
Chapter 3 

HYPOTHESIS TESTING 

The purpose of pattern recognition is to determine to which category or 
class a given sample belongs. Through an observation or measurement pro- 
cess, we obtain a set of numbers which make up the observation vector. The 
observation vector serves as the input to a decision rule by which we assign the 
sample to one of the given classes. Let us assume that the observation vector 
is a random vector whose conditional density function depends on its class. If 
the conditional density function for each class is known, then the pattern recog- 
nition problem becomes a problem in statistical hypothesis testing. 

3.1 Hypothesis Tests for Two Classes 

In this section, we discuss two-class problems, which arise because each 
sample belongs to one of two classes, o1 or 0 2 .  The conditional density func- 
tions and the a priori probabilities are assumed to be known. 

The Bayes Decision Rule for Minimum Error 

Bayes test: Let X be an observation vector, and let it be our purpose to 
determine whether X belongs to o1 or 02. A decision rule based simply on 
probabilities may be written as follows: 
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where qi(X) is a posteriori probability of 0; given X .  Equation (3.1) indicates 
that, if the probability of o1 given X is larger than the probability of 02, X is 
classified to o1 , and vice versa. The a posteriori probability q;(X) may be cal- 
culated from the a priori probability Pi and the conditional density function 
pi(X), using Bayes theorem, as 

(3.2) 

where p (X) is the mixture density function. Since p ( X )  is positive and com- 
mon to both sides of the inequality, the decision rule of (3.1) can be expressed 
as 

or 

(3.3) 

(3.4) 

The term [ ( X )  is called the likelihood ratio and is the basic quantity in 
hypothesis testing. We call P21P the threshold value of the likelihood ratio 
for the decision. Sometimes it is more convenient to write the minus-log likeli- 
hood ratio rather than writing the likelihood ratio itself. In that case, the deci- 
sion rule of (3.4) becomes 

P ,  
0 2  p2 

h ( X ) = - l n t ( X ) = - I n p I ( X ) + l n p 2 ( X )  3 In - .  (3.5) 

The direction of the inequality is reversed because we have used the negative 
logarithm. The term h ( X )  is called the discriminant function. Throughout this 
book, we assume P I = P 2 ,  and set the threshold In P IIP = 0 for simplicity, 
unless otherwise stated. 

Equation (3.1), (3.4), or (3.5) is called the Bayes test for minimum error. 

Bayes error: In general, the decision rule of (3 .3 ,  or any other decision 
rule, does not lead to perfect classification. In order to evaluate the perfor- 
mance of a decision rule, we must calculate the probability of error, that is, the 
probability that a sample is assigned to the wrong class. 

The conditional error given X ,  r (X) ,  due to the decision rule of (3.1) is 
either 9 I (X) or q * ( X )  whichever smaller. That is, 
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r-(X) = mink1(X),q2(X)I . (3.4) 

The total error, which is called the Bayes error, is computed by E { r ( X ) ] .  

where 

Equation (3.7) shows several ways to express the Bayes error, E. 

is the definition of E. The second line is obtained by inserting 
The first line 
(3.6) into the 

first line and applying the Bayes theorem of (3.2). The integral regions L and 
L 2  of the third line are the regions where X is classified to o1 and o2 by this 
decision rule, and they are called the ol- and o;?-regions. In L I ,  
P IpI (X) > P 2p2(X), and therefore r (X) = P 2 p 2 ( X ) / p  (X). Likewise, 
r-(X) = P Ip  I (X)/p (X) in L2 because P lp I (X) < P g 2 ( X )  in L2. In (3.8), we 
distinguish two types of errors: one results from misclassifying samples from 
w1 and the other results from misclassifying samples from 02. The total error 
is a weighted sum of these errors. 

Figure 3-1 shows an example of this decision rule for a simple one- 
dimensional case. The decision boundary is set at x = r  where 
P lp  I (x) = P 2 p 2 ( x ) ,  and s < r and x > t are designated to L I and L2 respec- 
tively. The resulting errors are P = R + C, P 2 ~ 2  = A, and E = A + B + C, 

where A,  B, and C indicate the areas, for example, B = I' P Ip  (8)  dx. 

This decision rule gives the smallest probability of error. This may be 
demonstrated easily from the one-dimensional example of Fig. 3- 1. Suppose 
that the boundary is moved from r to t' ,  setting up the new wI - and o2-regions 
as L; and L ; .  Then, the resulting errors are P ]E; = C, P 2 ~ i  = A + B + D, and 
6 = A  + B + C + D, which is larger than E by D. The same is true when the 
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Fig. 3-1 Bayes decision rule for minimum error. 

boundary is shifted to the left. This argument can be extended to a general n- 
dimensional case. 

The computation of the Bayes error is a very complex problem except in 
some special cases. This is due to the fact that E is obtained by integrating 
high-dimensional density functions in complex regions as seen in (3.8). There- 
fore, it is sometimes more convenient to integrate the density function of 
h = h (X) of (3.5), which is one-dimensional: 

(3.9) 

(3.10) 

where ph(h I mi) is the conditional density of h for mi. However, in general, 
the density function of h is not available, and very difficult to compute. 

Example 1: When the p i (X) ' s  are normal with expected vectors Mi and 
covariance matrices C;, the decision rule of (3.5) becomes 

h (X) = - In 1(X) 

(3.1 1) 

Equation (3.1 1) shows that the decision boundary is given by a quadratic form 
in X. When C I  = C2 = C, the boundary becomes a linear function of X as 
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x2 x2 / 

Fig. 3-2 Decision boundaries for normal distributions: 
(a) XI f &; (b) XI = &. 

Figure 3-2 shows two-dimensional examples for XI zC2 and C I =&. 

Example 2: Let us study a special case of (3.1 1 )  where 

M i  = O  and X i  = 

1 p; . . .  py-' 

Pi 1 

' Pi 

py-' . . . Pi 1 

(3.12) 

(3.13) 

This type of covariance matrix is often seen, for example, when stationary run- 
dom processes are time-sampled to form random vectors. The explicit expres- 
sions for Z;' and I Zi I are known for this covariance matrix as 
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-p; 0 . . . 

1+p: -p; . .  , 0 1 
2 l+Pi -pi 

IZ; I = (1 - p y  . 

(3.14) 

(3.15) 

Therefore, the quadratic equation of (3.11) becomes 

1-p: P1 
l-p2 o? p2 

- ~ x i x i + l  + (n-1) In 7 >< In - , (3.16) 

where the second term shows the edge effect of terminating the observation of 
random processes within a finite length, and this effect diminishes as n gets 
large. If we could ignore the second and fourth terms and make 
In ( P ,/P2) = 0 (P 1= P2), the decision rule becomes (CX;X~+~)/(CX~) >< t ; that 
is, the decision is made by estimating the correlation coefficient and threshold- 
ing the estimate. Since pl#p2 is the only difference between o1 and o2 in this 
case, this decision rule is reasonable. 

Example 3: When xk's  are mutually independent and exponentially 
distributed, 

(3.17) 

where ajk is the parameter of the exponential distribution for x k  and mi, and 
u (.) is the step function. Then, h (X) of (3.5) becomes 
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(3.18) 

The Bayes decision rule becomes a linear function of xk’s .  

The Bayes Decision Rule for Minimum Cost 

Often in practice, minimizing the probability of error is not the best cri- 
terion to design a decision rule because the misclassifications of ol - and 02-  

samples may have different consequences. For example, the misclassification 
of a cancer patient to normal may have a more damaging effect than the 
misclassification of a normal patient to cancer. Therefore, it is appropriate to 
assign a cost to each situation as 

cIj  = cost of deciding X E o, when X E o, . (3.19) 

Then, the conditional cost of deciding X E o, given X ,  r , ( X ) ,  is 

i ’ i (X)  = ci 1 4  I ( X I  + c j 2 q 2 ( X )  . (3.20) 

The decision rule and the resulting conditional cost given X ,  i’ (X), are 

(3.21) 

and 

r ( X )  = min[rI(X), r .z(X)I  . (3.22) 

The total cost of this decision is 
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The boundary which minimizes r of (3.23) can be found as follows. 
First, rewrite (3.23) as a function of L l  alone. This is done by replacing 
[ pi(X)CUr with 1 - I, pi(X)dX, since L I and L2 do not overlap and cover the 

I 

entire domain. Thus, 

Now our problem becomes one of choosing L I such that r is minimized. Sup- 
pose, for a given value of X, that the integrand of (3.24) is negative. Then we 
can decrease r by assigning X to L l .  If the integrand is positive, we can 
decrease r by assigning X to L 2 .  Thus the minimum cost decision rule is to 
assign to L l  those X ’ s  and only those X’s, for which the integrand of (3.24) is 
negative. This decision rule can be stated by the following inequality: 

0 1  

0- 
(c 12-C22)P2P 2 W )  3 (C2I  --c I I )P IP I (X) (3.25) 

or 

(3.26) 

This decision rule is called the Bayes test for- minimum cost. 

Comparing (3.26) with (3.4), we notice that the Bayes test for minimum 
cost is a likelihood ratio test with a different threshold from (3.4), and that the 
selection of the cost functions is equivalent to changing the a priori probabili- 
ties Pi. Equation (3.26) is equal to (3.4) for the special selection of the cost 
functions 

This is called a symmetrical cost function. For a symmetrical cost function, the 
cost becomes the probability of error, and the test of (3.26) minimizes the pro- 
bability of error. 

Different cost functions are used when a wrong decision for one class is 
more critical than one for the other class. 




