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Generative and Discriminative 

Classifiers

Training classifiers involves learning a mapping f: X -> Y, or P(Y|X)

Generative classifiers (e.g. Naïve Bayes)

• Assume some functional form for P(X,Y) (or P(X|Y) and P(Y))

• Estimate parameters of P(X|Y), P(Y) directly from training data
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• Estimate parameters of P(X|Y), P(Y) directly from training data

• Use Bayes rule to calculate P(Y|X)

Discriminative classifiers (e.g. Logistic Regression)

• Assume some functional form for P(Y|X)

• Estimate parameters of P(Y|X) directly from training data



Logistic Regression

Assumes the following functional form for P(Y|X):

Alternatively,
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Alternatively,

(Linear Decision Boundary)

DOES NOT require any conditional independence assumptions



Connection to Gaussian Naïve Bayes

There are several distributions that can lead to a linear decision boundary.

As another example,  consider a generative model:

Exponential family
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Observe that Gaussian 
is a special case



Connection to Gaussian Naïve Bayes
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Constant term First-order term

Special case: P(X|Y=y) ~ Gaussian( µy,Σy)   where Σ0 = Σ1    (cij,0  = cij,1)

Conditionally independent  cij,y = 0 , i ≠ j

(Gaussian Naïve Bayes)



Generative vs Discriminative

Given infinite data (asymptotically),

If conditional independence assumption holds,

Discriminative and generative perform similar.
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If conditional independence assumption does NOT holds,

Discriminative outperforms generative.



Generative vs Discriminative

Given finite data (n data points, p features),

Ng-Jordan

paper
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Naïve Bayes (generative) requires n = O(log p) to converge to its 

asymptotic error, whereas Logistic regression (discriminative) 

requires n = O(p).

Why? “Independent class conditional densities”

* smaller classes are easier to learn

* parameter estimates not coupled – each parameter is learnt 

independently, not jointly, from training data.



Naïve Bayes vs Logistic Regression

Verdict

Both learn a linear decision boundary. 

Naïve Bayes makes more restrictive assumptions 
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Naïve Bayes makes more restrictive assumptions 

and has higher asymptotic error,

BUT 

converges faster to its less accurate asymptotic 

error.



Experimental Comparison (Ng-Jordan’01)

UCI Machine Learning Repository 15 datasets, 8 continuous features, 7 discrete features
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Logistic RegressionNaïve Bayes

More in 

Paper…



Classification so far … (Recap)Classification so far … (Recap)

10



Tax Fraud Detection

Diagnosing sickle 

cell anemia

Anemic cell

Healthy cell

Features, X Labels, Y

Classification Tasks

Tax Fraud Detection

Web Classification
Sports

Science

News

Predict squirrel hill

resident
Drive to CMU, Rachel’s fan,

Shop at SH Giant Eagle

Resident

Not resident11



Goal:

Classification

Sports
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Sports

Science

News

Features, X Labels, Y

Probability of Error



Classification

Optimal predictor:
(Bayes classifier)
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Depends on unknown distribution



Classification algorithms

Independent and identically distributed

However, we can learn a good prediction rule from training data

Learning algorithm

So far …
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Decision Trees

K-Nearest Neighbor

Naïve Bayes

Logistic Regression



Linear RegressionLinear Regression
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Discrete to Continuous Labels

Sports

Science

News

Classification

Anemic cell

Healthy cell
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Regression

Stock Market 

Prediction
Y = ?

X = Feb01 

X = Document Y = Topic X = Cell Image Y = Diagnosis



Regression Tasks

Weather Prediction

Y = Temp
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X = 7 pm

Estimating

Contamination

X = new location

Y = sensor reading



Supervised Learning

Sports

Goal:
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Sports

Science

News

Classification: Regression: 

Probability of Error Mean Squared Error

Y = ?

X = Feb01 



Regression

Optimal predictor:
(Conditional Mean)

Dropping subscripts

for notational convenience
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for notational convenience



Regression

Optimal predictor:
(Conditional Mean)
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Depends on unknown distribution

Intuition: Signal plus (zero-mean) Noise model



Regression algorithms

Learning algorithm

Linear Regression
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Linear Regression

Lasso, Ridge regression (Regularized Linear Regression)

Nonlinear Regression

Kernel Regression

Regression Trees, Splines, Wavelet estimators, …

Empirical Risk Minimizer:

Empirical mean



Linear Regression

- Class of Linear functions

Least Squares Estimator
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ββββ1 - intercept

ββββ2 = slopeUni-variate case:

Multi-variate case: 1

where                                                     ,



Least Squares Estimator
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Least Squares Estimator
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Normal Equations

If                  is invertible, 

p xp p x1 p x1
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When is                    invertible ? (Homework 2)

Recall: Full rank matrices are invertible. What is rank of                 ? 

What if                   is not invertible ? (Homework 2)

Regularization (later)



Geometric Interpretation

Difference in prediction on training set:
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is the orthogonal projection of        

onto the linear subspace spanned by the 

columns of 

0



Revisiting Gradient Descent

Even when                    is invertible, might be computationally expensive if A is huge.

Gradient Descent
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Initialize: 

Update:

0 if      = 

Stop:  when some criterion met e.g. fixed # iterations, or                < ε.

Gradient Descent



Effect of step-size α
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Large α => Fast convergence but larger residual error

Also possible oscillations

Small α => Slow convergence but small residual error



When does Gradient Descent 

succeed?
View of the algorithm is myopic.
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Guaranteed to converge to local minima if Converges as                         in jth direction 

Convergence depends on eigenvalue spread    

http://demonstrations.wolfram.comhttp://www.ce.berkeley.edu/~bayen/



Least Squares and MLE

Intuition: Signal plus (zero-mean) Noise model
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Least Square Estimate is same as Maximum Likelihood Estimate under a 
Gaussian model !

log likelihood



Regularized Least Squares and MAP

What if                   is not invertible ? 

log likelihood log prior

31Prior belief that β is Gaussian with zero-mean biases solution to “small” β

I) Gaussian Prior

0

Ridge Regression

Closed form: HW



Regularized Least Squares and MAP

What if                   is not invertible ? 

log likelihood log prior

32Prior belief that β is Laplace with zero-mean biases solution to “small” β

Lasso

Closed form: HW

II) Laplace Prior



Ridge Regression vs Lasso

Ridge Regression: Lasso: HOT!
Ideally l0 penalty, 

but optimization 

becomes non-convex

βs with constant J(β)

(level sets of J(β))
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Lasso (l1 penalty) results in sparse solutions – vector with more zero coordinates

Good for high-dimensional problems – don’t have to store all coordinates!

βs with 

constant 

l1 norm

βs with 

constant 

l0 norm

(level sets of J(β))

βs with 

constant 

l2 norm

β2

β1



Beyond Linear Regression

Polynomial regression

Regression with nonlinear features/basis functions
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Kernel regression - Local/Weighted regression

Regression trees – Spatially adaptive regression

h



Polynomial Regression

Univariate case:

where                                                        ,

35

Nonlinear 
features

Weight of
each feature



Nonlinear Regression

Fourier Basis Wavelet Basis

Nonlinear features/basis functionsBasis coefficients
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Good representation for oscillatory functions Good representation for functions

localized at multiple scales



Local Regression

Nonlinear features/basis functionsBasis coefficients
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Globally supported

basis functions 

(polynomial, fourier)

will not yield a good 

representation 



Local Regression

Nonlinear features/basis functionsBasis coefficients
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Globally supported

basis functions 

(polynomial, fourier)

will not yield a good 

representation 



Kernel Regression (Local)

Weighted Least Squares

Weigh each training point based on distance to test point
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K – Kernel

h – Bandwidth of kernel 



Nadaraya-Watson Kernel Regression

constant
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Nadaraya-Watson Kernel Regression

constant
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h

Recall: NN classifier
Average <-> majority vote

with box-car 
kernel

Sum of Ys in h ball around X#pts in h ball around X



Choice of Bandwidth

h
Should depend on n, # training data

(determines variance)

Should depend on smoothness of 

function
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Large Bandwidth – average more data points, reduce noise

Small Bandwidth – less smoothing, more accurate fit

(Lower variance)

(Lower bias)

Bias – Variance tradeoff : More to come in later lectures

function

(determines bias)



Spatially adaptive regression

h

h
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If function smoothness varies spatially, we want to allow bandwidth h to 

depend on X

Local polynomials, splines, wavelets, regression trees …



Regression trees

Num Children?

≥ 2 < 2

Binary Decision Tree
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Average (fit a constant ) on the leaves



Regression trees

h

h

Quad Decision Tree
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- Polynomial fit on each leaf

If  , then split 

Else stop Compare residual error with and without split



Summary

Discriminative vs Generative Classifiers

- Naïve Bayes vs Logistic Regression

Regression

- Linear Regression

Least Squares Estimator
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Least Squares Estimator

Normal Equations

Gradient Descent

Geometric Interpretation

Probabilistic Interpretation (connection to MLE)

- Regularized Linear Regression (connection to MAP)

Ridge Regression, Lasso

- Polynomial Regression, Basis (Fourier, Wavelet) Estimators

- Kernel Regression (Localized)

- Regression Trees


