = Zizllmjgp(y.i\@)p(;r.i\y.i.,9)
» MLE for 6 trivial (sample mean and covariance)

@ with both labeled and unlabeled data
log p(X1, Y1, Xul6) = 31— log p(uil0)p(i| i, 0)

+ > i) log (ijl p(y|0)p(xi|y. H])
» MLE harder (hidden variables): EM



EM for Gaussian Mixture Models

@ Start from MLE 6 = {w, u, ¥ }1.9 on (X;,Y)),
» w.=proportion of class ¢
» [1.=Sample mean of class ¢
» Y ,.=sample cov of class ¢

repeat:

pzylf) e,

@ The E-step: compute the expected label p(y|z,0) = S p(z.0'10)

all x € Xy
» label p(y = 1|z, #)-fraction of x with class 1
> label p(y = 2|z, 8)-fraction of = with class 2

© The M-step: update MLE # with (now labeled) X,



Assumption for GMMs

@ Assumption: the data actually comes from the mixture model, where
the number of components, prior p(y), and conditional p(x|y) are all
correct.

@ When the assumption is wrong:




Assumption for GMMs

wrong model, higher log likelihood (-847 .9309) correct model, lower log likelihood (-921.143)




Assumption for GMMs

Heuristics to lessen the danger
@ Carefully construct the generative model, e.g., multiple Gaussian
distributions per class

e Down-weight the unlabeled data (A < 1)
log p(X;. Yy, Xul6) = > ;_ log p(ys|0)p(ai|yi. 0)
+ A log (Zf,:l p(y|0)p(ily. 9))

Other issues: Identifiability, EM local optima



Related: Cluster and Label

Input: (X1.y1), ... (X0 01), Xi10 -+ X,
a clustering algorithm A, a supervised learning algorithm L
1. Cluster X1....,Xj1q using A.

2. For each cluster, let S be the labeled instances in it:
3. Learn a supervised predictor from S: fg = L(5).

4. Apply fg to all unlabeled instances in this cluster.
Output: labels on unlabeled data y;1, ..., Yltu-

But again: SSL sensitive to assumptions—in this case, that the clusters
coincide with decision boundaries. If this assumption is incorrect, the
results can be poor.



Cluster-and-label: now it works, now it doesn't

Example: .A=Hierarchical Clustering, £L=majority vote.

Partially labeled data
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Some SSL Algorithms

= Generative methods — assume a model for p(x,y) and maximize

joint likelihood
Mixture models

= Multi-view methods — multiple independent learners that agree

on prediction for unlabeled data
Co-training

» Graph-based methods — assume the target function p(y|x) is

smooth wrt a graph or manifold
Graph/Manifold Regularization



Two views of an Instance

Example: named entity classification Person (Mr. Washington) or
Location (Washington State)

instance 1: ... headquartered in (Washington State) ...
instance 2: ... (Mr. Washington), the vice president of ...

@ a named entity has two views (subset of features) X = [x(l), X(z)]
@ the words of the entity is x(1)

o the context is x(2)



Two views of an Instance

instance 1: ... headquartered in (Washington State)” ...
instance 2: ... (Mr. Washington)”, the vice president of ...
test: ... (Robert Jordan), a partner at . ..

test: ... flew to (China) ...




Two views of an Instance

With more unlabeled data

instance 1:
iInstance 2:
instance 3:
instance 4:
Instance 5:

test:
test:

. headquartered in (Washington State)L

. (Mr. Washington)P, the vice president of ...
. headquartered in (Kazakhstan) ...

.. flew to (Kazakhstan) ...
. (Mr. Smith), a partner at Steptoe & Johnson ...

... (Robert Jordan), a partner at ...
.. flew to (China) ...




Co-training Algorithm

Blum & Mitchell’98

Input: labeled data {(x;,7;)}._,, unlabeled data {xj.}g:fﬂ
each instance has two views x; = [Xglj,xgg)],
and a learning speed £.
1. let L1 = Loy = {(Xl.yl), e (Xg, y;)}.
2. Repeat until unlabeled data is used up:
3. Train view-1 f1) from Ly, view-2 ) from Lo.
4. Classify unlabeled data with (1) and f(2) separately.
5. Add f)'s top k most-confident predictions (x. f1(x)) to L.

Add 7(?)'s top k most-confident predictions (x. f¥(x)) to L.
Remove these from the unlabeled data.

Like self-training, but with two classifiers teaching each other.



Co-training

Assumptions

o feature split z = [z(1); 2()] exists

1)

o =) or 22 alone is sufficient to train a good classifier

1)

e 21 and ) are conditionally independent given the class

X1 view




Multi-view learning

Extends co-training.
@ Loss Function: ¢(x.y, f(x)) € [0,00). For example,
(i

x,y, f(x)) = (y — f(x))’

f( )) =1if y # f(x), and 0 otherwise.
) =

e.g

» squared loss ¢(

» 0/1 loss ¢(x, v,
o Empirical risk: R(f) =3 3! e(xi, v f(x0))
), e.g. |If]?

@ Regularized Risk Minimization f* = argmin ¢ r ]f?(f) + AQ(f)

o Regularizer: Q(f



Multi-view learning

A special regularizer ( f) defined on unlabeled data, to encourage

agreement among multiple learners: Each of the k learners is good

A
| 1

k [
argmin Z Z c(Xis Yis Jo(Xi)) + M Qs (fo)
f1e Ji v=1 i=1
k [+u
_|‘)\2 yj y C(Xa fu(xa) fv(xa))
u,v=1i=I[+1

The k learners agree on unlabeled data



Some SSL Algorithms

= Generative methods — assume a model for p(x,y) and maximize

joint likelihood
Mixture models

= Multi-view methods — multiple independent learners that agree

on prediction for unlabeled data
Co-training

» Graph-based methods — assume the target function p(y|x) is

smooth wrt a graph or manifold
Graph/Manifold Regularization




Graph Regularization

Assumption: Similar unlabeled data have similar labels.

Handwritten digits recognition with pixel-wise Euclidean distance

GA daA LA

not similar ‘Indirectly’ similar
with stepping stones




Graph Regularization

Similarity Graphs: Model local neighborhood relations between data points
@ Nodes: X; U X,

@ Edges: similarity weights computed from features, e.g.,
» k-nearest-neighbor graph
» fully connected graph, weight decays with distance

Wij = exp (—HIi - IjHQ/‘JQ) Yy 4
» e-radius graph b




Graph Regularization

Graph Prior: p(f) x e Zi,j wij(fi_fj)Q

If data points I and ] are similar (i.e. weight w; Is large), then their labels
are similar f; = f,

min> (v — D)2+ X Y wi (i — f)?
U ijelu

\ J \ J
I 1

Loss on labeled data Graph based smoothness prior
(mean square,0-1) on labeled and unlabeled data



Graph Regularization

min> (v — f)2+ X Y wi(fi — £)?
I el ijelu

\ J \ J
I 1

Loss on labeled data Graph based smoothness prior
on labeled and unlabeled data

From previous lecture, recall the second term is simply the min-cut objective.

If binary label, can be solved by min-cut on a modified graph - add source and sink
nodes with large weight to labeled examples.

Blum & Chawla’'01
Source

+1




Semi-Supervised Learning

Generative methods — Mixture models

Multi-view methods — Co-training

Graph-based methods — Manifold Regularization

Semi-Supervised SVMs — assume unlabeled data from different
classes have large margin

Many other methods

SSL algorithms can use unlabeled data to help improve
prediction accuracy if data satisfies appropriate assumptions



