Revisiting Logistic Regression & Naïve Bayes

Aarti Singh

Machine Learning 10-701/15-781 Jan 27, 2010

Generative and Discriminative Classifiers

Training classifiers involves learning a mapping f: X -> Y, or P(Y|X)

Generative classifiers (e.g. Naïve Bayes)

- Assume some functional form for P(X,Y) (or P(X|Y) and P(Y))
- Estimate parameters of P(X|Y), P(Y) directly from training data
- Use Bayes rule to calculate P(Y|X)

Discriminative classifiers (e.g. Logistic Regression)

- Assume some functional form for P(Y|X)
- Estimate parameters of P(Y|X) directly from training data

Logistic Regression

Assumes the following functional form for P(Y|X):

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

Alternatively,

$$\log \frac{P(Y=0|X)}{P(Y=1|X)} = w_0 + \sum_i w_i X_i$$

(Linear Decision Boundary)

DOES NOT require any conditional independence assumptions

Connection to Gaussian Naïve Bayes

There are several distributions that can lead to a linear decision boundary. As another example, consider a generative model:

 $Y \sim \text{Bernoulli}(\pi)$

 $P(X|Y = y) \propto e^{\phi_y(X)}$ Exponential family

 $\phi_y(X) = a_y + \sum_i b_{i,y} X_i + \sum_{ij} c_{ij,y} X_i X_j + \dots$ Observe that Gaussian is a special case

If coefficients of all non-linear terms are same for y = 0 and y = 1, e.g. $c_{ij,0} = c_{ij,1}$, we have a linear decision boundary:

$$\log \frac{P(X|Y=0)}{P(X|Y=1)} = \log P(X|Y=0) - \log P(X|Y=1) = (a_0 - a_1) + \sum_i (b_{i,0} - b_{i,1}) X_i$$

4

Connection to Gaussian Naïve Bayes

$$\log \frac{P(Y=0|X)}{P(Y=1|X)} = \log \frac{P(Y=0)P(X|Y=0)}{P(Y=1)P(X|Y=1)} = \log \frac{1-\pi}{\pi} + \log \frac{P(X|Y=0)}{P(X|Y=1)}$$

Special case: $P(X|Y=y) \sim Gaussian(\mu_y, \Sigma_y)$ where $\Sigma_0 = \Sigma_1$ ($c_{ij,0} = c_{ij,1}$) Conditionally independent $c_{ij,y} = 0$, $i \neq j$ (Gaussian Naïve Bayes)

Generative vs Discriminative

Given infinite data (asymptotically),

If conditional independence assumption holds, Discriminative and generative perform similar.

 $\epsilon_{\mathrm{Dis},\infty}\sim\epsilon_{\mathrm{Gen},\infty}$

If conditional independence assumption does NOT holds, Discriminative outperforms generative.

 $\epsilon_{\mathrm{Dis},\infty} < \epsilon_{\mathrm{Gen},\infty}$

Generative vs Discriminative

Given finite data (n data points, p features),

$$\epsilon_{\text{Dis},n} \leq \epsilon_{\text{Dis},\infty} + O\left(\sqrt{\frac{p}{n}}\right) \qquad \text{Ng-Jordan} \\ \epsilon_{\text{Gen},n} \leq \epsilon_{\text{Gen},\infty} + O\left(\sqrt{\frac{\log p}{n}}\right) \qquad \text{paper}$$

Naïve Bayes (generative) requires $n = O(\log p)$ to converge to its asymptotic error, whereas Logistic regression (discriminative) requires n = O(p).

Why? "Independent class conditional densities"

- * smaller classes are easier to learn
- * parameter estimates not coupled each parameter is learnt independently, not jointly, from training data.

Naïve Bayes vs Logistic Regression

<u>Verdict</u>

Both learn a linear decision boundary.

Naïve Bayes makes more restrictive assumptions and has higher asymptotic error,

BUT

converges faster to its less accurate asymptotic error.

Experimental Comparison (Ng-Jordan'01)

UCI Machine Learning Repository 15 datasets, 8 continuous features, 7 discrete features

Classification so far ... (Recap)

Classification Tasks

Diagnosing sickle cell anemia

Tax Fraud Detection

Features, X

Labels, Y

Anemic cell Healthy cell

Refund	Marital Status	Taxable Income	
No	Married	80K	

Web Classification

Predict squirrel hill resident

Drive to CMU, Rachel's fan, Shop at SH Giant Eagle

Resident Not resident

Goal: Construct a **predictor** $f : X \to Y$ to minimize a risk (performance measure) R(f)

$$R(f) = P(f(X) \neq Y)$$
 Probability of Error

Classification

Classification algorithms

However, we can learn a good prediction rule from training data

$$\{(X_i, Y_i)\}_{i=1}^n \overset{\text{iid}}{\approx} P_{XY}(\text{unknown})$$

Independent and identically distributed

So far ...

Decision Trees K-Nearest Neighbor Naïve Bayes Logistic Regression

Linear Regression

Aarti Singh

Machine Learning 10-701/15-781 Jan 27, 2010

Discrete to Continuous Labels

Regression Tasks

Weather Prediction

Estimating Contamination

Supervised Learning

Goal: Construct a **predictor** $f : X \to Y$ to minimize a risk (performance measure) R(f)

Classification:

$$R(f) = P(f(X) \neq Y)$$

Probability of Error

Regression:

$$R(f) = \mathbb{E}[(f(X) - Y)^2]$$

Mean Squared Error

Regression

Optimal predictor: (Conditional Mean)

$$f^* = \arg\min_{f} \mathbb{E}[(f(X) - Y)^2]$$

$$R(f) = \mathbb{E}_{XY}[(f(X) - Y)^2] = \mathbb{E}_X[\mathbb{E}_{Y|X}[(f(X) - Y)^2 | X]]$$

Dropping subscripts for notational convenience

$$= E \left[E \left[(f(X) - E[Y|X] + E[Y|X] - Y)^2 |X] \right] \right]$$

$$= E[E[(f(X) - E[Y|X])^{2}|X] \\ +2E[(f(X) - E[Y|X])(E[Y|X] - Y)|X] \\ +E[(E[Y|X] - Y)^{2}|X]] \\ = E[E[(f(X) - E[Y|X])^{2}|X] \\ +2(f(X) - E[Y|X]) \times 0 \\ +E[(E[Y|X] - Y)^{2}|X]] \\ = E[(f(X) - E[Y|X])^{2}] + R(f^{*}).$$

Thus $R(f) \ge R(f^*)$ for any prediction rule f, and therefore $R^* = R(f^*)$.

Regression

Optimal predictor: (Conditional Mean)

$$f^* = \arg\min_{f} \mathbb{E}[(f(X) - Y)^2]$$
$$= \mathbb{E}[Y|X]$$

Intuition: Signal plus (zero-mean) Noise model

$$Y = f^*(X) + \epsilon$$

Depends on **unknown** distribution P_{XY}

Regression algorithms

Linear Regression Lasso, Ridge regression (Regularized Linear Regression) Nonlinear Regression Kernel Regression Regression Trees, Splines, Wavelet estimators, ...

Empirical Risk Minimizer:
$$\widehat{f}_n = \arg \min_f \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$$

Empirical mean

$$\widehat{f}_n^L = \arg\min_{f \in \mathcal{F}_L} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$$
 Least Squares Estimator

Multi-variate case:

$$f(X) = f(X^{(1)}, \dots, X^{(p)}) = \beta_1 X^{(1)} + \beta_2 X^{(2)} + \dots + \beta_p X^{(p)}$$

$$= X\beta \qquad \text{where} \quad X = [X^{(1)} \dots X^{(p)}], \quad \beta = [\beta_1 \dots \beta_p]^T$$

Least Squares Estimator

$$\hat{f}_n^L = \arg\min_{f \in \mathcal{F}_L} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$$

$$\hat{\beta} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^n (X_i\beta - Y_i)^2 \qquad \hat{f}_n^L(X) = X\hat{\beta}$$

$$= \arg\min_{\beta} \frac{1}{n} (A \beta - V)^T (A \beta - V)$$

$$= \arg\min_{\beta \in n} -(\mathbf{A}\beta - \mathbf{Y})^{T} (\mathbf{A}\beta - \mathbf{Y})$$
$$\mathbf{A} = \begin{bmatrix} X_{1} \\ \vdots \\ X_{n} \end{bmatrix} = \begin{bmatrix} X_{1}^{(1)} & \dots & X_{1}^{(p)} \\ \vdots & \ddots & \vdots \\ X_{n}^{(1)} & \dots & X_{n}^{(p)} \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} \mathbf{Y}_{1} \\ \vdots \\ \mathbf{Y}_{n} \end{bmatrix}$$

23

Least Squares Estimator

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) = \arg\min_{\beta} J(\beta)$$

$$J(\beta) =$$

$$\left.\frac{\partial J(\beta)}{\partial \beta}\right|_{\widehat{\beta}} = 0$$

Normal Equations

$$(\mathbf{A}^T \mathbf{A})\widehat{\boldsymbol{\beta}} = \mathbf{A}^T \mathbf{Y}$$
p xp p x1 p x1

If $(\mathbf{A}^T \mathbf{A})$ is invertible,

$$\widehat{\beta} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{Y} \qquad \widehat{f}_n^L(X) = X \widehat{\beta}$$

When is $(\mathbf{A}^T \mathbf{A})$ invertible ? (Homework 2) Recall: Full rank matrices are invertible. What is rank of $(\mathbf{A}^T \mathbf{A})$?

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible ? (Homework 2) Regularization (later)

Geometric Interpretation

$$\widehat{f}_n^L(X) = X\widehat{\beta} = X(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{Y}$$

Difference in prediction on training set:

$$\widehat{f}_n^L(\mathbf{A}) - \mathbf{Y} =$$

$$\mathbf{A}^T(\widehat{f}_n^L(\mathbf{A}) - \mathbf{Y}) = \mathbf{0}$$

 $\widehat{f}_n^L(\mathbf{A})$ is the orthogonal projection of \mathbf{Y} onto the linear subspace spanned by the columns of \mathbf{A}

Revisiting Gradient Descent

Even when $(\mathbf{A}^T \mathbf{A})$ is invertible, might be computationally expensive if **A** is huge.

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) = \arg\min_{\beta} J(\beta)$$

Stop: when some criterion met e.g. fixed # iterations, or $\frac{\partial J(\beta)}{\partial \beta}\Big|_{\beta^t} < \varepsilon$.

Effect of step-size α

Large α => Fast convergence but larger residual error Also possible oscillations

Small $\alpha \Rightarrow$ Slow convergence but small residual error

When does Gradient Descent succeed?

View of the algorithm is myopic.

Guaranteed to converge to local minima if

$$0 < \alpha < rac{2}{\lambda_{\max}(\mathbf{A}^T \mathbf{A})}$$

Converges as $(1 - \alpha \lambda_j)^t$ in jth direction Convergence depends on eigenvalue spread

Least Squares and MLE

Intuition: Signal plus (zero-mean) Noise model

$$Y = f^*(X) + \epsilon = X\beta^* + \epsilon \qquad \epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$$

$$Y \sim \mathcal{N}(X\beta^*, \sigma^2 \mathbf{I})$$

$$\widehat{\beta}_{\mathsf{MLE}} = \arg\max_{\beta} \log p(\{(X_i, Y_i)\}_{i=1}^n | \beta, \sigma^2)$$

$$\log \text{ likelihood}$$

$$= \arg\min_{\beta} \sum_{i=1}^{n} (X_i\beta - Y_i)^2 = \hat{\beta}$$

Least Square Estimate is same as Maximum Likelihood Estimate under a Gaussian model !

Regularized Least Squares and MAP

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible ?

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\max_{\beta} \log p(\{(X_i, Y_i)\}_{i=1}^n | \beta, \sigma^2) + \log p(\beta)$$

$$\log \text{ likelihood } \log \text{ prior}$$

I) Gaussian Prior

$$\beta \sim \mathcal{N}(0, \tau^{2}\mathbf{I}) \qquad p(\beta) \propto e^{-\beta^{T}\beta/2\tau^{2}}$$

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_{i} - X_{i}\beta)^{2} + \lambda \|\beta\|_{2}^{2} \qquad \mathsf{Ridge Regression}$$

$$\operatorname{Closed form: HW} \qquad \operatorname{Closed form: HW}$$

Prior belief that β is Gaussian with zero-mean biases solution to "small" β

Regularized Least Squares and MAP

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible ?

Prior belief that β is Laplace with zero-mean biases solution to "small" β

Ridge Regression vs Lasso $\min_{\beta} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) + \lambda pen(\beta) = \min_{\beta} J(\beta) + \lambda pen(\beta)$ Ridge Regression: Lasso: Ideally IO penalty, HOT! $pen(\beta) = \|\beta\|_1$ $pen(\beta) = \|\beta\|_2^2$ but optimization becomes non-convex β s with constant $J(\beta)$ (level sets of $J(\beta)$) β s with βs with β2 βs with constant constant constant l2 norm l1 norm 10 norm

Lasso (l1 penalty) results in sparse solutions – vector with more zero coordinates Good for high-dimensional problems – don't have to store all coordinates!

β1

Beyond Linear Regression

Polynomial regression

Regression with nonlinear features/basis functions

Kernel regression - Local/Weighted regression

Regression trees – Spatially adaptive regressic

Polynomial Regression

Univariate case: $f(X) = \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + \beta_m X^m = \mathbf{X}\beta$ where $\mathbf{X} = \begin{bmatrix} 1 \ X \ X^2 \dots X^m \end{bmatrix}, \beta = \begin{bmatrix} \beta_1 \dots \beta_m \end{bmatrix}^T$

$$\widehat{\beta} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{Y} \qquad \mathbf{A} = \begin{bmatrix} \mathbf{1} & X_1 & X_1^2 & \dots & X_1^m \\ \vdots & & \ddots & \vdots \\ \mathbf{1} & X_n & X_n^2 & \dots & X_n^m \end{bmatrix}$$

Nonlinear Regression

$$\mathcal{F}(X) = \sum_{j=0}^{m} \beta_j \phi_j(X)$$

Basis coefficients <- Nonlinear features/basis functions

Fourier Basis

f

Good representation for oscillatory functions

Good representation for functions localized at multiple scales

Local Regression

$$f(X) = \sum_{j=0}^{m} \beta_j \phi_j(X)$$

Basis coefficients
Nonlinear features/basis functions

Local Regression

$$f(X) = \sum_{j=0}^{m} \beta_j \phi_j(X)$$

Basis coefficients
Nonlinear features/basis functions

Kernel Regression (Local)

$$\min_{f} \frac{1}{n} \sum_{i=1}^{n} w_i (f(X_i) - Y_i)^2$$

$$\frac{1}{n}\sum_{i=1}^{n}w_i = 1$$

Weighted Least Squares

Weigh each training point based on distance to test point

$$w_i(X) = \frac{K\left(\frac{X-X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X-X_i}{h}\right)}$$

K – Kernel *h* – Bandwidth of kernel boxcar kernel : $K(x) = \frac{1}{2}I(x),$

Gaussian kernel : $K(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$

Nadaraya-Watson Kernel Regression

$$\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} w_i (\beta - Y_i)^2$$

$$w_i(X) = \frac{K\left(\frac{X-X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X-X_i}{h}\right)}$$

$$\frac{\partial J(\beta)}{\partial \beta} = 2 \sum_{i=1}^{n} w_i (\beta - Y_i) = 0$$

$$\Rightarrow \widehat{f}_n(X) = \widehat{\beta} = \sum_{i=1}^n w_i Y_i$$

Nadaraya-Watson Kernel Regression

$$\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} w_i (\beta - Y_i)^2$$

$$\frac{\partial J(\beta)}{\partial \beta} = 2 \sum_{i=1}^{n} w_i (\beta - Y_i) = 0$$

$$\Rightarrow \widehat{f}_n(X) = \widehat{\beta} = \sum_{i=1}^n w_i Y_i$$

with box-car
$$= \frac{1}{n_{\mathsf{X}}^h} \sum_{i=1}^n Y_i \ \mathbf{1}_{|X-X_i| \le h}$$
 kernel

#pts in h ball around X 🚽 Sum of Ys in h ball around X

$$w_i(X) = \frac{K\left(\frac{X-X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X-X_i}{h}\right)}$$

boxcar kernel :

$$K\left(\frac{X-X_i}{h}\right) = \mathbf{1}_{|X-X_i| \le h}$$

Recall: NN classifier Average <-> majority¹¹vote

Choice of Bandwidth

Should depend on n, # training data (determines variance)

Should depend on smoothness of function (determines bias)

Large Bandwidth – average more data points, reduce noise (Lower variance)

Small Bandwidth – less smoothing, more accurate fit (Lower bias)

Bias - Variance tradeoff : More to come in later lectures

Spatially adaptive regression

If function smoothness varies spatially, we want to allow bandwidth h to depend on X

Local polynomials, splines, wavelets, regression trees ...

Regression trees

Binary Decision Tree

$$X^{(1)}$$
 $X^{(p)}$ Y

Gender	Rich?	Num. Children	# travel per yr.	Age
F	No	2	5	38
Μ	No	0	2	25
М	Yes	1	0	72
:	:	:	:	:

Average (fit a constant) on the leaves

Regression trees

Discriminative vs Generative Classifiers

- Naïve Bayes vs Logistic Regression

Regression

- Linear Regression

Least Squares Estimator

Normal Equations

Gradient Descent

Geometric Interpretation

Probabilistic Interpretation (connection to MLE)

- Regularized Linear Regression (connection to MAP) Ridge Regression, Lasso
- Polynomial Regression, Basis (Fourier, Wavelet) Estimators
- Kernel Regression (Localized)
- Regression Trees