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Gaussian Naïve Bayes, and 
Logistic Regression 

Machine Learning 10-701 
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Machine Learning Department 

Carnegie Mellon University 

January 25, 2010 

Required reading:  
•  Mitchell draft chapter (see course website) 

Recommended reading:  
•  Bishop, Chapter 3.1.3, 3.1.4 
•  Ng and Jordan paper (see course website) 

Recently: 
•  Bayes classifiers to learn P(Y|X) 
•  MLE and MAP estimates for parameters of P 
•  Conditional independence 
•  Naïve Bayes  make Bayesian learning practical 
•  Text classification 

Today: 
•  Naïve Bayes and continuous variables Xi: 

•  Gaussian Naïve Bayes classifier 
•  Learn P(Y|X) directly 

•  Logistic regression, Regularization, Gradient ascent 
•  Naïve Bayes or Logistic Regression? 

•  Generative vs. Discriminative classifiers 
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Naïve Bayes in a Nutshell 
Bayes rule: 

Assuming conditional independence among Xi’s: 

So, classification rule for Xnew = < X1, …, Xn > is: 

What if we have continuous Xi ? 
Eg., image classification: Xi is real-valued ith pixel 
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What if we have continuous Xi ? 
Eg., image classification: Xi is real-valued ith pixel 

Naïve Bayes requires P(Xi | Y=yk), but Xi is real (continuous) 

Common approach: assume P(Xi | Y=yk) follows a normal 
(Gaussian) distribution 

Gaussian 
Distribution 

(also known as 
“Normal” 
distribution) 

p(x) is a probability 
density function, 
whose integral 
(not sum) is 1 
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What if we have continuous Xi ? 
Gaussian Naïve Bayes (GNB): assume 

Sometimes assume variance 
•  is independent of Y (i.e., σi),  
•  or independent of Xi (i.e., σk) 
•  or both (i.e., σ) 

Gaussian Naïve Bayes Algorithm – continuous Xi   
(but still discrete Y) 

•  Train Naïve Bayes (examples)   
 for each value yk
  estimate* 
  for each attribute Xi estimate  
  class conditional mean        , variance        

•  Classify (Xnew)   

 * probabilities must sum to 1, so need estimate only n-1 parameters... 
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Estimating Parameters: Y discrete, Xi continuous  

Maximum likelihood estimates:  jth training 
example 

δ(z)=1 if z true, 
else 0 

ith feature kth class 

How many parameters must we estimate for Gaussian 
Naïve Bayes if Y has k possible values, X=<X1, … Xn>? 
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What is form of decision surface for Gaussian 
Naïve Bayes classifier? 
eg., if we assume attributes have same variance, indep of Y 
 (                    )   

GNB Example: Classify a person’s 
cognitive state, based on brain image 

•  reading a sentence or viewing a picture? 
•  reading the word describing a “Tool” or “Building”?   
•  answering the question, or getting confused? 
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Y is the mental state (reading “house” or “bottle”) 
Xi are the voxel activities,  

this is a plot of the µ’s defining P(Xi | Y=“bottle”) 

fMRI 
activation  

high 

below 
average 

average 

Mean activations over all training examples for Y=“bottle” 

Classification task: is person viewing a “tool” or “building”? 

statistically 
significant 

p<0.05 
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Where is information encoded in the brain? 

Accuracies of  
cubical 
27-voxel  
classifiers 

centered at 
each significant 

voxel 
[0.7-0.8] 

Naïve Bayes: What you should know 
•  Designing classifiers based on Bayes rule 

•  Conditional independence 
–  What it is 
–  Why it’s important 

•  Naïve Bayes assumption and its consequences 
–  Which (and how many) parameters must be estimated under 

different generative models (different forms for P(X|Y) ) 
•  and why this matters 

•  How to train Naïve Bayes classifiers 
–  MLE and MAP estimates  
–  with discrete and/or continuous inputs Xi 
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Questions to think about: 
•  Can you use Naïve Bayes for a combination of 

discrete and real-valued Xi?  

•  How can we easily model just 2 of n attributes as 
dependent? 

•  What does the decision surface of a Naïve Bayes 
classifier look like? 

•  How would you select a subset of Xi’s? 

Logistic Regression 

Machine Learning 10-701 

Tom M. Mitchell 
Machine Learning Department 

Carnegie Mellon University 

January 25, 2010 

Required reading:  
•  Mitchell draft chapter (see course website) 
Recommended reading:  
•  Bishop, Chapter 3.1.3, 3.1.4 
•  Ng and Jordan paper (see course website) 
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Logistic Regression 
Idea: 
•  Naïve Bayes allows computing P(Y|X) by 

learning P(Y) and P(X|Y) 

•  Why not learn P(Y|X) directly? 

•  Consider learning f: X  Y, where 
•  X is a vector of real-valued features, < X1 … Xn > 
•  Y is boolean 
•  assume all Xi are conditionally independent given Y 
•  model P(Xi | Y = yk) as Gaussian N(µik,σi) 
•  model P(Y) as Bernoulli (π) 

•  What does that imply about the form of P(Y|X)? 
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Derive form for P(Y|X) for continuous Xi  

Very convenient! 

implies 

implies 

implies 
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Very convenient! 

implies 

implies 

implies 

linear 
classification 

rule! 



13 

Logistic function 

Logistic regression more generally
•  Logistic regression in more general case, 

where y ∈ {y1 ... yR} : learn R-1 sets of weights 

 for k<R 

 for k=R 
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Training Logistic Regression: MCLE 
•  we have L training examples: 

•  maximum likelihood estimate for parameters W 

•  maximum conditional likelihood estimate 

Training Logistic Regression: MCLE 
•  Choose parameters W=<w0, ... wn> to 

maximize conditional likelihood of training data 

•  Training data D =  
•  Data likelihood =  
•  Data conditional likelihood =  

where 
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Expressing Conditional Log Likelihood 

Maximizing Conditional Log Likelihood 

Good news: l(W) is concave function of W
Bad news: no closed-form solution to maximize l(W)
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Maximize Conditional Log Likelihood:          
Gradient Ascent 

Gradient ascent algorithm: iterate until change < ε
   For all i,  
repeat    
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That’s all for M(C)LE.  How about MAP? 

•  One common approach is to define priors on W 
–  Normal distribution, zero mean, identity covariance 

•  Helps avoid very large weights and overfitting 
•  MAP estimate 

•  let’s assume Gaussian prior: W ~ N(0, σ) 

MLE vs MAP  
•  Maximum conditional likelihood estimate 

•  Maximum a posteriori estimate with prior W~N(0,σI) 
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MAP estimates and Regularization 
•  Maximum a posteriori estimate with prior W~N(0,σI) 

called a “regularization” term 
•  helps reduce overfitting, especially when training 
data is sparse 
•  keep weights nearer to zero (if P(W) is zero mean 
Gaussian prior), or whatever the prior suggests 
•  used very frequently in Logistic Regression 

•  Consider learning f: X  Y, where 
•  X is a vector of real-valued features, < X1 … Xn > 
•  Y is boolean 
•  assume all Xi are conditionally independent given Y 
•  model P(Xi | Y = yk) as Gaussian N(µik,σi) 
•  model P(Y) as Bernoulli (π) 

•  Then P(Y|X) is of this form, and we can directly estimate W 

•  Furthermore, same holds if the Xi are boolean 
•  trying proving that to yourself 

The Bottom Line 


