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Generative and Discriminative
Classifiers

Training classifiers involves learning a mapping f: X -> Y, or P(Y|X)

Generative classifiers (e.g. Naive Bayes)

* Assume some functional form for P(X,Y) (or P(X|Y) and P(Y))
* Estimate parameters of P(X|Y), P(Y) directly from training data
» Use Bayes rule to calculate P(Y|X)

Discriminative classifiers (e.g. Logistic Regression)

* Assume some functional form for P(Y|X)
* Estimate parameters of P(Y|X) directly from training data



Logistic Regression

Assumes the following functional form for P(Y|X):

1
1 —+ exp(wo —+ Zz UJZXZ)

PY =1|X) =

Alternatively,

P(Y = 0|X)
= i X
P(Y = 1|X) w”;w

log

(Linear Decision Boundary)

DOES NOT require any conditional independence assumptions




Connection to Gaussian Naive Bayes

There are several distributions that can lead to a linear decision boundary.
As another example, consider a generative model:

Y ~ Bernoulli()

P(X|Y =y) x e?vX) Exponential family
Observe that Gaussian
Oy(X) = ay + Z biyXi + Z Cijoy Xidj+ ... is a special case
i ij

If coefficients of all non-linear terms are same for y =0 and y = 1,
e.g. ¢ij0 = Cij,1, we have a linear decision boundary:

P(X|Y =0)
P(X|Y =1)

log = log P(X|Y = 0)—log P(X|Y = 1) = (a0—a1)+» _(bso—bi,1)X;
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Connection to Gaussian Naive Bayes

P(Y =0|X) P(Y =0)P(X|Y =0) 1 —7 P(X|Y =0)
log = log = log + log
P(Y =1|X) P(Y =1)P(X|Y =1) T P(X|Y =1)
1—m
= log - -l-(ao — Cll) + Z(bi’o — bi,l)Xi
| J \Z J
Y Y
Constant term First-order term
=: Wo + Z w; X;
i

Special case: P(X|Y=y)~ Gaussian( y,%y) where Zo=Z1 (cio = Cij1)

Conditionally independent ciy=0,i# ]
(Gaussian Naive Bayes)



Generative vs Discriminative

Given infinite data (asymptotically),

If conditional independence assumption holds,
Discriminative and generative perform similar.

€pis,00 ™ €Gen,00

If conditional independence assumption does NOT holds,
Discriminative outperforms generative.

eDis,OO < EGen,OO



Generative vs Discriminative

Given finite data (n data points, p features),

€Dis,n < €Dis,00 T @ (\/g) Ng-Jordan

. paper
EGen,’n, S EGen,OO —|_ O (\/ %)

Naive Bayes (generative) requires n = O(log p) to converge to its
asymptotic error, whereas Logistic regression (discriminative)
requires n = O(p).

Why? “Independent class conditional densities”
* smaller classes are easier to learn
* parameter estimates not coupled — each parameter is learnt
independently, not jointly, from training data.



Naive Bayes vs Logistic Regression

Verdict

Both learn a linear decision boundary.

Naive Bayes makes more restrictive assumptions
and has higher asymptotic error,

BUT

converges faster to its less accurate asymptotic
errot.




Experimental Comparison eordaros)

pirma {sandinious)

UCI Machine Learning Repository 15 datasets, 8 continuous features, 7 discrete features
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Classification so far ... (Recap)



Classification Tasks

Features, X Labels, Y

Diagnosing sickle - Q@ = ﬁnelmric ceIIII
cell anemia ealthy ce

Refund Marital Taxable

Tax Fraud Detection e

No Married |80K

Web Classification

Sports
—> Science
News
Predict squirrel hill Drive to CMU, Rachel’s fan, =) Resident

resident Shop at SH Giant Eagle Not resident



Classification

Goal: Construct a predictor f: X — Y to minimize
a risk (performance measure) R(f)

Sports

—>  Science

News

Features, X Labels, Y

R(f) = P(f(X) #Y) Probability of Error
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Classification

Optimal predictor: ff=argmin P(f(X) #Y)
(Bayes classifier) J

P(Y =+|X)

P(Y =+ |X)
« e P(Y=¢¢|X)>P(Y =¢|X)
f(X) = { ° otherwise

Depends on unknown distribution Pyy

13



Classification algorithms

However, we can learn a good prediction rule from training data

{(Xi--. Y;) ?:1 _1-; vV (UFIKI“IDWI"I)

Independent and identically distributed

Training data |:> Learning algorithm |:> Prediction rule

{(Xi, )}y I
So far .. Decision Trees

K-Nearest Neighbor

Naive Bayes

Logistic Regression

14
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Discrete to Continuous Labels

Classification

Sports = Anemic cell
=) Science O Healthy cell
News R
X = Document Y = Topic X = Cell Image Y = Diagnosis

Regression

DJ IWOU AVERAGE (DOW JOMES & CO
az of ZZ2-Jan-z2010

1160
10500 -
Stock Market
Prediction L0000
Y=?
500 Novil ' Decod ' Deczl ' Tanoe ' X = Feb01
Copuright 20410 Yahoo! Inc. http://Finance .yahoo .com/

16



Regression Tasks

11 am 12 pm 1 pm 2 pm I pm 4 pn S5pm & pm

Weather Prediction 39°F  419F  44°F 44°F 44°F  44°F  43°F  42°F

Precip: Precip: Precip: Precip: Precip: Precip: Precip: Precip:
10%% 10%% 10%% 10%% 10%0 10%0 10%0 0%

a8~ F
46° F
44°F
42° F Y = Temp
40° F

38~ F

11 am 12 pm 1 pm 2 pm 3 pm 4 pm 5 pm 6 pm

X=7pm

Estimating :

Contamination POt

....................... B X = new location
L s - | i Y = sensor reading

®ecc0cccccesccccecccrrccss,,
*eonie o
®oee oo
eece
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Supervised Learning

Goal: Construct a predictor f: X — Y to minimize
a risk (performance measure) R(f)

D) INDU AVERAGE C(DOW JOMES & CO
as of 22-Jan-2010

A\
= Sports o Ve VRV Vava _\/_N \
o & sdence | [ N
News "'-fﬁ"'-,/hj Y="?
ch:fight 201(; vahuoN!m;Ii:c. R httlp:./HFiJ:jr?Ee.gahoo.comfX = Feb01
Classification: Regression:
R(f) = P(f(X) #Y) R(f) = E[(f(X) = Y)?]

Probability of Error Mean Squared Error
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Regression

Optimal predictor: f*=argminE[(f(X) —Y)?]
(Conditional Mean) J

R(f) = Exy[(f(X) = Y)?] = Ex[Eyx[(f(X) —Y)?|X]]

Dropping subscripts
for notational convenience

= E[E[(f(X)—E[Y|X]+E[Y|X]-Y)}X]]

Bl E[(f(X) - E[Y|X])?X]
- E([(f(X) - EIY | X])(E[Y|X] - Y)|X]
+E((E[Y|X] - Y)*X]]
E[ E[(f(X) - E[Y|X])?|X]
- +2(f(X) — E[Y|X]) x 0
+E((E[Y|X] - Y)*X]]

= E[(f(X) - E[|X])?] + R(f").
Thus R(f) = R(f*) for any prediction rule f, and therefore R* = R(f*).



Regression

Optimal predictor: 7 =argminE[(f(X) — Y)?]
(Conditional Mean) J
= E[V|X]
Intuition: Signal plus (zero-mean) Noise model \%
Y = (X
fA(X) +e v

Depends on unknown distribution Pyy
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Regression algorithms

Training data |:> Learning algorithm |:> Prediction rule

Linear Regression

Lasso, Ridge regression (Regularized Linear Regression)
Nonlinear Regression

Kernel Regression

Regression Trees, Splines, Wavelet estimators, ...

n
Empirical Risk Minimizer:  f,, = arg min LS (5(x) = v7)2
=1

\_'_l

Empirical mean

21



Linear Regression

. 1 .n
for= arg— Z (f(X;) — Y};)Q Least Squares Estimator
=1

. OO

Fr - Class of Linear functions

Uni-variate case:

f(X) =01 4+ 35X [ - intercept

Multi-variate case:

1
f(X) = f(xW,.. x0) = Jp;/{) +BX@ 4 4 g, xP

= X3 where X =[X1O) . x®] g=1[8,...8)]7

22



Least Squares Estimator

n

f=arg min Z F(X) —Y;)?
U
~ 1 ~ ~
B=a 5 Z (X8 —Y;)? fr(X) =Xp
= arg min l(AB ~ Y)Y (AB-Y)
8 n

xy ] [ x®B o  xP Y, ]

i Xﬂ_ i ] J{-?gl) o -‘Y’I(Lp) | i YTL |




Least Squares Estimator

-~

B = arg mﬁin l(AB — Y)T(AB —Y)=arg mﬁin J(3)
(4’

J(B) =

24



Normal Equations

(ATAB3=ATY

pxp pxl p x1

if (AT A) is invertible,

B=ATA) 1ATY fi(x)=xp

Whenis (AT A) invertible ? (Homework 2)
Recall: Full rank matrices are invertible. What is rank of (AT A)?

What if (ATA) is not invertible ? (Homework 2)
Regularization (later)

25



Geometric Interpretation
fn(X)=X8=xA"A)TA"Y

Difference in prediction on training set:

flA) - Y =

AT(fH(A) -Y) = 0

ﬁ%(A) is the orthogonal projection of Y
onto the linear subspace spanned by the
columns of A

26



Revisiting Gradient Descent

Even when (ATA) is invertible, might be computationally expensive if A is huge.

B = argmin l(Aﬁ—Y)T(AB—Y) = arg min J(3)
g n B

Gradient Descent

Initialize: ﬁo 30
Update: gitl — gt _ adJ(B) | ﬁ"x *,
= ' -—aAl(Ap -Y) |
O |f /Bt ://8\ | T B 4 w8 ! T
Stop: when some criterion met e.g. fixed # iterations, or 8‘(]9(5) <E.
ﬁt

27



Effect of step-size a

J(3) J(8)

Large 0 => Fast convergence but larger residual error
Also possible oscillations

Small a => Slow convergence but small residual error

28



When does Gradient Descent
succeed?

View of the algorithm is myopic.

10 -
5
0-
-5
-10.
30
http://www.ce.berkeley.edu/~bayen/ | http://demonstrations.wolfram.com
Guaranteed to converge to local minima if Convergesas (1 — ozAj)t in jth direction
2 Convergence depends on eigenvalue spread
O<a< N (ATA)

29



Least Squares and MLE

Intuition: Signal plus (zero-mean) Noise model

Y = f5(X) +e= X8 +¢ e ~ N(0,0°1)
Y ~ N(XB%,0°T)

BI\/ILE = arg mﬁax log P({(Xz', Y};)}?’:ﬂﬁ, 02)
| J
Y

log likelihood

6]

n
= argmin > (X;8 — Y;)?
iz

Least Square Estimate is same as Maximum Likelihood Estimate under a
Gaussian model ! 20



Regularized Least Squares and MAP

What if (ATA) is not invertible ?

Bumap = arg maxlog p({ (X, V) 118, 0%)+log p(B)

Y
log likelihood log prior

|) Gaussian Prior

B ~ N(0,721) p(B) o &P 8/27°
. n
Bumap = arg mﬂin S (Y — Xi8)% + MIBlI5 Ridge Regression
1=1
Closed form: HW constant(o?, 72)

Prior belief that B is Gaussian with zero-mean biases solution to “small” 8 31




Regularized Least Squares and MAP

What if (ATA) is not invertible ?

Bumap = arg maxlog p({ (X, V) 118, 0%)+log p(B)

Y
log likelihood log prior

II) Laplace Prior

8; %Y Laplace(0,1) p(B;) oc e~ 1Fil/t
Buap = arg mﬁin > ;= X8)° + MBIl Lasso
1=1
Closed form: HW constant(c?,t)

Prior belief that B is Laplace with zero-mean biases solution to “small” 32




Ridge Regression vs Lasso
mﬁin(AB “YT(AB-Y) + Apen(B) = mﬁin J(B8) + Apen(B)

Ridge Regression: Lasso: HOT! Ideally 10 penalty,

pen(B) = ||5||% pen(B) = |81 but optimization
becomes non-convex

Bs with (

constant
|0 norm

Bs with constant J(8)
(level sets of J(B))

Bs with B Bs with

constant constant
|12 norm \/ |1 norm N

A

Lasso (11 penalty) results in sparse solutions — vector with more zero coordinates
Good for high-dimensional problems — don’t have to store all coordinates! 33
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Beyond Linear Regression

Polynomial regression

Regression with nonlinear features/basis functions

Kernel regression - Local/Weighted regression

Regression trees — Spatially adaptive regressic AN

34




Polynomial Regression

Univariate case:  f(X) = By + 31X + If'iEXE + -+ G X" = X3

where X = [1 X Xg...Xm],,ﬁ= [.51---,3m]T

f=@aTaiATY (1N XXy
FuX) = X5 1 e KR AR
| $o(X)
F(X) = X0 85X = XL B;(X) ¢1(X)
\_Y_}
Weight of Nonlinear

each feature features \—/ P (X)
35



Nonlinear Regression

F(X) = £ B (X)

Basis coefficients Nonlinear features/basis functions
Fourier Basis Wavelet Basis

Po(X) - bo(X) \//\ .

$1(X) \//\\_/ $1(X) i

ﬁﬁﬂﬂf_\‘vﬁv&v $2(X) N\

Good representation for oscillatory functions  Good representation for functions
localized at multiple scales

36



Local Regression

f(X) =T Bjd;(X)
—

Basis coefficients Nonlinear features/basis functions

¢o(X) ¢1(X) ¢2(X)

L SN

Globally supported
basis functions
(polynomial, fourier)
will not yield a good
representation

37



Local Regression

f(X) =T Bjd;(X)
—

Basis coefficients Nonlinear features/basis functions

¢o(X) ¢1(X) ¢2(X)

L SN

2¢0(X) 4+ 0.05¢1(X) + 0.5¢2(X)

Globally supported
basis functions
(polynomial, fourier)
will not yield a good
representation

38



Kernel Regression (Local)

— Z wi(f(X;) —Y;) =) wp =
n =1 n =1
Weighted Least Squares

Weigh each training point based on distance to test point

h
X—X, Sy = L0
SRy K (S35 K (x) = ()

K (X_XZ) boxcar kernel :
wi(X) =

K — Kernel
h — Bandwidth of kernel

Gaussian kernel :

1 2
K(z)= —e = /2
V2T

39



Nadaraya-Watson Kernel Regression

. l " o | - K<X;Xi
n; ﬁl Y;) wi(X) = K (55
constant
0J(3) &
— D (B-Y;) =
b5 =2 L)

40



Nadaraya-Watson Kernel Regression

1 2 | \2
Ezwz(ﬁ_m)

i=1 |

K (%)

w;(X) = 5
i=1 K (X hXZ>

constant
boxcar kernel :
0J(8) & XX,
s, =2 wi(f-Y;)= K (557) = Lix_x,|<h
ﬁ 1 =1
- . n o"'.
jfn(X):ﬁzzszz °%
=1 %o
o ° o ® °
L ° o, . .
\ﬁ/i’rh blox-car =5 Yy L x_x,|<h o oe o.o....
erne X 1=1 o
(J ' .‘Q ....0.0..
#pts in h ball around X Sum of Ys in h ball around X Recall: NN classifier

Average <-> majorityvote



Choice of Bandwidth

)
o
o0
o © Should depend on n, # training data
° O (determines variance)
o0
o o ©®
@ o © Should depend on smoothness of
® L o0 .
0'. ... ® function
® > ® ° .... (determines bias)
® o o000 o
® o0 o O O o

Large Bandwidth — average more data points, reduce noise (Lower variance)

Small Bandwidth — less smoothing, more accurate fit (Lower bias)

Bias - Variance tradeoff : More to come in later lectures

42



Spatially adaptive regression

If function smoothness varies spatially, we want to allow bandwidth h to
depend on X

Local polynomials, splines, wavelets, regression trees ...

43



Regression trees

x (1) x® vy

Gender | Rich? | Num. # travel | Age
Children | per yr.

F No 2 5 38

M No 0 2 25

M Yes 1 0 72

Binary Decision Tree

Num Children?

2 2

<2

Gender?

Female

Predicted age=39

Male

Predicted age=36

Average (fit a constant ) on the leaves

44



Regression trees

Quad Decision Tree

A
/E ". B -
VA
J/ 'f%
‘)f';l'- \ \

- -

f - Polynomial fit on each leaf

T _ : l ! N v)2
fn —arg]rpelgni;(f(Xz) Y;)

(X YUE)v2< Y <f<Xz~>—n5,thenspm

all cells,L. 1€L 1€Emerged cell

Else stop Compare residual error with and without split s



Summary

Discriminative vs Generative Classifiers
- Naive Bayes vs Logistic Regression

Regression
- Linear Regression
Least Squares Estimator
Normal Equations
Gradient Descent
Geometric Interpretation
Probabilistic Interpretation (connection to MLE)
- Regularized Linear Regression (connection to MAP)
Ridge Regression, Lasso
- Polynomial Regression, Basis (Fourier, Wavelet) Estimators
- Kernel Regression (Localized)
- Regression Trees



