Bayesian Classifiers, Conditional Independence and Naïve Bayes

Required reading:

"Naïve Bayes and Logistic Regression"

(available on class website)

Machine Learning 10-701

Tom M. Mitchell Machine Learning Department Carnegie Mellon University

Jan 20, 2010

Let's learn classifiers by learning P(Y|X)

Suppose Y=Wealth, X=<Gender, HoursWorked>

Gender	HrsWorked	P(rich G,HW)	P(poor G,HW)
F	<40.5	.09	.91
F	>40.5	.21	.79
М	<40.5	.23	.77
М	>40.5	.38	.62

	Gender	HrsWorked	P(rich G,HW)	P(poor C
Sunnose X = <x1 xn=""></x1>	F	<40.5	.09	.91
	F	>40.5	.21	.79
where Xi and Y are boolean RV 's	M	<40.5	.23	.//
where Xi and T are boolean ity 3	M			.02
To estimate P(YI X1, X2, Xn)				
If we have 30 Xi's instead of 22				
If we have 30 Xi's instead of 2?				
If we have 30 Xi's instead of 2?				

Bayes Rule

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$
Which is shorthand for:

$$(\forall i, j)P(Y = y_i|X = x_j) = \frac{P(X = x_j|Y = y_i)P(Y = y_i)}{P(X = x_j)}$$
Equivalently:

$$(\forall i, j)P(Y = y_i|X = x_j) = \frac{P(X = x_j|Y = y_i)P(Y = y_i)}{\sum_k P(X = x_j|Y = y_k)P(Y = y_k)}$$

 $\begin{array}{l} \textbf{Definition: X is <u>conditionally independent</u> of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z <math>(orall i, j, k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k) \\ \textbf{Which we often write} \\ P(X | Y, Z) = P(X | Z) \\ \textbf{E.g.,} \\ P(Thunder | Rain, Lightning) = P(Thunder | Lightning) \\ \end{array}$

Naïve Bayes uses assumption that the X_i are conditionally independent, given Y

Given this assumption, then:

$$P(X_1, X_2 | Y) = P(X_1 | X_2, Y) P(X_2 | Y)$$

= $P(X_1 | Y) P(X_2 | Y)$

in general: $P(X_1...X_n|Y) = \prod_i P(X_i|Y)$

How many parameters to describe P(X1...Xn|Y)? P(Y)?

- Without conditional indep assumption?
- · With conditional indep assumption?

Naïve Bayes in a Nutshell Bayes rule: $P(Y = y_k | X_1 ... X_n) = \frac{P(Y = y_k)P(X_1 ... X_n | Y = y_k)}{\sum_j P(Y = y_j)P(X_1 ... X_n | Y = y_j)}$ **Assuming conditional independence among X**'s: $P(Y = y_k | X_1 ... X_n) = \frac{P(Y = y_k)\prod_i P(X_i | Y = y_k)}{\sum_j P(Y = y_j)\prod_i P(X_i | Y = y_j)}$ **So, classification rule for** $X^{new} = \langle X_1, ..., X_n \rangle$ is: $Y^{new} \leftarrow \arg \max_{y_k} P(Y = y_k)\prod_i P(X_i^{new} | Y = y_k)$

Example: Live in Sq Hill? P(S G,D,M)					
	S=1 iff live in Squirrel Hill D=	1 iff Drive to CMU			
	G=1 iff shop at SH Giant Eagle • M=	1 iff Rachel Maddow fan			
	What probability parameters must we estimat	e?			

Г

 Example: Live in Sq Hill? S=1 iff live in Squirrel Hill G=1 iff shop at SH Giant Eagle 	 P(S G,D,M) D=1 iff Drive to CMU M=1 iff Rachel Maddow fan
P(S=1):	P(S=0):
P(D=1 S=1):	P(D=0 S=1):
P(D=1 S=0):	P(D=0 S=0):
P(G=1 S=1):	P(G=0 S=1):
P(G=1 S=0):	P(G=0 S=0):
P(M=1 S=1):	P(M=0 S=1):
P(M=1 S=0):	P(M=0 S=0):

If unlucky, our MLE estimate for $P(X_i | Y)$ might be zero. (e.g., X_{373} = Birthday_Is_January_30_1990)

- · Why worry about just one parameter out of many?
- What can be done to avoid this?

Special case: what if we add two copies: $X_i = X_k$

Learning to classify text documents

- · Classify which emails are spam?
- Classify which emails promise an attachment?
- Classify which web pages are student home pages?

How shall we represent text documents for Naïve Bayes?

Twenty NewsGroups

Given 1000 training documents from each group Learn to classify new documents according to which newsgroup it came from

comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.windows.x	misc.forsale rec.autos rec.motorcycles rec.sport.baseball rec.sport.hockey
alt.atheism soc.religion.christian talk.religion.misc talk.politics.mideast talk.politics.misc talk.politics.guns	sci.space sci.crypt sci.electronics sci.med
Naive Bayes: 89% classificatio	n accuracy

What if we have continuous X_i ?

Eg., image classification: X_i is ith pixel

Gaussian Naïve Bayes (GNB): assume

$$P(X_i = x \mid Y = y_k) = \frac{1}{\sigma_{ik}\sqrt{2\pi}} e^{\frac{-(x - \mu_{ik})^2}{2\sigma_{ik}^2}}$$

Sometimes assume variance

- is independent of Y (i.e., σ_i),
- or independent of X_i (i.e., σ_k)
- or both (i.e., σ)

Gaussian Naïve Bayes Algorithm – continuous X_i (but still discrete Y) • Train Naïve Bayes (examples) for each value y_k estimate* $\pi_k \equiv P(Y = y_k)$ for each attribute X_i estimate class conditional mean μ_{ik} , variance σ_{ik} • Classify (X^{new}) $Y^{new} \leftarrow \arg \max_{y_k} P(Y = y_k) \prod_i P(X_i^{new}|Y = y_k)$ $Y^{new} \leftarrow \arg \max_{y_k} \pi_k \prod_i Normal(X_i^{new}, \mu_{ik}, \sigma_{ik})$ * probabilities must sum to 1, so need estimate only n-1 parameters...

GNB Example: Classify a person's cognitive activity, based on brain image

- are they reading a sentence or viewing a picture?
- reading the word "Hammer" or "Apartment"
- viewing a vertical or horizontal line?
- answering the question, or getting confused?

- What is the error will classifier achieve if Naïve Bayes assumption is satisfied and we have infinite training data?
- Can you use Naïve Bayes for a combination of discrete and real-valued X_i?
- How can we easily model just 2 of n attributes as dependent?
- What does the decision surface of a Naïve Bayes classifier look like?

