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Recently:
» Bayes classifiers to learn P(Y|X)

* MLE and MAP estimates for parameters of P

« Conditional independence

* Naive Bayes - make Bayesian learning practical
» Text classification

Today:
+ Naive Bayes and continuous variables X;:

« Gaussian Naive Bayes classifier
» Learn P(Y|X) directly

» Logistic regression, Regularization, Gradient ascent
» Naive Bayes or Logistic Regression?

» Generative vs. Discriminative classifiers




Naive Bayes in a Nutshell

Bayes rule: ( Ye(x Y = y)
P(Y =y |X1...Xp) = =
( Ykl X1 ) ¥ P(Y = y) P(X1 - XulY = y;)

Assuming conditional independence among X/s:
PY =y
Y P(Y = yp) IL; P(Xi[Y = y;)

P(Y =y X1...Xn) =

So, classification rule for x»»=<Xx,, ..., X, > is:
Y™ « arg max P(Y =y) [[ P(XFUlY = yy)
k ;

?

What if we have continuous X;?

Eg., image classification: X; is real-valued it" pixel

F(2,123) =11.
<




What if we have continuous X, ?

Eg., image classification: X; is real-valued it" pixel

Naive Bayes requires P(X; | Y=y,), but X; is real (continuous)

E(Y = yplX1... Xn) = P(Y = yp) I1; P(Xi|Y = yg)

Y P(Y = yp) II; P(XG]Y = y;)

Common approach: assume P(X; | Y=y,) follows a normal
(Gaussian) distribution

Normal distribution with} 0, standard deviation 1
T T T T

Gaussian =
Distribution o] '
(also known as

“Normal”
distribution)

The probability that X will fall into the interval
(a,b) is given by
) Ib p(x)dx
e Expected, or mean value of X, E[X], is
E[X]=pn
Zfaxlzslistyafg ,’:’(():Ziglhty e Variance of X is
: ’ Var(X) = o*

whose integral
(not sum) is 1 e Standard deviation of X, oy, is

oy =0




What if we have continuous X; ?

Gaussian Naive Bayes (GNB): assume

1 VR
p(Xp=alY = yg) = —— e 2T )

- —— 2
e.5. F/x-e) M"/‘wvzsn‘y A‘5<V='j't \/ 27-{-0-1]{;

Sometimes assume variance g X, --- X,
. is ipdependent of Y(i..e., o), lfwlwmy pavams st
 or independent of X; (i.e., g;) '« = fx@,s,j\)g%?

« or both (i.e., 0) Anx2 4 4

~—

ferol 0n Y

Gaussian Naive Bayes Algorithm — continuous X;
(but still discrete Y)

« Train Naive Bayes (examples)
for each value y,
estimate* 7, = P(Y = yy,)
for each attribute X, estimate
class conditional mean p;. , variance o,

* Classify (X"ev)
YT  arg max P(Y =y) [[ P(XPlY =y) /' NE

A
2 Nov . =Gayssiapy
v argmax m [[N O ), 25 EWB
Yk A 00000«
7

. probabilities must sum to 1, so need estimate only n-1 parameters...




Estimating Parameters: Y discrete, X; continuous

Maximum likelihood estimates:  jth training

example
. ey
G = . X5(y7 =
Lk = ¥ 5(v Zyk); % "
ith feature ™ | o j0ss 8(z)=1if z true
else O
ik 3, 0(YI = y) %:( P "

How many parameters must we estimate for Gaussian
Naive Bayes if Y has k possible values, X=<X1, ... Xn>?

1 1T
pXi=alY =) = —— e S

2
O




What is form of decision surface for Gaussian
Naive Bayes classifier?
eg.—ifwe-assume attributes have same™\ariance, indep

GNB Example: Classify a person’s
cognitive state, based on brain image
* reading a sentence or viewing a picture?

* reading the word describing a “Tool” or “Building”?
» answering the question, or getting confused?

ool
Classifier s Or

: (Gaussian Bayes, .
logistic regression, Building
SVM, kNN, ...)




Mean activations over all training examples for Y="bottle”

fMRI
activation

l high

average

Y is the mental state (reading “house” or “bottle”)
X, are the voxel activities,

this is a plot of the p’s defining P(X; | Y="bottle”) oo
average

Classification task: is person viewing a “tool” or “building”?

statistically
significant
p<0.05

Classification accuracy

p4 p8 p6 pl11pd p7p10p9 p2pi12p3 pi
Participants




Where is information encoded in the brain?

Accuracies of
cubical
27-voxel

classifiers
centered at
each significant
voxel
[0.7-0.8]

Naive Bayes: What you should know

+ Designing classifiers based on Bayes rule

» Conditional independence
— What it is
— Why it's important

» Naive Bayes assumption and its consequences

— Which (and how many) parameters must be estimated under
different generative models (different forms for P(X|Y) )
» and why this matters

+ How to train Naive Bayes classifiers
— MLE and MAP estimates
— with discrete and/or continuous inputs X;




Questions to think about:

» Can you use Naive Bayes for a combination of
discrete and real-valued X?

* How can we easily model just 2 of n attributes as
dependent?

» What does the decision surface of a Naive Bayes
classifier look like?

* How would you select a subset of Xs?

eSS oy T

Logistic Regression

Required reading:

 Mitchell draft chapter (see course website)
Recommended reading:

* Bishop, Chapter 3.1.3, 3.1.4

* Ng and Jordan paper (see course website)
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Logistic Regression

ldea:
» Naive Bayes allows computing P(Y|X) by
learning P(Y) and P(X]Y)

* Why not learn P(Y|X) directly?

oc 2LYIK)
 Consider learning f: X =Y, where
+ X is a vector of real-valued features, < X, ... X, >
* Y is boolean
» assume all X; are conditionally independent given Y
» model P(X; | Y =y,) as Gaussian N(w;,o;)
» model P(Y) as Bernoulli () )\mﬁ@:

» What does that imply about the form of P(Y|X)?

1
P(Y =1|X =< Xq,..Xn >) =

1+ exp(wo + X; w; X;)
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Derive form for P(Y|X) for continuous X; ¥ &+~

Y — 11 P(Y = 1)P(X|Y = 1)
@ P(Y =1)P(X|Y =1)+ P(Y = 0)P(X|Y =0)

= P(Y=(:)l)P(X|Y=O) A by PCY=) P(X/Y:D

L+ s =Dp(xy=1)
1

= P(Y=0)P(X[Y=0)
I SR (F = )

_ VR
_ = P(X, Y=
1 *(I*l;i,k-)z . .
Pz |yp) = e ik N 2 — u2)
oV 21 Hi0 /‘le‘ Mi1 — Mo
; ( O',L»Q it 2012
1
P(Y =1|X) =

1+ exp(wo + X7 w; X;)

Very convenient!

1

P(Y = 1|X =< X1,..Xpn >) =
( | 1 n>) 1+ exp(wg + X; w; X;)

implies
P(Y =0|X =< Xq,..Xp >) =

implies
P(Y =0|X) _
P(Y =1|X)

implies _
PO =01X) _

P(Y =1|X)
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Very convenient!

1 4 exp(wo + X2; wi X;
implies 1 H2
exp(wo + X; w; X;) &
1+ exp(wg + X; w; X;)

1
P(Y =1|X =< Xq,..Xp >) = ﬂ

P(Y =0|X =< Xq,..Xp>) =

implies
4 < POY=01X)

S Py =1y~ ceplwot 2 wiXi)

linear
classification
implies (Y = o|X) rule!
<< — — . X -
O = InP(Y=1|X)—wo+zi:w@Xz /"2 [ meqc

_—

P(Y = 0|X)

" Py = 11X)

=wo + ) wX;
i
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Logistic function

1

0.8} //
'/
0.6} /
a, |/
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1
P(Y =1|X) = -
o

Logistic regression more generally

* Logistic regression in more general case,
where y E{y, ... yg} : learn R-1 sets of weights

for k<R
exp(wyo + 27 q wi X;)
P(Y = yu|X) = J
o 1+ i Fexp(wjo + Xy wyiX;)
for k=R
1
P(Y =yg|X) =

1+ 20 exp(wjo + X1y wjiXy)
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Training Logistic Regression: MCLE

» we have L training examples: {(x1 v1) .. (xT vy

« maximum likelihood estimate for parameters W
WyLe = argmuz}xP(< XLyls < XEYE> W)

_ Iyl
—arng%XI:[P(< XLY > W)

* maximum conditional likelihood esti e

MCLE = aesmax 1 PCYE 3 W)
wog

Training Logistic Regression: MCLE

* Choose parameters W=<w,, ... w,> to

maximize conditional likelihood of training data
1
1+ exp(wo + X wiX;)

exp(wo + X w; X;)
1+ exp(wo + X3 w; X;)

where P(Y =0|X,W) =

P(Y = 1|X,W) =

« Training data D = {(x',v'h),...(xF,vh)}
« Data likelihood = ] P(X',Y![w)

. Data conditional likelihood = [1P X, w)
l

_ Ayl I
WwyeLe = arng%XHP(Y W, X")

14



Expressing Conditional Log Likelihood

(W) =In[[PYYxt,w) =3 InPY! X, w)
- l l

1

PO =0 = w0 + S wiX))

exp(wo + 3w X;)

P =11XW) = 1 4 exp(wo + 3w X;)

(w) = S vlinpyl=1x,w)+ @ -yHinp!=o/x,w)
l

PY'=1|x!.w
; P(Yl=0|X!,, W)

+InPY'=o0|x!, W)

= Y Yiwo + Y w; X! — In(1 + exp(wo + > w; XH)
[ 7 7

Maximizing Conditional Log Likelihood

1

PO =0 W) = T oo + 5 wiX)

exp(wo + 3 wiX;)

P =11X,W) = 1+ exp(wo + 3w X;)

(W) In[[ PCYYx!, w)

[
= Y Yi(wo + Y w; X — In(1 + exp(wo + > w; X1))
l 7 7

Good news: /(W) is concave function of W
Bad news: no closed-form solution to maximize (W)

15



Gradient Descent
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Gradient

—

Training rule:
AW = —nVE[w]
ie., 5
E
Aw; = —
v n@w,

Maximize Conditional Log Likelihood:

Gradient Ascent

(w) = I[Pl xtLw)
[

= Y Y (wo + > wixl) — In(1+ eap(uwo + 3 wixh)
l 7 7

AW _ s xiy! - P(v! = 11X, W)
ow; ]
Gradient ascent algorithm: iterate until change < ¢

For all i, .
repeat ]
/

w; — wi K7 xXiyt— Pyt =11xt, w))
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That’s all for M(C)LE. How about MAP?

One common approach is to define priors on W
— Normal distribution, zero mean, identity covariance
Helps avoid very large weights and overfitting
MAP estimate

W —argmax In P(W) [1 P! xtw)
l

let's assume Gaussian prior: W ~ N(0, o)

MLE vs MAP

* Maximum conditional likelihood estimate
W « arg max In HP(Yl|Xl, W)
l

wi —w; + Y X[V = P(Y! = 1|x", W)
l

« Maximum a posteriori estimate with prior W~N(0,oT)

Byl vl
W «— arg max In[P(W) [[PY'|X", W)]
!

w; — w; —nhw;+n Y XY = P(Y = 1|x", W)
l
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MAP estimates and Regularization
* Maximum a posteriori estimate with prior W~N(0,ol)

W« arg max In[P(W) J[PYYxtw)
l

w; — w; —nw; +1> X[ (Y - P(YT = 11X, W)
1 l

called a “regularization” term

* helps reduce overfitting, especially when training
data is sparse

* keep weights nearer to zero (if P(W) is zero mean
Gaussian prior), or whatever the prior suggests

« used very frequently in Logistic Regression

The Bottom Line

 Consider learning f: X 2 Y, where
+ X is a vector of real-valued features, < X, ... X, >
* Y is boolean
» assume all X; are conditionally independent given Y
* model P(X; | Y =y,) as Gaussian N(u;,0;)
* model P(Y) as Bernoulli ()

* Then P(Y|X) is of this form, and we can directly estimate W

1
PY =1[X =< X1,.. Xy >) = 1+ exp(wo + X; wi X;)

* Furthermore, same holds if the X; are boolean
* trying proving that to yourself

18



